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Efficient Network Flow Based Min-Cut
Balanced Partitioning

Hannah Honghua Yang and D. F. Wong

Abstract—We consider the problem of bipartitioning a cir- 1) The two components obtained by the network max-flow
cuit into two balanced components that minimizes the number min-cut technique are not necessarily balanced, 2) Although
of crossing nets. Previously, Kernighan and Lin type (K&L) 5 pajanced cut can be achieved by repeatedly applying min-
heuristics, simulated annealing approach, and analytical methods t to the | t thi thod bIv |
were given to solve the problem. However, network flow (max- CU! 10 the larger component, this method can possibly ticur
flow min-cut) techniques were overlooked as viable heuristics to Max-flow computations, where is the size of flow network,
min-cut balanced bipartition due to their high complexity. In  3) The traditional network flow technique works on graphs,
this paper we propose a balanced bipartition heuristic based put hypergraphs are more accurate models for circuit netlists
on repeated max-flow min-cut techniques, and give an efficient than graphs.

implementation that has the same asymptotic time complexity . .
as that of one max-flow computation. We implemented our In this paper we explore solutions to the above problems

heuristic algorithm in a package called FBB. The experimental faced by the traditional network flow technique. We first pro-
results demonstrate that FBB outperforms K&L heuristics and pose a method for exactly modeling a netlist (or equivalently,

analytical methods in terms of the number of crossing nets, and a hypergraph) by a flow network, and a balanced bipartition
our efficient implementation makes it possible to partition large heuristic based on a repeated max-flow min-cut technique. We

circuit netlists with reasonable runtime. For example, the average . g . -
elapsed time for bipartitioning a circuit S35932 of almost 20 K then give an efficient implementation of the repeated max-flow

gates is less than 20 min on a SPARC10 with 32 MB memory. Min-cut heuristic that has the same asymptotic time complexity
as that of one max-flow computation.

We use a generalized notion of the balanced bipartition, the

r-balanced bipartition(also used in [9]), which is a bipartition
IRCUIT PARTITIONING is a fundamental problem insuch that one component is of weight a fractionf the total
many areas of VLSI layout and design, such as floorplaweight 7. As a special case when= 1/2, an r-balanced

ning, placement and multiple-chip/multiple-FPGA partitionbipartition is a balanced bipartition. Since in practice there
ing. Min-cut balanced bipartitioris the problem of partitioning is little reason to strictly enforce thebalanced criterion, we
a circuit into two disjoint components with equal weights sucimtroduce adeviation factore to allow the component weight
that the number of nets connecting the two components is min-deviate from(1—¢)rW to (1+¢)7W. We show in Theorem
imized. The min-cut balanced bipartition problem was showii.2 that both the runtime and the cut size produced by our
to be NP-complete [11]. Because of its importance, mamyjgorithm are decreasing functions af This kind of direct
heuristic algorithms have been devised for its solution. Amomnglationship was not shown in previous partitioning heuristics.
the well-known heuristics are the following [6]: Kernighan The rest of this paper is organized as follows. In Section II,
and Lin type (K&L) iterative improvement methods [20], [9],we first present a method for exactly modeling a netlist by
simulated annealing approaches [19], and analytical methalflow network, and an optimal algorithm for finding a min-
for the ratio-cut objective [25], see e.g., [15], [4], [23]. net-cut bipartition (not necessarily balanced) of a circuit with

The well-known network max-flow min-cut theorem [8]respect to a source and a sink. This algorithm serves as a
[22], [7], [10], [16] is an important combinatorial optimizationbasic procedure for our min-cut balanced bipartition heuristic.
technique. It has many applications in VLSI design such &%e then present our heuristic algorithm for finding a min-net-
linear placement [3], min-cut replication [13], [14], and FPGAut r-balanced bipartition based on the repeated network flow
technology mapping [2], [27]. The network max-flow min-cutechnique in Section Il with an efficient implementation that
technique is in fact the most natural method for finding has the same asymptotic time complexity as that of computing
min-cut in a graph. However, it was overlooked as a viablne max-flow in a flow network. We compare our balanced
approach for circuit partitioning due to the following reasongipartition results with those of K&L heuristics and analytical

methods in Section 1V, and conclude the paper in Section V.
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flow/capacity

max—flow [fj=~1+1=2

capacity(X, X)=1+1=2
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Fig. 1. A flow networkG, and a max-flowf in G. The label:/y on an edge Fig. 2. A digraphN representing a sequential circuit and its net-cuts.
indicates that the flow and the capacity on the edgeraaady, respectively.

The dark edges are the forward edges of the(citX).

o,
” ’Q
balanced) of a circuit that minimizes the number of crossing . om.a
nets with respect to a source and a sink.
o &

A netn in circuit N The nodes and edges correspond to netn in N’

A. Preliminaries

A flow network G = (V, E) is a directed graph in which
each edge: € £ has acapacityc(e) > 0. Two nodess and
t in V are specified:s is called thesource ¢ is called the
sink' (see Fig. 1). Ans-t flow (or flow for short) in@ is a w(v) € R*. The total weight of a subsét C V' is denoted by
real-valued functionf : E — R such that (1) for al € E, w(U).LetW = w(V) denote the total weight of the circul.

0 < fle) < ¢(e), and (2) for allu € V\{s,t}, the sum of the A netn = (v;v1,...,v;) is a set of outgoing edges from
incoming flow intou is equal to the sum of the outgoing flownode v in N. For example in Fig. 2, net consists of two
from w. An edgec in E is saturatedif f(e) = c(¢). Thevalue edges(ry, g1) and (1, g2). Given two nodess andt in N,
|f| of a flow f is defined as the sum of the flow outgoingan s-¢ cut (or cut for short) (X, X) of N is a bipartition of
from s, which is equal to the sum of the flow incoming tahe nodes inV" such thats € X andt € X. The net-cut
t. A maximum-flow(or max-flowfor short) inG is a flow of net X, X) of the cut is the set of nets itV that are incident
maximum value froms to ¢. to nodes in bothX and X. In Fig. 2, if we chooses = ¢;

An s-t cut (or cut for short) (X, X) of a flow network andt = gs, then the net-cunetY,Y") corresponding to the
G = (V,E) is a bipartition ofV into X and X such that cut (Y, Y) consists of nets, a, b, ¢, where nets:, a, b connect
s € X andt € X. An edge whose starting node is Ji and nodes fromY” to Y, and nete connects nodes frofir to Y.
ending node is inX is called aforward edge An edge whose A cut (X, X) is amin-net-cutif [net{( X, X)| (i.e., the number
ending node is inX and starting node is iX is called a of nets innet{ X, X)) is minimum among alls-# cuts of N.
backward edgeThe capacity of the cu{ X, X), denoted by In Fig. 2, ne{X,X) = {b,¢}, ne(Y,Y) = {c,a,b,¢}, and
cap(X, X), is the sum of the capacities on tfeward edges (X, X) is a min-net-cut.
only from X to X.2 An augmenting patfrom » to v in G is a In order to find a min-net-cut itV = (V, E), we reduce it
simple path fromu to v in the undirected graph resulting fromto the problem of finding a cut of minimum capacity, and then
the network by ignoring edge directions, that can be useddolve the latter problem by the max-flow min-cut theorem.
push additional flow fromu to wv. If the cut edges all have unit capacity, then the problem

Theorem I.1— Max-flow min-cut theorem [8Given  a is equivalent to finding a cut with the minimum number of
max-flow f in G, let X = {v € V : 3 an augmenting forward edges fromX to X.
path froms to v in G}, and letX = V\X. Then (X, X) We construct a flow networkV’ = (V' E’) from N =
is a cut of minimum capacity (which is equal {¢|), and f (V, E) as follows (see Figs. 3 and 4):

Fig. 3. Modeling a net inV in the flow networkN'.

saturates all forward edges froi to X. « V'’ contains all nodes iV,
Fig. 1 shows an example of a max-flow & and the .« for each netr = (v;vy,...,v;) in N, add two nodes:,
corresponding cut of minimum capacity. andn, in V’ and abridging edge(n, ns) in E’;
« for each node: € {v,v1,...,v;} incident on netr, add
B. Modeling a Net in a Flow Network two edges(u,n1) and (na,u) in E’;

We represent aequential circuinetlist as a digraph (which  * let s be the source ofV’ and¢ the sink of N';
may contain directed cyclesy = (V, E) whereV is a set of ~ * assign unit capacity to all bridging edges and infinite
nodes representing combinational gates and registersFand  capacity to all other edges iR,
is a set of edges representing interconnections between gates for a nodev € V' corresponding to a node W, w(v)
and registers. Each node in V has an associated weight is the weight ofy in V. For a nodey € V' split from
1The choice ofs andt is completely arbitrary. There is no requirement that a net,w(u) = 0.
s has no incoming edges, or thahas no outgoing edges. The edges entering Note that all nodes incident on netare connected ta,
s or leavingt are actyally redundgnt and have no effect on our problem, bﬁhd are connected from, in N’. Hence the flow network
we allow them inG since the choice of andt may vary. . . . . L
construction is symmetric with respect to all nodes incident

2Note that the capacities on the backward edges ffémo X are not : ’ -
included. on a net. We show in Lemma II.1 that the sizeéf is only
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It is easy to see thalV’ is a strongly connected digraph.
The strong connectivity ofV’ is the key to reducing the bi-
directional min-net-cut problem to the minimum capacity cut
problem that counts the capacity of the forward edges only.
We show in Theorem I1.2 and Corollary 11.2.1 that the problem
of finding a min-net-cut inV can be reduced to the problem
of finding a cut with minimum capacity i&v’'.

Theorem I1.2: N has a cut of net-cut size at mastif and
only if N’ has a cut of capacity at most.

Proof: 1) Assume(X, X) is a cut inV with net-cut size
Inet X, X)| < C. We define a cufX’, X’) in N’ as follows.
Fig. 4. A flow network N’ constructed from the circuiv in Fig. 2. Let X’ contain all nodes inX, the two Split nodes for each

net residing entirely inX (i.e., all nodes incident on the net
a constant factor larger than the size f for a connected are in .X), and the nodes,; wheren is a net in the net-cut
graph V. net(.X, X). Let X’ contain the rest of the nodes . Then for

Lemma ll.l:Let N/ = (V',E') be the flow network €ach net, € netX,X), we haven; € X’ andn, € X', and
constructed from a digrapt = (V, E) using the above therefore the bridging edgen.,n,) is a forward edge from
method. Ther|V’| < 3|V| and |E’| < 2|E| + 3|V]. X' to X’ in N'. Further, the bridging edgé, b2) of a net

Proof: The number of nets iV, denoted bynets(IV), is b & net(.X, X) will not be a forward edge iV’ sinceb; and
less than or equal tf/|, since the set of outgoing edges fronb2 €ither both reside ik’ or both reside inX’. Suppose there
each node forms a néty’’ contains all nodes i, and two eXists a forward edgeu,v) wherew € X’ andv € X’ in N’
nodes for each net itv. Hence|V’| = [V|+2net§N) < 3|V|. that is not a bridging edge. Then eithee= b, for some neb in
For each net, = (v;vy,...,um) iN N consisting ofm edges NV or v = ¢ for some netin V. Without loss of generality,
in E, there arem + 1 edges incoming to;, m + 1 edges assumeu = by for some netb in IV and v corresponds to
Outgoing fr0m7’L2, and a br|dg|ng edg@lan) in N'. Hence @ nOd_e inX. Sinceu = bo is in X/, by the deflnltlop of
|E'| = 2(]E| + netgN)) + net§N) = 2|E| + 3netgN) < (X', X’) neth must have resided entirely if. Butv € X is
2|E| + 3|V|. O a node incident on net, a contradiction. Hence the bridging

The above flow network construction for modeling net-cu@dges corresponding to the netsnief.X, X') are exactly the
also works when the circui¥ is represented by a hypergraphforward edges fromX’ to X’. Since the bridging edges have
We note that another optimal approach for finding a min-nedhit capacity, the capacity of cuk’, X’) = [ne( X, X)| < C.
cut of a hypergraph was given in [16] by modeling a net (or 2) Conversely, assunfe{’, X’) is a cut of capacity< C'in
a hyperedge) as a star node, and then transforming a nodfé- Then all forward edges fronX” to X’ must be bridging
capacitated flow network into an edge-capacitated netwd?Rges since the capacities of the nonbridging edges are infinite,
[22] by splitting everynode. Our method is different from thatand the number of forward edges fralif to X* is C since all
of [16] in that we split the nodes corresponding to the nel§idging edges have unit capacity. If we remove all neté/in
only, and hence use fewer nodes and edges in the resultfigjresponding to the forward (bridging) edges fréfhto X/,
flow network. For a huge input circuit, our method translatdgen vV will be divided into several disjoint components and
into less memory usage and faster runtime. s and¢ are in different components. L€ be the component

Another related result given in [18] shows that modelin§ontainings, and letX be the union of the other components.
hypergraphs by graphs (with positive weights) with the sanidien the net-cut size ofX, X) is at most the number of
min-cut properties is not possible. However, our method mofets removed. The number of nets removed is the number of
els a hypergraph for network flow based partition algorithnfgrward (bridging) edges fronX” to X’, which is at most'.
only. The differences between the model used in [18] afdence[ne( X, X)| <C. [
our model are the following: 1) The weight of a cut in [18] Corollary I1.2.1: Let (X', X”) be a cut of minimum capac-
is computed by the sum of all cut edges with fixed weight§y € in N', and let(X, X) be the cut inN as constructed
while the weight of a cut in our model is computed by th# Theorem I1.2 (2). Ther{.X, X) is a min-net-cut inV, and
sum of the capacities of the forward edges only. 2) Referen@@t(X, X)| = C.

[18] tries to model hypergraphs for a wide range of existing Proof: Suppose there is a cut itV of net-cut size
partition algorithms developed for ordinary graphs only, while” < C. By Theorem I1.2-1), there is a cut iN’ of capacity
our method just models a hypergraph for network flow bas@d MmostC’. This contradicts the fact thafX”, X’) is a cut of
partition algorithms. Hence our method is able to exactfinimum capacityC' in N'. U

model a hypergraph for our flow based partitioning algorithra_ Optimal Network Flow Based Min-Net-Cut Bipartition

without contradicting the result in [18].
As a result of the correspondence between hypergraphs and

3In this proof we assume that each node has one output net, and eachl i/ Networks, one can find a min-net-cut in a circuit.
feeds at most one input on another node. This assumption is reasonable foAlgorithm 1: Finding A Min-Net-Cut

synthesized circuits where a combinational gate has one output net, and ; PR
flip-flop has two which is still constant bound. It is very rare for a net to feed ?)) Construct the flow networkV’ = (V B ) for N as

more than one input on a node and it is not considered a good design style.  described in Section II-B;

> .
A bridging edge with unit capacity An ordinary edge with infinite capacity
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1) Find a max-flow inN’ from s to ¢; bipartition that separatesandt, and that minimizes the num-
2) Find a cut(X’,X’) of minimum capacity inN’ as ber of crossing nets. Lét/ be the total weight of the circuit
described in the max-flow min-cut theorem; N. Since in practice there is little reason to strictly enforce
3) Find a min-net-cu¢X, X) in NV as described in Theoremthe r-balanced criterion, we allow the component weights to
11.2-2). deviate from(1 — €)rW to (1 + €)rW. Given a subcircuitX
Theorem I1.3: Algorithm 1 finds a min-net-cut in a circuit f &V, let w(X) denote the total weight of nodes is.
N = (V,E), and terminates irO(|V||E|) time whereN is  Algorithm 2: Flow-Balanced-Bipartition (FBB)

a connected circuit. 0) Randomly pick a pair of nodesandt in N;
Proof: The correctness of Algorithm 1 has been estab- 1) Find a min-net-cutC in V; Let X be the subcircuit

lished in Theorem 1.2 and Corollary 11.2.1. reachable froms through augmenting paths in the flow

Steps 0, 2, and 3 take linear time in the sizeMafWe use network, andX the rest;
the simple augmenting path algorithm [8] to implement step 2) If (1 — e)rW < w(X) < (1 4+ ¢)rW then stop and
1. Finding an augmenting path i’ takesO(|E’|) time. The return C' as the answer.
number of augmenting paths iN’ is equal to the number 3) If w(X) < (1 — e)rW
of bridging edges in a min-net-cut, which is at mad$f| then 3.1 collapse all nodes if to s;
(usually much less). Hence Algorithm 1 takeg|V||£’|) = 3.2 collapse tos a nodev € X adjacent toC;
O(VI(E| +|V])) = O(V||E|) time by Lemma L1, O 33 goto 1;

There are other asymptotically faster (worse-case) algo-4) If w(X) > (1+ e)rW then
rithms for finding a max-flow than the simple augmenting path
algorithm based on the Ford and Fulkerson method. The fastest . )
preflow method take®(|E||V |log(|V[2/|E])) time [12] with jé Cg't'(";‘plse t@ a nodev € .X adjacent taC;

a large constant factor. The Ford and Fulkerson method takes =9 - .
O(|E| »max-flow-valug time. The latter method is efficientin SteP 1 can be implemented by Algorithm 1. In step 3.2,
our application, since the max-flow-value in the special floW}€ N€ed to collapse a nodee X incident on a cut net to

network we construct is at mo$’| (usually much smaller $ SINCe otheérwise the same set of netsCinwill again be
than [V]). chosen as the min-net-cut in the next iteration in step 1. The

The min-cut bipartition may yield unbalanced component&£asons why we adopt this node collapsing method instead of

The max-flow computation defines a set of min-cuts with tHf2 MOre gradual method (i.e., increasing the unit capacities of
same cut size, but with varying weights in the two partitions. {f€ Pridging edges by a fixed amount as in [17] are (1) the

is natural to ask the question of whether one can find a min-q@Pacity of the cut would no longer reflect the real net-cut
that is themost r-balancecamong all the min-cuts defined bySiZ&; @nd (2) the runtime would not be bounded by one flow

a max-flow, i.e., among all possible min-cyt¥, X) defined computation. By collapsing to s, FBB is able to explore a
by a max-flow find the min-cut such thae(X)—rw (V)| is as different net-cut with darger X in the next iteration. Note
close to 0 as possible. One can show that the decision versiaft the size of the min-net-cut found in the next iteration will

of the problem is NP-complete by reducing the weight the same as or larger than the size of the min-net-cut in the
subset sum problem [11] to it [26]. current iteration. A similar argument holds for step 4.2.

We now describe our strategy for picking a node in steps 3.2
[ll. MIN-CUT BALANCED BIPARTITION and 4.2. To find an-balanced bipartition that minimizes the

It is not difficult to see that repeatedly applying the maxdet-cut size, our heu_ristic is to always focusf on fin_ding a min-
flow min-cut technique to cut the larger of the two partition€t-CUt at each iteration. But when the remaining circuit is very
will eventually produce a balanced bipartition with a naturd@9e. the current min-net-cut has less influence on what the
small net-cut. However, this approach was overlooked asf'Bal balanceq min-net-cut would be: Therefore, we randomly
viable heuristic approach to circuit partitioning due to it8iCk @ node in steps 3.2 and 4.2 in order to speed up the
high complexity (possibly}’| max-flow computations). In this algorithm. When the remaining circuit becomes smgll enough,
section we first describe a repeated max-flow min-cut heuris}€ n€ed to be more careful about which node we pick, and we
algorithm, Flow-Balanced-Bipartition (FBB), for finding an Can afford to try out more than one node. We give a threshold
balanced bipartition that minimizes the number of crossingt € for the number of nodes in the un-collapsed subcircuit.
nets. We then give an efficient implementation of FBB that the numper of remaining nodes is Iarggr t,th then we
has the same asymptotic time complexity as one max-fig@domly pick one node from the nodes incident on the cut
computation. For ease of presentation, we will describe offts iNC'. Otherwise, we try all nodes incident on the cut nets
algorithm in terms of the original circuit and net-cuts, insteall ¢ @nd pick the node whose collapsing induces a min-net-
of the flow network constructed from the circuit (as shown ifut With the smallest size. We can also let the probability of
Section 1I-B) and forward bridging edges, when there is ngwoosnjg a node F’e, inversely proport|0|_1al _to the number of
confusion. An illustration of Algorithm 2 is shown in Fig. 5. "odes in the remaining (un-collapsed) circuit.

then 4.1 collapse all nodes i¥ to ¢;

A. Balanced Bipartition Heuristic B. Efficient Implementation of Algorithm 2

Given a circuitN = (V, E), FBB randomly picks a pair A drawback of the repeated max-flow heuristic is that it
of nodess and¢ in N, and then tries to find an-balanced has a relatively high time complexity. Iteratively applying
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O An un-saturatednet @ A saturated net @ A node to be collapsed tosor t

Fig. 5. An illustration of Algorithm 2 forr = 1/2, ¢ = 0.15 and unit weight for each node. Hence a component can have weight between 5 and 7.
If e = 0.45, then a component can have weight between 3 and 10, and Algorithm 2 would terminated after findjfg cit>). A small solid node
indicates that the bridging edge corresponding to the net is saturated with flow.

Algorithm 1 in step 1 of Algorithm 2 to compute a max-of Algorithm 2 isO(|V|| E|) by showing that there are at most
flow and a min-net-cut from the zero flow can be verg|V|augmenting path computations in the following iterations.
time-consuming. We show an efficient way to deal with this The total flow valug f| in the flow network/N’ constructed
problem. In fact, it is not necessary to do the max-flofrom N at the end of Algorithm 2 is the number of forward
computation from the zero flow in every iteration. Insteadyridging edges in the final min-net-cut. Henlgg is at most
we can retain the flow value in the flow network, and onlj}’|. Since bridging edges have unit capacity, there|dfe<
find additional flow to saturate the bridging edges of thg/| s-¢ augmenting paths found at the end of Algorithm 2,
min-net-cut from iteration to iteration. We now consider an augmenting path computation in step 0
In Procedure 1, we describe the incremental max-flowf Procedure 1. Either an augmenting path is found, in which
computation in step 1 of Algorithm 2. Initially, the flow case the number of augmenting paths increases by 1, or at
network retains the flow function computed in the previougast one node will be collapsed toor ¢ in steps 3.1 and

iteration. 3.2 or 4.1 and 4.2 of Algorithm 2. Hence the number of
Procedure 1: Incremental Flow Computation augmenting path computations in the following iterations is
0) While 3 an additional augmenting path frosto ¢ at most2|V|.
1) increase flow value along the augmenting path; Note that step 3 of Procedure 1 can be accomplished during
/* There is no more augmenting path frasmo ¢.*/ the searching for an augmenting path in step 2 of Procedure
2) Mark all nodesy such that 1, and steps 4 and 5 of Procedure 1 tak&sl/|) time in the
3 an augmenting path from to u; worst case. O
3) Let C’ be the set of bridging edges whose starting In practice, as shown in the experimental results, Algorithm

nodes are marked and ending nodes are not marked;2 terminates much faster than th¥|V||E|) worst case time
4) Return the nets corresponding to the bridging edges icomplexity. Because of the construction of the flow network
C’ as the min-net-cu€’, and the marked nodes &5 in Section 1I-B where the bridging edges have unit capacity,
Since the max-flow computation using the augmenting paiite number of augmenting paths found in Algorithm 2 is the
method is insensitive to the initial flow values in the flonsame as the size of the net-cut foundAh which is much
network and the order in which the augmenting paths ak@ss than|V|.
found, the above procedure correctly finds a max-flow with Theorem I11.2: The number of iterations and the final net-
the same flow value as a max-flow computed in the collapsedt size of Algorithm 2 are nonincreasing functionscof
flow network from scratch (i.e., the zero flow). Proof: Fewer iterations are needed in Algorithm 2 when
We show in Theorem Il1.1 that if we fix the thresholdl ¢ is larger, since the condition in step 2 of Algorithm 2 is
used in the node-picking strategy described in the previosgtisfied in fewer iterations.
subsection as a constant, then the total complexity of FBBIf an augmenting path frony to ¢ is found in step 1 of
is O(|V||E|), which is the same as the complexity of onérocedure 1, then the flow value is increased by at least 1
max-flow computation. and hence the size of the min-net-cut is increased by at least
Theorem III.1: If Procedure 1 is used to implement sted. If an augmenting path from to ¢ is not found in step 1
1 of Algorithm 2, then Algorithm 2 has time complexityof Procedure 1, then the size of the min-net-cut is equal to
O(|V||E|) for a connected circuilv = (V, E). the flow value of the previous iteration, which is equal to the
Proof: Since each augmenting path computation tak@sevious min-net-cut size. Hence the net-cut size found in each
O(|E|) time, we prove that the total time complexity of step lteration is nondecreasing. O
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TABLE |
COMPARISON OF BIPARTITION REsuLTs oF SN, PFM3,AND FBB (WiTH » = 1/2 AND € = 0.1)
circuit ave. net-cut size ave. FBB FBB improvem. %
name gates & | nets | ave. net SN | PFM3 | FBB bipart. [ over SN | over PFM3
latches degree ratio

C1355 514 | 523 3.0 || 38.9 29.1 | 26.0 1:1.08 33.2 10.7

C2670 1161 | 1254 2.6 || 51.9 46.0 | 37.1 1:1.15 28.5 19.3

C3540 1667 | 1695 2.7 || 90.3 71.0 | 79.8 1:1.11 11.6 -12.4

CT7552 3466 | 3565 2.7 || 44.3 81.8 | 429 1:1.08 3.2 47.6

5838 478 | 511 26 | 27.1 21.0 | 14.7 1:1.04 45.8 30.0

| Average | | | [ [ | I 1110]  245] 19.0 |
TABLE I
COMPARISON OFBIPARTITION RESULTS OFEIG1, PARABOLI,AND FBB (WITH r = 1/2 AND € = 0.1). ALL ResuLTsALLow Up T010% DeviaTioN FROM BISECTION
circuit best net-cut size FBB improvem. % over FBB
name gates & nets | ave. net || EIG1 | PARABOLI | FBB || EIG1 PARABOLI elapsed
latches degree time (sec.)
51423 731 743 2.7 23 16 13 43.5 18.8 1.7
59234 5808 | 5805 2.4 227 74 70 69.2 5.4 55.7
513207 8696 | 8606 2.4 241 91 74 69.3 18.9 100.0
S15850 10310 | 10310 2.4 215 91 67 68.8 26.4 96.5
S35932 18081 | 17796 2.7 105 62 49 53.3 21.0 2808
538584 20859 | 20593 2.7 76 55 47 38.2 14.5 1130
538417 24033 | 23955 2.4 121 49 98 52.1 -18.4 2736
[[Average | | | | | | [ 585 | 113 H

Theorem I11.2 guarantees that with a largefeviation factor [21] algorithm. The program PFM3 is based on a K&L
we can improve the efficiency of Algorithm 2 and obtain &euristic with free moves as described in [5]. SN was run 20
better partitioning solution. This property is not true for otheiimes and PFM3 was run 10 times on each circuit starting from
partitioning approaches such as the K&L heuristics. Anothelifferent randomly generated initial partitions, while FBB was
interesting corollary of Theorem 111.2 is that the longer theun 10 times on each circuit from different randomly generated
execution time of Algorithm 2, the worse the net-cut size ig andt as the source and the sink respectively. Table | shows
the final solution. This property of Algorithm 2 can be utilizedhat with only one exception, FBB outperforms both SN and

to further improve the efficiency of Algorithm 2. PFM3 on the 5 circuits. On average, FBB finds a bipartition
with 24.5 and 19.0% fewer crossing nets than SN and PFM3,
IV. EXPERIMENTAL RESULTS respectively. This is not too surprising since max-flow min-cut

We implemented Algorithm 2 in a package called rpechniques tends to find a natural small cut. The average actual

using the C language, and integrated FBB in SIS/MISII mgtios of the'two partitions obtained by FBB_are also shown
Currently FBB runs on circuit formats accepted by SIs/misii? Table I. Since we set = 0.1, the actual ratios of the two
We tested FBB on a set of large ISCAS and MCNC benchmaPRrtitions are roughly the same (1:1.10 on average).

circuits using a SPARC 10 workstation with a 36 MHz Ss10 We did not compare the runtime of SN, PFM3, and FBB
and 32 MB memory (the C code was compiled with gc8ince they were run on different workstations. SN and PFM3
without the optimizer). For each circuit tested, the numbdfere run ona SUN SPARC ELC, and FBB were run on a SUN
of gates and latches, the number of fietsd the average net SPARC 10. For example, for C3540, the average elapsed time
degree (i.e., the average number of nodes connected to a K@ CPU time) in seconds of SN, PFM3, and FBB for each
are given in Tables | and II. Note that the actual number &fn are 90.3, 71.0, and 13.6, respectively; and for C7552, the
nodes in a circuit includes PI nodes, and is therefore motderage elapsed time in seconds of SN, PFM3, and FBB for
than the the number of gates and latches. each run are 44.3, 81.8, and 18.8, respectively.

Table | compares the average bipartition results of FBB Table Il compares the best bipartition net-cut size of EIG1
with the results reported by Dasdan and Aykanat in [5]. TH&lagen and Kahng [15]), PARABOLI (Riess, Doll, and Frank
program SN is based on the K&L heuristic algorithm id23]), and FBB. EIG1 and PARABOLI are two programs
Sanchis [24], which is a generalization of the Krishnamurthgased on analytical methods and their results were obtained
4Although we do not count a Pl node in the second column in Tables | afEiom [23]'. The results produced by PARABOLI were the
I, we do consider the set of nodes receiving a fanin from the same Pl n gst previously known results reported on the benchmark
as being in a net. circuits. The results for FBB were the best of 10 runs. The
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elapsed time of FBB for the run that generates the best resudt accomplished by recursively applying FBB, or by setting
was also recorded. All results in Table Il allow up to 10% = 1/K and then using FBB to find one partition at a time.
deviation from bisection. On average, FBB outperforms EIGA/e are currently investigating more natural methods based on
and PARABOLI by 58.1% and 11.3%, respectively. For circuftow networks for theK-way min-cut partitioning problem.
S38417, FBB produces a larger net-cut than PARABOLI does.Pre-partitioning circuit clustering according to the connec-
We consider the following possible explanations: 1) If FBB iivity or the timing information of the circuit can be easily
run more than 10 times, the best net-cut result is likely to liecorporated into FBB by treating a cluster as a node. A
better. 2) In a huge circuit like S38417, the solution is sensitiyssible extension to FBB would be to combine FBB with
to the selection of the initiad, ¢ pair of nodes. Applying circuit the K&L heuristics and the simulated annealing heuristics. We
clustering techniques based on the connectivity informati@an use FBB to find a natural small net-cut as a good initial
before partitioning may improve the partitioning result of FBBpatrtition, and then apply the K&L heuristics or the simulated
Note that different programs using the same MCNC benchannealing heuristics with low temperature to fine-tune the
mark circuits reported different properties such as the numbssiution.
of cells and the number of nets for these circuits. This is be-
cause when a netlist format is translated to a hypergraph, some
unnecessary details such as inverters are omitted. However, the
underlying netlist structures are the same. The authors would like to thank the referees for their
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