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21. Circuit Optimizations

* Previous Unit:

— Packaging
—-1/0

* This Unit:

— Circuit optimization overview

— Various techniques
« Partitioning, placement, routing
* Gate sizing, wire sizing, buffer insertion
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VLSI Design Cycle

System

Specification

95 Large number of devices
S5 Time-to-market competition
o P

ower (and other) constraints

Optimizations are everywhere

D. Z. Pan 21. Circuit Optimizations
2

VLSI Design Cycle

System Specification
Functional Design

X=(AB*CD)+(A+D)+(A(B+C))
Y=(A(B+C))+AC+D+A(BC+D))

Bl
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Logic Design

VLSI Design Cycle (cont.)

Physical Design

Packaging
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Physical Design

Physical design converts a circuit description
into a geometric description. This description is
used to manufacture a chip. The physical design
cycle consists of

1 Partitioning
2 Floorplanning and Placement

3 Routing
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Physical Design Process

. [m]
Design Steps:
Partition & Clustering
Floorplan & Placement o
Pin Assignment
Global Routing
Detailed Routing o
Methodology:
Divide-and-Conquer o
[m]
[m] [m] [m] [m]
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Physical Design Cycle

=
Physical Design

21. Circuit Optimizations

Levels of Partitioning

- /5-;,' System

@ PCBs

Chips

Subcircuits
i / Blocks
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System Level Partitioning @

Board Level Partitioning

Chip Level Partitioning @

Partitioning of a Circuit
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Importance of Circuit Partitioning

95 Divide-and-conquer methodology
The most effective way to solve problems of high complexity
E.g.: min-cut based placement, partitioning-based test generation,...
95 System-level partitioning for multi-chip designs
inter-chip interconnection delay dominates system performance.
95 Circuit emulation/parallel simulation

partition large circuit into multiple FPGAs (e.g. Quickturn), or
multiple special-purpose processors (e.g. Zycad).

95 Parallel CAD development
Task decomposition and load balancing

95 In deep-submicron designs, partitioning defines local and global
interconnect, and has significant impact on circuit performance
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Placement
Input:
— Blocks (standard cells and macros) B, ..., B,
— Shapes and Pin Positions for each block B;
— Nets Ny, ..., N,
Output:
— Coordinates (x; , y; ) for block B;.
— No overlaps between blocks
— The total wire length is minimized
— The area of the resulting block is minimized or
given a fixed die
Other consideration: timing, routability, clock,
buffering and interaction with physical
synthesis
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Modern Mixed-mode Placement

-F : ] - Many macros
- data paths +
dust logic
- 1/O constraint
(area l/O or
wirebond)

(source: IBM)
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Different Wire Length

wirelength = 10

wirelength = 12
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Different Routability/Chip Area

L2 Ga e L
wcaleale

Density = 2 (2 tracks required)

e

Shorter wirelength, 3 tracks required.
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Placement can Make a Difference

* MCNC Benchmark circuit e64 (contains 230
4-LUT). Placed to a FPGA.

Random Initial Final
Placement Placement

After Detailed
Routing
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Importance of Placement

Fundamental problem for physical design
Glue of the physical synthesis

Becomes very active again in recent years:
— ISPD’05 and 06 Placement Contests
Reasons:

— Serious interconnect issues (delay, routability, noise) in
deep-submicron design

— Placement problem becomes significantly larger

— Cong et al. [ASPDAC-03, ISPD-03, ICCAD-03] point out

that existing placers are far from optimal, not scalable,
and not stable
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Interconnect Topology Optimization

« Problem: given a source and a set of sinks,
build the best interconnect topology to
minimize different design objectives:

— Wire length: traditional (lower capacitance load,
and overall congestion)

— Performance: DSM

— New interest: speed and other non-traditional
routing architecture

+ In most cases, topology means tree

— Because tree is the most compact structure to
connect everything without redundancy

— Delay analysis is easy (cf. mesh)
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Rectilinear Steiner Tree:

Terminology

For multi-terminal net, we can easily

construct a tree (spanning tree) to connect

the terminals together.

However, the wire length may be

unnecessarily large.

Better use Steiner Tree:

— A tree connecting all terminals as well
as other added nodes (Steiner nodes).

/\

Steiner Node

— Steiner tree such that edges can only
run horizontally and vertically.
— Manhattan planes

L%
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Prim’s Algorithm
for Minimum Spanning Tree

« Grow a connected subtree from the source,
one node at a time.

¢ At each step, choose the closest un-
connected node and add it to the subtree.
oY
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Interconnect Topology Optimization
Under Linear Delay Model

Conventional Routing Algorithms Are Not Good
Enough
- Minimum spanning tree may have very long source-sink path.
- Shortest path tree may have very large routing cost.

« Want to minimize path lengths and routing cost at the

same time.

MST SPT
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Routing in design flow
. |
A < L Netlist

INV

- Routing

OR

Floorplan/Placement
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Routing Problem is Very Hard

e Minimum Steiner Tree Problem:

— Given a net, find the Steiner tree with the
minimum length.

— This problem is NP-Complete!

» May need to route tens of thousands of
nets simultaneously without overlapping.

» Obstacles may exist in the routing region.
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General Routing Paradigm

Two phases:

Global Routing Detailed Routing
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Maze Routing
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An lllustration

Sol 1] 2] 3
1213
3| 4|5
54|56
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Extraction and Timing Analysis

« After global routing and detailed routing,
information of the nets can be extracted
and delays can be analyzed.

« If some nets fail to meet their timing
budget, detailed routing and/or global
routing needs to be repeated.
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Complexities of Physical Design

More than 100 million transistors

erformance driven designs

SIS IS

P
Power-constrained designs
T

ime-to-Market

Design cycle

High performance, high cost
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Grand Challenge: Design Closure
(s

BIG problem: non-converging or
too many iterations
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Transistor/Gate Sizing

* Given: Logic network with or without cell library

Find: Optimal size for each transistor/gate to
minimize delay, or area or power under delay constraint

« Transistor sizing versus gate sizing (=> device sizing)
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Device Sizing

« Device sizing is one of the key techniques for
circuit optimization
— For standard cell type of designs, gate sizing

» For example of inverters, INV-A, INV-B, INV-C, ..., INV-N,
..., each having a different driving capabilities.

— For microprocessor or custom designs, more fine-
grained control, transistor sizing
« For each transistor
« Main techniques

— Analytical formula: e.g., driver sizing [Lin-Linholm,
JSSC'75]

— Greedy algorithm: [Cong et al, 1996], [Chen et al,
ICCAD 1998]

— Mathematical programming
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Driver Sizing

L] L Sur L
Given:

— A chain of cascaded drivers driving a load

— Ignore the interconnect between drivers (i.e. assume driver and
load CL is closer enough)

Obtain:

— Optimize the driver sizes to minimize delay, or minimize total area
while meeting target delay

[Lin-Linholm, JSSC'75]: a classic result without wiring
consideration

Delay and area/power tradeoff
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An Early Work on Driver Sizing
[Lin-Linholm, JSSC'75]

d, d, d,

« Constant stage ratio, g,., ( cL]

di a

« if the number of drivers is not fixed, di+t _
dl

* Interconnect is modeled as a lumped capacitor

D. Z. Pan 21. Circuit Optimizations
2

Buffer Insertion

Find: Buffer locations and a routing tree such that
slack at the source is minimized

Q(So) = min]sisz;{RAT (Si) - delay(sm Si)}

RAT,
RAT,
So h
N AN
2 > W RAT,
RAT,
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Wire Sizing Problem

7 7
=
{ﬂﬂ-
1

We can modeled as a n-type RC circuit ol
| oo

— h

c(hyl c(h)l
I 1_ h

Both resistance and capacitance depend on wire width.
Hence delay can be optimized by changing wire width.
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