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4. CMOS Transistor Theory

Electrical Properties

4. CMOS Transistor Theory . :
» Necessary to understand the basic electrical
properties of the MOS transistor (geometry =>
 Last module: Implementing logic functions electrical), e.g., delay/power
with CMOS transistors — Ensure that the circuits are robust

— Create working layouts

» This module: Basic behavior of CMOS — Predict delays and power consumption
transistors at the electrical level « As technology advances and circuit
dimensions scale down, electrical effects

become more important
— Secondary/non-ideal effects
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The nMOS Transistor Terminal Voltages
Soee GATE oRAN * Mode of operation depends on V, Vg, V. v,
’—c Moderately doped p- type IRVARVRRY g Yd Vs s
T . substrate (or well) in which Vgs ~ Vg Vs Vs Vs
| o : "o two heavily doped n+ regions, T e T YT Nd v I Ly,
N . HE the Source and Drain are = Vs = Vg = Vs = Vs - Vigg LV
e TR iftused + Source and drain are symmetric diffusion terminals
P-gubatras . . .
== — By convention, source is terminal at lower voltage

p——

— Hence V>0

« Gate is insulated from substrate by thin oxide i ) )
* nMOS body is grounded; for simple designs,

— Resistance of oxide is > 1012 ), so current ~ 0 h
. assume source is 0 too
» Two types of nMOS transistor - Three regions of operation
— Enhancement: non conducting when gate voltage _ Cutoff
Vgs = Vgp (source voltage) ( ) _ Linear
— Depletion: conducting when V¢ = Vg, — Saturation
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Modes in MOS Structures NMQOS Cutoff
ACCUMULATIO! A DEPLETION Vgs =V, ° NO Channel

< polysilicon gate

& 1,20

<- silicon dioxide
insulator

< p-substrate ()

< depletion region

p-type body

4&)

inversion region
)

= (yp L
©)

< depletion
region
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nMOS Linear nMQOS Saturation

“Threshold Voltage”, Vt o Channel pinches off

* |y independent of Vg
» We say current saturates
« Similar to current source

* Channel forms

* Current flows from d Gm 6
tos e ssasel

—e fromstod
* |y increases with Vg
* Similar to linear

resistor
p-type bod!
b
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The pMOS Transistor [-V Characteristics
SOURGE GATE DRAN
© [ © Moderately doped n- type * In Linear region, I, depends on

substrate (or well) in which — How much charge is in the channel?

—

‘ ’ | two heavily doped p+ regions, . .

\L I/ cxcemmons y coped pr 1e9 — How fast is the charge moving?
HOLES W ELECTRONS the and are

PR diffused

 Application of a negative gate voltage (w.r.t.
source) draws holes into the region below the
gate; channel changes from n to p-type
(source-drain conduction path)

» Conduction due to holes; negative V4 sweeps
holes from source (through channel) to drain
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Channel Charge Carrier Velocity
* MOS structure looks Ii_ke par_allel p_Iate « Charge is carried by e-
capacitor while operating in inversion . . .
G id h | * Carrier velocity v proportional to lateral E-
— Gate — oxide — channe field between source and drain
* Qenannel = CV . v=uE (u called mobility)
e C= Cg = g WL/, = CLWL  here Cox = Eox / 1oy « E=V, /L

* V=Vge = V= (Vgs = Vasl2) = Vi « Time for carrier to cross channel:

—t=L/v
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nMOS Linear |-V

* Now we know
— How much charge Q,amner IS in the channel
— How much time t each carrier takes to cross

:M
t

W \Y
/ucclx T( gs 7VI - %)Vds

w
- ,B(Vgs v, —V% des where 3 = 4Co, -

Ids
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nMQOS Saturation I-V

* If Vgq < V,, channel pinches off near drain
—When Vds > Vdsat = Vgs - Vt

» Now drain voltage no longer increases
current

V,
Ids = ﬁ(vgs _Vt - ds%)vdsat

By vy
_Z(Vgs V1)
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nMOS |-V Summary

» Shockley 1%t order transistor models

Example

« Example: a 0.6 um process from AMI
semiconductor

— oy =100 A
— u =350 cm#/V*s
-V, =07V

* Plot Iy vs. Vg
—Vg=0,1,23,4,5
—Use WIL=4/2 )

"
B= "C"‘Wf: (350)[3'9'8'85'10 J[ﬂj :120WT#A/V2

Iy, (MA)

100-10° L
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0 Ve <V, cutoff
Iy = /3(Vgs -V, —V% )Vds Vi <Vy  linear
’g (Ve =V, )2 V, >V, saturation
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pMOS I-V

« All dopings and voltages are inverted for
pMOS

* Mobility p, is determined by holes
— Typically 2-3x lower than that of electrons p,

» Thus pMOS must be wider to provide the
same current

— Simple assumption, p, / p, =2

D.Z. Pan 4. CMOS Transistor Theory 17

Capacitance

* Any two conductors separated by an
insulator have capacitance
» Gate to channel capacitor is very important
— Creates channel charge necessary for
operation
» Source and drain have capacitance to body
— Across reverse-biased diodes

— Called diffusion capacitance because it is
associated with source/drain diffusion
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Gate Capacitance

» Approximate channel as connected to
source

* Cys = gqWL/It,, =C, WL =C
- C

A

permicron

permicron 1S typically about 2 fF/um

w
tm(+
A L SiO, gate oxide
+ (good insulator, ., = 3.9¢)
p-type body
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Capacitance Estimation
* The dynamic response (switching speed)
of a CMOS circuit is very dependent on
parasitic capacitances associated with the
circuit

Parasitic Capacitances:
| L | | | I . Casr ng-= gate-to-channel
capacitances lumped at
T
souce J——HANNEL - DRAIN source and drain regions
_/_L/C)b DEPLETION LAYER . Csb' Cdb = source and drain
T T N . N
T T diffusion capacitances to
P-SUBSTRATE bulk (substrate)
Add to get total capacitance.
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Gate Capacitance of MOS Transistor

0.8 4
W =492y,
0.6 4 L=0.75
¢ n
CoxWL
0.4
0.2 4
0.0 T T T
1] 1 2 3
Vs (volts)
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Diffusion Capacitance

* Cg, Cy, from Source/Drain
» Undesirable, called parasitic capacitance

 Capacitance depends on area and
perimeter

— Use small diffusion nodes

— Comparable to C, S -
. o w
for contacted diff ‘8 m :
-%Cgforuncontacted = gy & m
— Varies with process ’ ;
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Area and Periphery Capacitance

DIFFUSIOM
_ILC Periphery
y T P capacitance (pf/u)

A
=

DIFFUSION _‘l |'> a
C. C

ja ip ip ‘I
3 T B

GNDORV ¢

Area capacitance (pf/p?)
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Pass Transistors

» We have assumed source is grounded
* What if source > 0?
— e.g. pass transistor passing Vpp Voo

VDDl
Tl
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Pass Transistors

We have assumed source is grounded
What if source > 0?
— e.g. pass transistor passing Vpp Voo
* Vg=Vop Voo |
— Vg > VgV, Vg <V, R —
— Hence transistor would turn itself off
* NMOS pass transistors pull no higher than Vpp-V,,
— Called a degraded “1”
— Approach degraded value slowly (low 1)

* PMOS pass transistors pull no lower than Vi,
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Effective Resistance

» Shockley models have limited value
— Not accurate enough for modern transistors
— Too complicated for much hand analysis
» Simplification: treat transistor as resistor
— Replace lg5(Vgs, Vgs) With effective resistance R
o lgs = Vgo/R
— R averaged across switching of digital gate
» Too inaccurate to predict current at any
given time
— But good enough to predict RC delay
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Pass Transistor Circuits
V VDD VDD VDD
v P Vol L T
hvs = VDD_th U_\\/—.\/m—lVDD-Vln
DD "tn VDD'Vm
Voo [
DD
A Voo Vin
j; Vool L V-2V,
VSS
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The MOS Resistor

Ié

A© Og

» Resistance of a bar of uniform material
R=24 = ()
where p = resistivity of the material,

A = cross-section of the resistor
t, W = thickness, width of the material

» The channel resistance of a MOS transistor in
the linear region Re = k({f),
— 1
where k = (V=10
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R%sisté)rs Connectgd in SeR[ies

|:| D —W——AWWW—
R R=R; +R,=20s
|
Sheet Resistance, Rg: Any TTTTTTTTT]
material on the chip can be T h
divided into squares W on ’

a side with (R, Q/0) R = R (L/W)Q

Typical sheet resistances (©/0J) for 0.25p TSMC process:
4.7 for N+, 3.5 for P+, 4.2 for Poly, 0.06 for Metall,
0.08 for Metal2 - Metal4, 0.03 for Metal5, and 1191 for the N-well

Increase of about 0.3%/°C (metal, poly), 1%/°C (diffusion)
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|
L 1

Resistors Connected in Parallel

R1

1
R=rir BV

Ry TRy
| —

For two squares in parallel, the equivalent resistance is %2 O
Expressing sheet resistance in Os simplifies the calculations
Contact resistance becomes more important as processes
scale down (new trend: redundant via)
About 6 Q for N+, P+, Poly, Metal 4
2 Q for Metal2
4 Q for Metal3
8 Q) for Metal5
in 0.25L TSMC process

Use multiple contacts for
low resistance connections
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Resistance of Turned-On Transistor

WI/L ratio defines size of N and P channel transistors
Channel resistance of turned-on transistor is:

R. = k(%), where k£ = m

k is in the range of 1000 -- 30,000 Q/O1
Resistance increases by about 0.25%/°C above 25°C R=1/30s

! = R=30s

R= (WLt xO —_
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RC Delay Model

» Use equivalent circuits for MOS transistors
— Ideal switch + capacitance and ON resistance
— Unit nMOS has resistance R, capacitance C
— Unit pMOS has resistance 2R, capacitance C

» Capacitance proportional to width

 Resistance ipversely proportional to width

? TkC

% e
" Rik lr 2RIk

EH[Sk - g ok > g%c T
q}c E«c s }‘jkc

d
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Inverter Delay Estimate

 Estimate the delay of a fanout-of-1 inverter

T, 2c
2y 2
A -
1 1 R c
g' 1;0
d=6RC
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Example of SPICE Deck

*file asic3.sp test of 10 stage lumped mos model
* comments

.option scale=1le-6 post=2 nomod

vin in 0 pl Ov On 5v 100ps

.param rpoly=40 wt=100 1t=1.2

ml single in 0 O n w=wt I=I1t

xml lumped in O O Irgtp xw=wt xI=It

vsingle single 0 5v

viumped lumped O 5v

-tran 25ps 4ns

-graph tran model=timel single=par(*-i(vsingle)*)
lumped=par("-i(vlumped)*)

.model timel plot xmin=0ps xmax=800ps

* subckt and model on next page

*.subckt Irgtp drain gate source bulk
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Example of SPICE Deck, Cont'd

.subckt Irgtp drain gate source bulk

ml drain gate source bulk n w="xw/18" I=xlI
m2 drain gl source bulk n w="xw/9" I=xl
m3 drain g2 source bulk n w="xw/9" I=xlI
m4 drain g3 source bulk n w="xw/9" I=xl
m5 drain g4 source bulk n w="xw/9" I=xl
mé drain g5 source bulk n w="xw/9" I=xlI
m7 drain g6 source bulk n w="xw/9" I=xlI
m8 drain g7 source bulk n w="xw/9" I=xlI
m9 drain g8 source bulk n w="xw/9" I=xlI
m10 drain g9 source bulk n w="xw/18" I=xIl

n
n
n
n
n
n
n
n
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Example of SPICE Deck, Cont'd

rl gate gl “xw/xl*rpoly/9*

r2 gl g2 “xw/xl*rpoly/9*

r3 g2 g3 “"xw/xl*rpoly/9*

rd4 g3 g4 “xw/xl*rpoly/9”

r5 g4 g5 "xw/xl*rpoly/9*

ré g5 g6 “xw/x1*rpoly/9*

r7 g6 g7 “xw/x1*rpoly/9*

r8 g7 g8 “xw/x1*rpoly/9*

r9 g8 g9 "xw/xl*rpoly/9*

.ends Irgtp

* * model section *

-model n nmos level=3 vto=0.7 uo=500 kappa=.25 kp=30u
eta=.03 theta=.04 +vmax=2e5 nsub=9e1l6 tox=250e-10
gamma=1.5 pb=0.6 js=.1m xj=0.5u 1d=0.0

+nfs=1ell nss=2el0 cgso=200p cgdo=200p cgbo=300p
-end
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Spice Simulation: NAND Gate

SPICE "deck" has "measure", print statements; parameters, netlist
Model: 0.18 micron

A i ™ g’ i o |
lla v 0 5
i 5 S ——

g




