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4. CMOS Transistor Theory

• Last module: Implementing logic functions 
with CMOS transistors

• This module: Basic behavior of CMOS 
transistors at the electrical level
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Electrical Properties
• Necessary to understand the basic electrical 

properties of the MOS transistor (geometry => 
electrical), e.g., delay/power
– Ensure that the circuits are robust
– Create working layouts
– Predict delays and power consumption

• As technology advances and circuit 
dimensions scale down, electrical effects 
become more important
– Secondary/non-ideal effects
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The nMOS Transistor

• Gate is insulated from substrate by thin oxide
– Resistance of oxide is > 1012 Ω, so current ≈ 0

• Two types of nMOS transistor
– Enhancement: non conducting when gate voltage 

Vgs = Vsb (source voltage) (normally used)
– Depletion: conducting when Vgs = Vsb

Moderately doped p- type
substrate (or well) in which
two heavily doped n+ regions,
the Source and Drain are
diffused
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Terminal Voltages
• Mode of operation depends on Vg, Vd, Vs

– Vgs = Vg – Vs
– Vgd = Vg – Vd
– Vds = Vd – Vs = Vgs - Vgd

• Source and drain are symmetric diffusion terminals
– By convention, source is terminal at lower voltage
– Hence Vds ≥ 0

• nMOS body is grounded; for simple designs, 
assume source is 0 too

• Three regions of operation
– Cutoff
– Linear
– Saturation
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Modes in MOS Structures
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nMOS Cutoff
• No channel
• Ids = 0
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nMOS Linear

• Channel forms
• Current flows from d 

to s 
– e- from s to d

• Ids increases with Vds

• Similar to linear 
resistor
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nMOS Saturation
• Channel pinches off
• Ids independent of Vds

• We say current saturates
• Similar to current source
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The pMOS Transistor

• Application of a negative gate voltage (w.r.t. 
source) draws holes into the region below the 
gate; channel changes from n to p-type 
(source-drain conduction path)

• Conduction due to holes; negative Vd sweeps 
holes from source (through channel) to drain

Moderately doped n- type
substrate (or well) in which
two heavily doped p+ regions,
the Source and Drain are
diffused
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I-V Characteristics
• In Linear region, Ids depends on

– How much charge is in the channel?
– How fast is the charge moving?
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Channel Charge
• MOS structure looks like parallel plate 

capacitor while operating in inversion
– Gate – oxide – channel

• Qchannel = CV
• C = Cg = εoxWL/tox = CoxWL
• V = Vgc – Vt = (Vgs – Vds/2) – Vt
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where Cox = εox / tox
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Carrier Velocity
• Charge is carried by e-
• Carrier velocity v proportional to lateral E-

field between source and drain
• v = μE (μ called mobility)
• E = Vds/L
• Time for carrier to cross channel:

– t = L / v
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nMOS Linear I-V
• Now we know

– How much charge Qchannel is in the channel
– How much time t each carrier takes to cross

channel
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nMOS Saturation I-V
• If Vgd < Vt, channel pinches off near drain

– When Vds > Vdsat = Vgs – Vt

• Now drain voltage no longer increases 
current
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nMOS I-V Summary
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• Shockley 1st order transistor models
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Example
• Example: a 0.6 μm process from AMI 

semiconductor
– tox = 100 Å
– μ = 350 cm2/V*s
– Vt = 0.7 V

• Plot Ids vs. Vds
– Vgs = 0, 1, 2, 3, 4, 5
– Use W/L = 4/2 λ
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pMOS I-V
• All dopings and voltages are inverted for 

pMOS
• Mobility μp is determined by holes

– Typically 2-3x lower than that of electrons μn

• Thus pMOS must be wider to provide the 
same current
– Simple assumption, μn / μp = 2
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Capacitance
• Any two conductors separated by an 

insulator have capacitance
• Gate to channel capacitor is very important

– Creates channel charge necessary for 
operation

• Source and drain have capacitance to body
– Across reverse-biased diodes
– Called diffusion capacitance because it is 

associated with source/drain diffusion
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Gate Capacitance
• Approximate channel as connected to 

source
• Cgs = εoxWL/tox = CoxWL = CpermicronW
• Cpermicron is typically about 2 fF/μm 

n+ n+

p-type body

W

L

tox

SiO2 gate oxide
(good insulator, εox = 3.9ε0)

polysilicon
gate
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Capacitance Estimation
• The dynamic response (switching speed) 

of a CMOS circuit is very dependent on 
parasitic capacitances associated with the 
circuit

Csb Cdb

Cgs Cgb Cgd oxt

DRAINSOURCE

GATE

LAYER

CHANNEL

DEPLETION

P-SUBSTRATE

Parasitic Capacitances:
Cgs, Cgd = gate-to-channel

capacitances lumped at
source and drain regions

Csb, Cdb = source and drain
diffusion capacitances to
bulk (substrate)

Add routing capacitances to get total capacitance. 
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Gate Capacitance of MOS Transistor

W = 49.2 μ,
L = 0.75μ
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Diffusion Capacitance
• Csb, Cdb from Source/Drain
• Undesirable, called parasitic capacitance
• Capacitance depends on area and 

perimeter
– Use small diffusion nodes
– Comparable to Cg

for contacted diff
– ½ Cg for uncontacted
– Varies with process
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Area and Periphery Capacitance

Xd

a
Cjp Cjp

Cjp

Cjp

DIFFUSION

Cja

DIFFUSION

GND OR V ss

b
Area capacitance (pf/μ2)

Periphery
capacitance (pf/μ)
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Pass Transistors
• We have assumed source is grounded
• What if source > 0?

– e.g. pass transistor passing VDD
VDD

VDD
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Pass Transistors
• We have assumed source is grounded
• What if source > 0?

– e.g. pass transistor passing VDD

• Vg = VDD
– If Vs > VDD-Vt, Vgs < Vt

– Hence transistor would turn itself off
• nMOS pass transistors pull no higher than VDD-Vtn

– Called a degraded “1”
– Approach degraded value slowly (low Ids)

• pMOS pass transistors pull no lower than Vtp

VDD
VDD
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Pass Transistor Circuits

VDD
VDD Vs = VDD-Vtn

VSS

Vs = |Vtp|

VDD

VDD-Vtn VDD-Vtn
VDD-Vtn

VDD

VDD VDD VDD

VDD

VDD-Vtn

VDD-2Vtn
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Effective Resistance
• Shockley models have limited value

– Not accurate enough for modern transistors
– Too complicated for much hand analysis

• Simplification: treat transistor as resistor
– Replace Ids(Vds, Vgs) with effective resistance R

• Ids = Vds/R
– R averaged across switching of digital gate

• Too inaccurate to predict current at any 
given time
– But good enough to predict RC delay
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The MOS Resistor

• Resistance of a bar of uniform material

• The channel resistance of a MOS transistor in 
the linear region

I

OOA B
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Resistors Connected in Series

R = R1 + R2 = 2¤s

R1 R2

I

I

R1 R2

Sheet Resistance, Rs: Any
material on the chip can be
divided into squares W on
a side with (Rs Ω/¤ ) R = Rs(L/W)Ω

W

W

L

Typical sheet resistances (Ω/¤) for 0.25μ TSMC process:
4.7 for N+, 3.5 for P+, 4.2 for Poly, 0.06 for Metal1,
0.08 for Metal2 - Metal4, 0.03 for Metal5, and 1191 for the N-well
Increase of about 0.3%/◦C (metal, poly), 1%/◦C (diffusion)
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Resistors Connected in Parallel

R2

R1

I

For two squares in parallel, the equivalent resistance is ½ ¤
Expressing sheet resistance in ¤s simplifies the calculations

Contact resistance becomes more important as processes
scale down (new trend: redundant via)
About 6 Ω for N+, P+, Poly, Metal 4

2 Ω for Metal2
4 Ω for Metal3
8 Ω for Metal5

in 0.25μ TSMC process

Use multiple contacts for
low resistance connections



UT Austin, ECE Department
VLSI Design
4. CMOS Transistor Theory

6

D. Z. Pan 4. CMOS Transistor Theory     31

Resistance of Turned-On Transistor
W/L ratio defines size of N and P channel transistors
Channel resistance of turned-on transistor is:

k is in the range of  1000 -- 30,000 Ω/¤
Resistance increases by about 0.25%/◦C above 25◦C

I

IR = (W/L)-1 × ¤

R = 3 ¤s

R = 1/3 ¤s
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RC Delay Model
• Use equivalent circuits for MOS transistors

– Ideal switch + capacitance and ON resistance
– Unit nMOS has resistance R, capacitance C
– Unit pMOS has resistance 2R, capacitance C

• Capacitance proportional to width
• Resistance inversely proportional to width
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Inverter Delay Estimate
• Estimate the delay of a fanout-of-1 inverter
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Example of SPICE Deck
*file asic3.sp   test of 10 stage lumped mos model
* comments
.option scale=1e-6 post=2  nomod
vin in 0 pl 0v 0n 5v 100ps
.param rpoly=40 wt=100 lt=1.2
m1 single in 0 0 n w=wt l=lt
xm1 lumped  in 0 0 lrgtp xw=wt xl=lt
vsingle single 0 5v
vlumped lumped 0 5v
.tran 25ps 4ns
.graph tran model=time1 single=par('-i(vsingle)‘) 
lumped=par('-i(vlumped)')
.model time1 plot xmin=0ps xmax=800ps

* subckt and model on next page

*.subckt lrgtp drain gate source bulk
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Example of SPICE Deck, Cont’d
.subckt lrgtp drain gate source bulk
m1 drain gate source bulk n w='xw/18' l=xl
m2 drain g1 source bulk n w='xw/9' l=xl
m3 drain g2 source bulk n w='xw/9' l=xl
m4 drain g3 source bulk n w='xw/9' l=xl
m5 drain g4 source bulk n w='xw/9' l=xl
m6 drain g5 source bulk n w='xw/9' l=xl
m7 drain g6 source bulk n w='xw/9' l=xl
m8 drain g7 source bulk n w='xw/9' l=xl
m9 drain g8 source bulk n w='xw/9' l=xl
m10 drain g9 source bulk n w='xw/18' l=xl
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Example of SPICE Deck, Cont’d
r1 gate g1 'xw/xl*rpoly/9'
r2 g1 g2 'xw/xl*rpoly/9'
r3 g2 g3 'xw/xl*rpoly/9'
r4 g3 g4 'xw/xl*rpoly/9'
r5 g4 g5 'xw/xl*rpoly/9'
r6 g5 g6 'xw/xl*rpoly/9'
r7 g6 g7 'xw/xl*rpoly/9'
r8 g7 g8 'xw/xl*rpoly/9'
r9 g8 g9 'xw/xl*rpoly/9'
.ends lrgtp
* *  model section *
.model n nmos level=3 vto=0.7 uo=500 kappa=.25 kp=30u
eta=.03 theta=.04 +vmax=2e5 nsub=9e16 tox=250e-10
gamma=1.5 pb=0.6 js=.1m xj=0.5u ld=0.0
+nfs=1e11 nss=2e10 cgso=200p cgdo=200p cgbo=300p
.end
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Spice Simulation: NAND Gate
SPICE "deck" has "measure", print statements; parameters, netlist
Model: 0.18 micron


