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3. Implementing Logic in CMOS

• Last class: Layout, fabrication process, 
design rules

• This class: Implementing logic functions 
with CMOS transistors
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Static CMOS Circuits
• N and P channel networks implement logic 

functions
– Each network connected between Output and 

VDD or VSS

Series network:
    "AND" function

Parallel network:
    "OR" function
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Duality in CMOS Circuits
• N and P networks must implement 

complementary functions
• Duality sufficient for correct operation

Look at values of A, B 
and C which will 
produce a connection 
between P and Q

Dual network?

A
B

C

Q

P

A + B . C
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Constructing Complex Gates
• Example:  F = (A · B) + (C · D)

1. Take uninverted function F = (AB + CD)  and 
derive N-network

2. Identify AND, OR components; F is OR of AB,CD
3. Make connections of transistors

• AND ⇔ Series connection, OR ⇔ Parallel
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Construction of Complex Gates, Cont’d
4. Construct P-network by taking complement 

of N-expression (AB +CD), which gives the 
expression,  (A + B) · (C + D)

5. Combine P and N circuits

D. Z. Pan 3. Implementing Logic in CMOS     6

Layout of Complex Gate
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Example of Compound Gate
F = (A + B + C) · D
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Example of More Complex Gate
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Exclusive-NOR Gate in CMOS
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Pseudo nMOS Logic
VDD

B D

A

Z
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Duality is not Necessary
• Functions realized by N and P networks must be 

complementary, and one of them must conduct 
for every input combination

da b c

da b c

da b c

VDD

F

CMOS Circuit
"Hybrid"

a

b

c

b

a

a

c d

c d
GND

F = ab + a’b’ + ac + cd + c’d’

The N and P networks are NOT
duals, but the switching functions
they implement are complementary
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Example of Complex CMOS Gate

F = 

G =

VDD

G F

x x

y y

x x
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Signal Strength
• Strength of signal

– How close it approximates ideal voltage source
• VDD and GND rails are strongest 1 and 0
• nMOS pass strong 0

– But degraded or weak 1
• pMOS pass strong 1

– But degraded or weak 0
• Thus nMOS are best for pull-down network
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Pass Transistors
• Transistors can be used as switches

g

s d
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0 strong 0
Input Output

1 degraded 1
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Transmission Gates
• Pass transistors produce degraded outputs
• Transmission gates pass both 0 and 1 well

g = 0, gb = 1
a b

g = 1, gb = 0
a b

0 strong 0

Input Output

1 strong 1

g

gb

a b

a b
g

gb

a b
g

gb

a b
g

gb

g = 1, gb = 0

g = 1, gb = 0
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Pass Transistor Logic
• What is the difference between the two 

circuits?

C, C
F(A,B,C)

AA B B A B

F(A,B)

A B

P

P

P

P

1

2

3

4
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Pass Transistor Logic Pull-Up Version
• How do voltage levels at the output of this 

gate differ from that of the pass-transistor 
multiplexer in the previous foil?

AA B B

F(A,B)
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Pass Transistor Logic -- Better Layout
• Group similar transistors, so they can be in 

the same well
A A B B

F(A,B)
P

P

P

P

4

3

2

1
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Tristates
• Tristate buffer produces Z when not 

enabled

11
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A Y

EN

A Y

EN

EN
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Nonrestoring Tristate
• Transmission gate acts as tristate buffer

– Only two transistors
– But nonrestoring

• Noise on A is passed on to Y

A Y

EN

EN
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Tristate Inverter
• Tristate inverter produces restored output

– Violates conduction complement rule
– Because we want a Z output

A

Y
EN

A

Y

EN = 0
Y = 'Z'

Y

EN = 1
Y = A

A

EN
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Multiplexers
• 2:1 multiplexer chooses between two inputs

X11
X01
1X0
0X0

YD0D1S
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D0

D1
Y
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Gate-Level Mux Design
• How many transistors are needed? 

1 0  (too many transistors)Y SD SD= +

4
4
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D0
S Y

4

2

2
2 Y

2

D1

D0
S

20

D. Z. Pan 3. Implementing Logic in CMOS     24

Transmission Gate Mux
• Nonrestoring mux uses two transmission 

gates
– Only 4 transistors

S

S

D0

D1
YS
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Inverting Mux
• Inverting multiplexer

– Use compound AOI22
– Or pair of tristate inverters
– Essentially the same thing

• Noninverting multiplexer adds an inverter
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4:1 Multiplexer
• 4:1 mux chooses one of 4 inputs using two 

selects
– Two levels of 2:1 muxes
– Or four tristates
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D Latch
• When CLK = 1, latch is transparent

– D flows through to Q like a buffer
• When CLK = 0, the latch is opaque

– Q holds its old value independent of D
• a.k.a. transparent latch or level-sensitive 

latch
CLK

D Q

La
tc

h D

CLK

Q
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D Latch Design
• Multiplexer chooses D or old Q

1
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D Latch Operation

CLK = 1

D Q
Q

CLK = 0

D Q
Q

D

CLK

Q
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D Flip-flop
• When CLK rises, D is copied to Q
• At all other times, Q holds its value
• a.k.a. positive edge-triggered flip-flop, 

master-slave flip-flop

Fl
op

CLK

D Q

D

CLK

Q
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D Flip-flop Design
• Built from master and slave D latches
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D Flip-flop Operation

CLK = 1

D

CLK = 0
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QM
Q
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Q
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Race Condition
• Back-to-back flops can malfunction from 

clock skew
– Second flip-flop fires late
– Sees first flip-flop change and captures its 

result
– Called hold-time failure or race condition

CLK1

D Q1

Fl
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Nonoverlapping Clocks
• Nonoverlapping clocks can prevent races

– As long as nonoverlap exceeds clock skew
• Use in safe (conservative) designs

– Industry manages skew more carefully instead 

φ1

φ1φ1

φ1

φ2

φ2φ2

φ2

φ2

φ1

QM
QD
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Gate Layout
• Layout can be very time consuming

– Design gates to fit together nicely
– Build a library of standard cells

• Standard cell design methodology
– VDD and GND should abut (standard height)
– Adjacent gates should satisfy design rules
– nMOS at bottom and pMOS at top
– All gates include well and substrate contacts
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Example: Inverter
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Example: NAND3
• Horizontal N-diffusion and p-diffusion strips
• Vertical polysilicon gates
• Metal1 VDD rail at top
• Metal1 GND rail at bottom
• 32 λ by 40 λ
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Stick Diagrams
• Stick diagrams help plan layout quickly

– Need not be to scale
– Draw with color pencils or dry-erase markers

D. Z. Pan 3. Implementing Logic in CMOS     39

Wiring Tracks
• A wiring track is the space required for a 

wire
– 4 λ width, 4 λ spacing from neighbor = 8 λ pitch

• Transistors also consume one wiring track
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Well spacing
• Wells must surround transistors by 6 λ

– Implies 12 λ between opposite transistor flavors
– Leaves room for one wire track
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Area Estimation
• Estimate area by counting wiring tracks

– Multiply by 8 to express in λ
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Example: O3AI
• Sketch a stick diagram for O3AI and 

estimate area
– Y = (A + B + C) · D
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Example: O3AI
• Sketch a stick diagram for O3AI and 

estimate area
– Y = (A + B + C) · D
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Example: O3AI
• Sketch a stick diagram for O3AI and 

estimate area
– Y = (A + B + C) · D


