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25. Scaling and Economics
• Previous Unit:

– Clock Distribution
– Clock Skew
– Skew-Tolerant Static Circuits
– Skew-Tolerant Domino Circuits

• This Unit:
– Scaling

• Transistors
• Interconnect
• Future Challenges

– VLSI Economics
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Moore’s Law
• In 1965, Gordon Moore predicted the exponential 

growth of the number of transistors on an IC
• Transistor count doubled

every year since invention
• Predicted > 65,000

transistors by 1975!
• Growth limited by power

[Moore65]
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More Moore
• Transistor counts have doubled every 26 

months for the past three decades.

Year

Transistors

4004
8008

8080

8086

80286
Intel386

Intel486
Pentium

Pentium Pro
Pentium II

Pentium III
Pentium 4

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

1970 1975 1980 1985 1990 1995 2000



D. Z. Pan 25. Scaling and Economics
4

Speed Improvement
• Clock frequencies have also increased 

exponentially
– A corollary of Moore’s Law
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Why?
• Why more transistors per IC?

– Smaller transistors
– Larger dice

• Why faster computers?
– Smaller, faster transistors
– Better microarchitecture (more IPC)
– Fewer gate delays per cycle
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Scaling
• The only constant in VLSI is constant change
• Feature size shrinks by 30% every 2-3 years

– Transistors become cheaper
– Transistors become faster
– Wires do not improve 

(and may get worse)
• Scale factor S

– Typically 
– Technology nodes
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Scaling Assumptions
• What changes between technology nodes?
• Constant Field Scaling

– All dimensions (x, y, z => W, L, tox)
– Voltage (VDD)
– Doping levels

• Lateral Scaling
– Only gate length L 
– Often done as a quick gate shrink (S = 1.05)
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Device Scaling
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Observations
• Gate capacitance per micron is nearly 

independent of process
• But ON resistance * micron improves with process

• Gates get faster with scaling (good)
• Dynamic power goes down with scaling (good)
• Current density goes up with scaling (bad)

• Velocity saturation makes lateral scaling 
unsustainable
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Solution
• Gate capacitance is typically about 2 fF/μm
• The FO4 inverter delay in the TT corner for a 

process of feature size f (in nm) is about 0.5f ps
• Estimate the ON resistance of a unit (4/2 λ) 

transistor.

• FO4 = 5 τ = 15 RC
• RC = (0.5f) / 15 = (f/30) ps/nm
• If W = 2f, R = 8.33 kΩ

– Unit resistance is roughly independent of f
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Scaling Assumptions
• Wire thickness

– Hold constant vs. reduce in thickness
• Wire length

– Local / scaled interconnect
– Global interconnect

• Die size scaled by Dc ≈ 1.1
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Interconnect Scaling
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Interconnect Delay
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Observations
• Capacitance per micron is remaining 

constant
– About 0.2 fF/μm
– Roughly 1/10 of gate capacitance

• Local wires are getting faster
– Not quite tracking transistor improvement
– But not a major problem

• Global wires are getting slower
– No longer possible to cross chip in one cycle
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ITRS
• Semiconductor Industry Association 

forecast
– Intl. Technology Roadmap for Semiconductors
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Scaling Implications
• Improved Performance
• Improved Cost
• Interconnect Woes
• Power Woes
• Productivity Challenges
• Physical Limits
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Cost Improvement
• In 2003, $0.01 bought you 100,000 

transistors
– Moore’s Law is still going strong

[Moore03]
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Interconnect Woes
• SIA made a gloomy forecast in 1997

– Delay would reach minimum at 250 – 180 nm, 
then get worse because of wires

• But…

[SIA97]
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Interconnect Woes
• SIA made a gloomy forecast in 1997

– Delay would reach minimum at 250 – 180 nm, then get 
worse because of wires

• But…
– Misleading scale
– Global wires

• 100k gate blocks ok
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Reachable Radius
• We can’t send a signal across a large fast 

chip in one cycle anymore
• But the microarchitect can plan around this

– Just as off-chip memory latencies were 
tolerated

Chip size

Scaling of
reachable radius
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Dynamic Power
• Intel’s Patrick Gelsinger (ISSCC 2001)

– If scaling continues at present pace, by 2005, 
high speed processors would have power 
density of nuclear reactor, by 2010, a rocket 
nozzle, and by 2015, surface of sun.

– “Business as usual will not work in the future.”
• Intel stock dropped 8%

on the next day
• But attention to power is

increasing [Moore03]
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Static Power
• VDD decreases

– Save dynamic power
– Protect thin gate oxides and short channels
– No point in high value because of velocity sat.

• Vt must decrease to 
maintain device performance

• But this causes exponential 
increase in OFF leakage

• Major future challenge Static

Dynamic

[Moore03]
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Productivity
• Transistor count is increasing faster than 

designer productivity (gates / week)
– Bigger design teams

• Up to 500 for a high-end microprocessor
– More expensive design cost
– Pressure to raise productivity

• Rely on synthesis, IP blocks
– Need for good engineering managers
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Physical Limits

• Will Moore’s Law run out of steam?
– Can’t build transistors smaller than an atom…

• Many reasons have been predicted for end of 
scaling
– Dynamic power
– Subthreshold leakage, tunneling
– Short channel effects
– Fabrication costs
– Electromigration
– Interconnect delay

• Rumors of demise have been exaggerated
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VLSI Economics
• Selling price Stotal

– Stotal = Ctotal / (1-m)
• m = profit margin
• Ctotal = total cost

– Nonrecurring engineering cost (NRE)
– Recurring cost
– Fixed cost
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NRE
• Engineering cost

– Depends on size of design team
– Include benefits, training, computers
– CAD tools:

• Digital front end: $10K
• Analog front end: $100K
• Digital back end: $1M

• Prototype manufacturing
– Mask costs: $500k – 1M in 130 nm process
– Test fixture and package tooling
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Recurring Costs
• Fabrication

– Wafer cost / (Dice per wafer * Yield)
– Wafer cost: $500 - $3000
– Dice per wafer:  

– Yield: Y = e-AD

• For small A, Y ≈ 1, cost proportional to area
• For large A, Y → 0, cost increases exponentially

• Packaging
• Test
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Fixed Costs
• Data sheets and application notes
• Marketing and advertising
• Yield analysis
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Example
• You want to start a company to build a 

wireless communications chip.  How much 
venture capital must you raise?

• Because you are smarter than everyone 
else, you can get away with a small team in 
just two years:
– Seven digital designers
– Three analog designers
– Five support personnel
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Solution
• Digital designers:

– $70k salary
– $30k overhead
– $10k computer
– $10k CAD tools
– Total: $120k * 7 = $840k

• Analog designers
– $100k salary
– $30k overhead
– $10k computer
– $100k CAD tools
– Total: $240k * 3 = $720k

• Support staff
– $45k salary
– $20k overhead
– $5k computer
– Total: $70k * 5 = $350k

• Fabrication
– Back-end tools: $1M
– Masks: $1M
– Total: $2M / year

• Summary
– 2 years @ $3.91M / year
– $8M design & prototype
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Cost Breakdown
• New chip design is fairly capital-intensive
• Maybe you can do it for less?

salary

overhead

computer

entry tools

backend tools

fab

25%
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26%

9% 4%
11%
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