23. Design for Low Power

23. Design for Low Power

- Previous Unit:
 - Circuit optimization overview
- This Unit
 - Power and Energy
 - Dynamic Power
 - Static Power
 - Low Power Design

D. Z. Pan

23. Design for Low Powe

Power and Energy

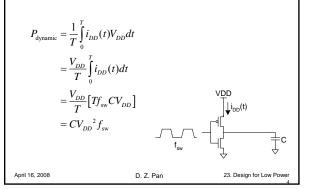
- Power is drawn from a voltage source attached to the V_{DD} pin(s)
- Instantaneous Power: $P(t) = i_{DD}(t)V_{DD}$

• Energy: $E = \int_{0}^{T} P(t)dt = \int_{0}^{T} i_{DD}(t)V_{DD}dt$

• Average Power: $P_{\text{avg}} = \frac{E}{T} = \frac{1}{T} \int_{0}^{T} i_{DD}(t) V_{DD} dt$

April 16, 2008 D. Z. Pan 23. Design for Low Powe

Dynamic Power


- Dynamic power required to charge and discharge load capacitances when transistors switch
- · One cycle involves a rising and falling output
- On rising output, charge Q = CV_{DD} is required
- · On falling output, charge is dumped to GND

This repeats Tf_{sw} times over an interval of T f_{sw} April 16, 2008

D. Z. Pan

23. Design for Low Power

Dynamic Power Cont.

Activity Factor

- Suppose the system clock frequency = f
- Let $f_{sw} = \alpha f$, where α = activity factor
 - If the signal is a clock, $\alpha = 1$
 - If the signal switches once per cycle, $\alpha = \frac{1}{2}$
 - Dynamic gates:
 - Switch either 0 or 2 times per cycle, $\alpha = \frac{1}{2}$
 - Static gates:
 - Depends on design, but typically α = 0.1 $\,$
- Dynamic power: $P_{\text{dynamic}} = \alpha C V_{DD}^2 f$

April 16, 2008

D. Z. Pan

23. Design for Low Power

Short Circuit Current

- When transistors switch, both nMOS and pMOS networks may be momentarily ON for a short period of time
- Leads to a blip of "short circuit" current.
- < 10% of dynamic power if rise/fall times are comparable for input and output

April 16, 2008

D. Z. Pan

23. Design for Low Power

23. Design for Low Power

Example

- 200M transistor chip
 - 20M logic transistors
 - \bullet Average width: 12 λ
 - 180M memory transistors
 - Average width: 4 λ
 - 1.2 V 100 nm process
 - $-C_{\alpha} = 2 \text{ fF/}\mu\text{m}$

April 16, 2008 D. Z. Pan 23. Design for Low Powe

Dynamic Power Example

- Static CMOS logic gates: activity factor =
- Memory arrays: activity factor = 0.05 (many banks!)
- Estimate dynamic power consumption per MHz (neglect wire capacitance)

April 16, 2008 D. Z. Pan 23. Design for Low Pow

Dynamic Power Example

- Static CMOS logic gates: activity factor =
- Memory arrays: activity factor = 0.05 (many banks!)
- · Estimate dynamic power consumption per MHz (neglect wire capacitance)

$$\begin{split} &C_{\text{logic}} = \left(20 \times 10^{6}\right) \left(12 \lambda\right) \left(0.05 \mu m / \lambda\right) \left(2 \, fF / \mu m\right) = 24 nF \\ &C_{\text{mem}} = \left(180 \times 10^{6}\right) \left(4 \lambda\right) \left(0.05 \mu m / \lambda\right) \left(2 \, fF / \mu m\right) = 72 nF \\ &P_{\text{dynamic}} = \left[0.1 C_{\text{logic}} + 0.05 C_{\text{mem}}\right] \left(1.2\right)^{2} f = 8.6 \text{ mW/MHz} \end{split}$$

April 16, 2008 D. Z. Pan 23. Design for Low Power

Static Power

- Static power is consumed even when chip is quiescent.
 - Ratioed circuits burn power in fight between ON transistors
 - Leakage draws power from nominally OFF

$$\begin{split} I_{ds} &= I_{ds0} e^{\frac{V_{gs} - V_t}{n V_T}} \left[1 - e^{\frac{-V_{ds}}{V_T}} \right] \\ V_t &= V_{t0} - \eta V_{ds} + \gamma \left(\sqrt{\phi_s + V_{sb}} - \sqrt{\phi_s} \right) \end{split}$$

April 16, 2008 23. Design for Low Powe

Ratio Example

- The chip contains a 32 word x 48 bit ROM
 - Uses pseudo-nMOS decoder and bitline
 - On average, one wordline and 24 bitlines are
- Find static power drawn by the ROM
 - $-\beta = 75 \mu A/V^2$
 - $-V_{tp} = -0.4V$

April 16, 2008 D. Z. Pan 23. Design for Low Powe

Ratio Example

- The chip contains a 32 word x 48 bit ROM
 - Uses pseudo-nMOS decoder and bitline
 - On average, one wordline and 24 bitlines are high
- Find static power drawn by the ROM

 $- \beta = 75 \mu A/V^2$

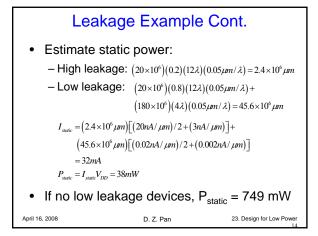
 $-V_{tp} = -0.4V$

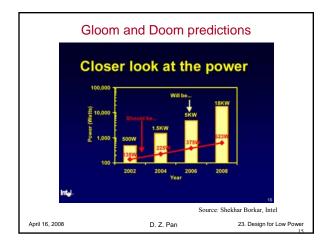
 $I_{\text{pull-up}} = \beta \frac{\left(V_{DD} - \left|V_{tp}\right|\right)^2}{2} = 24\mu A$

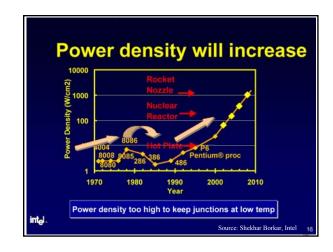
• Solution:

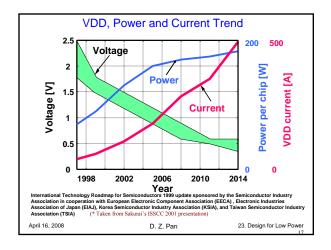
 $P_{\text{pull-up}} = V_{DD}I_{\text{pull-up}} = 29\mu\text{W}$ $P_{\text{static}} = (31 + 24)P_{\text{pull-up}} = 1.6 \text{ mW}$

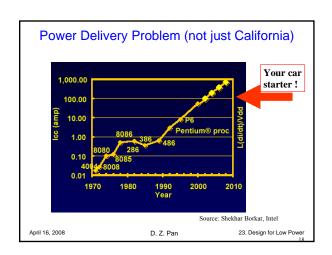
April 16, 2008 D. Z. Pan 23. Design for Low Pow

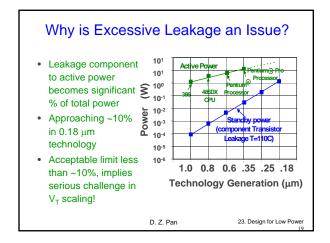

VLSI Design

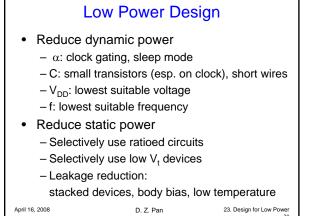

23. Design for Low Power

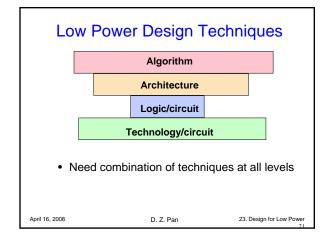

Leakage Example


- Process has two threshold voltages and two oxide thicknesses
- Subthreshold leakage:
 - $-20 \text{ nA/}\mu\text{m}$ for low V_t
 - 0.02 nA/ μm for high V_t
- · Gate leakage:
 - $-3 \text{ nA/}\mu\text{m}$ for thin oxide
 - 0.002 nA/ μ m for thick oxide
- Memories use low-leakage transistors everywhere
- Gates use low-leakage transistors on 80% of logic


April 16, 2008 D. Z. Pan 23. Design for Low Power







23. Design for Low Power

