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Efficient Network Flow Based Min-Cut
Balanced Partitioning

Hannah Honghua Yang and D. F. Wong

Abstract—We consider the problem of bipartitioning a cir-
cuit into two balanced components that minimizes the number
of crossing nets. Previously, Kernighan and Lin type (K&L)
heuristics, simulated annealing approach, and analytical methods
were given to solve the problem. However, network flow (max-
flow min-cut) techniques were overlooked as viable heuristics to
min-cut balanced bipartition due to their high complexity. In
this paper we propose a balanced bipartition heuristic based
on repeated max-flow min-cut techniques, and give an efficient
implementation that has the same asymptotic time complexity
as that of one max-flow computation. We implemented our
heuristic algorithm in a package called FBB. The experimental
results demonstrate that FBB outperforms K&L heuristics and
analytical methods in terms of the number of crossing nets, and
our efficient implementation makes it possible to partition large
circuit netlists with reasonable runtime. For example, the average
elapsed time for bipartitioning a circuit S35932 of almost 20 K
gates is less than 20 min on a SPARC10 with 32 MB memory.

I. INTRODUCTION

CIRCUIT PARTITIONING is a fundamental problem in
many areas of VLSI layout and design, such as floorplan-

ning, placement and multiple-chip/multiple-FPGA partition-
ing. Min-cut balanced bipartitionis the problem of partitioning
a circuit into two disjoint components with equal weights such
that the number of nets connecting the two components is min-
imized. The min-cut balanced bipartition problem was shown
to be NP-complete [11]. Because of its importance, many
heuristic algorithms have been devised for its solution. Among
the well-known heuristics are the following [6]: Kernighan
and Lin type (K&L) iterative improvement methods [20], [9],
simulated annealing approaches [19], and analytical methods
for the ratio-cut objective [25], see e.g., [15], [4], [23].

The well-known network max-flow min-cut theorem [8],
[22], [7], [10], [16] is an important combinatorial optimization
technique. It has many applications in VLSI design such as
linear placement [3], min-cut replication [13], [14], and FPGA
technology mapping [2], [27]. The network max-flow min-cut
technique is in fact the most natural method for finding a
min-cut in a graph. However, it was overlooked as a viable
approach for circuit partitioning due to the following reasons:
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1) The two components obtained by the network max-flow
min-cut technique are not necessarily balanced, 2) Although
a balanced cut can be achieved by repeatedly applying min-
cut to the larger component, this method can possibly incur
max-flow computations, where is the size of flow network,
3) The traditional network flow technique works on graphs,
but hypergraphs are more accurate models for circuit netlists
than graphs.

In this paper we explore solutions to the above problems
faced by the traditional network flow technique. We first pro-
pose a method for exactly modeling a netlist (or equivalently,
a hypergraph) by a flow network, and a balanced bipartition
heuristic based on a repeated max-flow min-cut technique. We
then give an efficient implementation of the repeated max-flow
min-cut heuristic that has the same asymptotic time complexity
as that of one max-flow computation.

We use a generalized notion of the balanced bipartition, the
-balanced bipartition(also used in [9]), which is a bipartition

such that one component is of weight a fractionof the total
weight . As a special case when , an -balanced
bipartition is a balanced bipartition. Since in practice there
is little reason to strictly enforce the-balanced criterion, we
introduce adeviation factor to allow the component weight
to deviate from to . We show in Theorem
III.2 that both the runtime and the cut size produced by our
algorithm are decreasing functions of. This kind of direct
relationship was not shown in previous partitioning heuristics.

The rest of this paper is organized as follows. In Section II,
we first present a method for exactly modeling a netlist by
a flow network, and an optimal algorithm for finding a min-
net-cut bipartition (not necessarily balanced) of a circuit with
respect to a source and a sink. This algorithm serves as a
basic procedure for our min-cut balanced bipartition heuristic.
We then present our heuristic algorithm for finding a min-net-
cut -balanced bipartition based on the repeated network flow
technique in Section III with an efficient implementation that
has the same asymptotic time complexity as that of computing
one max-flow in a flow network. We compare our balanced
bipartition results with those of K&L heuristics and analytical
methods in Section IV, and conclude the paper in Section V.

II. A N OPTIMAL ALGORITHM FOR MIN-NET-CUT BIPARTITION

In this section we first give some definitions of a flow
network in Section II-A. We then show how to model a circuit
using a flow network in Section II-B. Based on the flow net-
work constructed in Section II-B, we present in Section II-C
an optimal algorithm for finding a bipartition (not necessarily
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Fig. 1. A flow networkG, and a max-flowf in G. The labelx=y on an edge
indicates that the flow and the capacity on the edge arex andy, respectively.
The dark edges are the forward edges of the cut(X; �X).

balanced) of a circuit that minimizes the number of crossing
nets with respect to a source and a sink.

A. Preliminaries

A flow network is a directed graph in which
each edge has acapacity . Two nodes and

in are specified: is called thesource, is called the
sink1 (see Fig. 1). An - flow (or flow for short) in is a
real-valued function such that (1) for all

, and (2) for all , the sum of the
incoming flow into is equal to the sum of the outgoing flow
from . An edge in is saturatedif . Thevalue

of a flow is defined as the sum of the flow outgoing
from , which is equal to the sum of the flow incoming to
. A maximum-flow(or max-flowfor short) in is a flow of

maximum value from to .
An - cut (or cut for short) of a flow network

is a bipartition of into and such that
and . An edge whose starting node is in and

ending node is in is called aforward edge. An edge whose
ending node is in and starting node is in is called a
backward edge. The capacity of the cut , denoted by

, is the sum of the capacities on theforward edges
only from to .2 An augmenting pathfrom to in is a
simple path from to in the undirected graph resulting from
the network by ignoring edge directions, that can be used to
push additional flow from to .

Theorem II.1— Max-flow min-cut theorem [8]:Given a
max-flow in , let an augmenting
path from to in , and let . Then
is a cut of minimum capacity (which is equal to ), and
saturates all forward edges from to .

Fig. 1 shows an example of a max-flow in and the
corresponding cut of minimum capacity.

B. Modeling a Net in a Flow Network

We represent asequential circuitnetlist as a digraph (which
may contain directed cycles) where is a set of
nodes representing combinational gates and registers, and
is a set of edges representing interconnections between gates
and registers. Each node in has an associated weight

1The choice ofs andt is completely arbitrary. There is no requirement that
s has no incoming edges, or thatt has no outgoing edges. The edges entering
s or leavingt are actually redundant and have no effect on our problem, but
we allow them inG since the choice ofs andt may vary.

2Note that the capacities on the backward edges from�X to X are not
included.

Fig. 2. A digraphN representing a sequential circuit and its net-cuts.

Fig. 3. Modeling a net inN in the flow networkN 0.

. The total weight of a subset is denoted by
. Let denote the total weight of the circuit.

A net is a set of outgoing edges from
node in . For example in Fig. 2, net consists of two
edges and . Given two nodes and in ,
an - cut (or cut for short) of is a bipartition of
the nodes in such that and . The net-cut
net of the cut is the set of nets in that are incident
to nodes in both and . In Fig. 2, if we choose
and , then the net-cutnet corresponding to the
cut consists of nets , where nets connect
nodes from to , and net connects nodes from to .
A cut is a min-net-cutif net (i.e., the number
of nets innet ) is minimum among all - cuts of .
In Fig. 2, net net , and

is a min-net-cut.
In order to find a min-net-cut in , we reduce it

to the problem of finding a cut of minimum capacity, and then
solve the latter problem by the max-flow min-cut theorem.
If the cut edges all have unit capacity, then the problem
is equivalent to finding a cut with the minimum number of
forward edges from to .

We construct a flow network from
as follows (see Figs. 3 and 4):

• contains all nodes in .
• for each net in , add two nodes

and in and abridging edge in ;
• for each node incident on net , add

two edges and in ;
• let be the source of and the sink of ;
• assign unit capacity to all bridging edges and infinite

capacity to all other edges in ;
• for a node corresponding to a node in

is the weight of in . For a node split from
a net, .

Note that all nodes incident on net are connected to
and are connected from in . Hence the flow network
construction is symmetric with respect to all nodes incident
on a net. We show in Lemma II.1 that the size of is only



YANG AND WONG: EFFICIENT NETWORK FLOW 1535

Fig. 4. A flow networkN 0 constructed from the circuitN in Fig. 2.

a constant factor larger than the size of, for a connected
graph .

Lemma II.1: Let be the flow network
constructed from a digraph using the above
method. Then and .

Proof: The number of nets in , denoted bynet , is
less than or equal to , since the set of outgoing edges from
each node forms a net.3 contains all nodes in , and two
nodes for each net in . Hence nets .
For each net in consisting of edges
in , there are edges incoming to edges
outgoing from , and a bridging edge in . Hence

nets nets nets
.

The above flow network construction for modeling net-cuts
also works when the circuit is represented by a hypergraph.
We note that another optimal approach for finding a min-net-
cut of a hypergraph was given in [16] by modeling a net (or
a hyperedge) as a star node, and then transforming a node-
capacitated flow network into an edge-capacitated network
[22] by splittingeverynode. Our method is different from that
of [16] in that we split the nodes corresponding to the nets
only, and hence use fewer nodes and edges in the resulting
flow network. For a huge input circuit, our method translates
into less memory usage and faster runtime.

Another related result given in [18] shows that modeling
hypergraphs by graphs (with positive weights) with the same
min-cut properties is not possible. However, our method mod-
els a hypergraph for network flow based partition algorithms
only. The differences between the model used in [18] and
our model are the following: 1) The weight of a cut in [18]
is computed by the sum of all cut edges with fixed weights,
while the weight of a cut in our model is computed by the
sum of the capacities of the forward edges only. 2) Reference
[18] tries to model hypergraphs for a wide range of existing
partition algorithms developed for ordinary graphs only, while
our method just models a hypergraph for network flow based
partition algorithms. Hence our method is able to exactly
model a hypergraph for our flow based partitioning algorithm
without contradicting the result in [18].

3In this proof we assume that each node has one output net, and each net
feeds at most one input on another node. This assumption is reasonable for
synthesized circuits where a combinational gate has one output net, and a
flip-flop has two which is still constant bound. It is very rare for a net to feed
more than one input on a node and it is not considered a good design style.

It is easy to see that is a strongly connected digraph.
The strong connectivity of is the key to reducing the bi-
directional min-net-cut problem to the minimum capacity cut
problem that counts the capacity of the forward edges only.
We show in Theorem II.2 and Corollary II.2.1 that the problem
of finding a min-net-cut in can be reduced to the problem
of finding a cut with minimum capacity in .

Theorem II.2: has a cut of net-cut size at mostif and
only if has a cut of capacity at most.

Proof: 1) Assume is a cut in with net-cut size
net . We define a cut in as follows.

Let contain all nodes in , the two split nodes for each
net residing entirely in (i.e., all nodes incident on the net
are in ), and the nodes where is a net in the net-cut
net . Let contain the rest of the nodes in . Then for
each net net , we have and , and
therefore the bridging edge is a forward edge from

to in . Further, the bridging edge of a net
net will not be a forward edge in since and

either both reside in or both reside in . Suppose there
exists a forward edge where and in
that is not a bridging edge. Then either for some net in

or for some net in . Without loss of generality,
assume for some net in and corresponds to
a node in . Since is in , by the definition of

net must have resided entirely in . But is
a node incident on net, a contradiction. Hence the bridging
edges corresponding to the nets innet are exactly the
forward edges from to . Since the bridging edges have
unit capacity, the capacity of cut net .

2) Conversely, assume is a cut of capacity in
. Then all forward edges from to must be bridging

edges since the capacities of the nonbridging edges are infinite,
and the number of forward edges from to is since all
bridging edges have unit capacity. If we remove all nets in
corresponding to the forward (bridging) edges fromto ,
then will be divided into several disjoint components and

and are in different components. Let be the component
containing , and let be the union of the other components.
Then the net-cut size of is at most the number of
nets removed. The number of nets removed is the number of
forward (bridging) edges from to , which is at most .
Hence net .

Corollary II.2.1: Let be a cut of minimum capac-
ity in , and let be the cut in as constructed
in Theorem II.2 (2). Then is a min-net-cut in , and
net .

Proof: Suppose there is a cut in of net-cut size
. By Theorem II.2-1), there is a cut in of capacity

at most . This contradicts the fact that is a cut of
minimum capacity in .

C. Optimal Network Flow Based Min-Net-Cut Bipartition

As a result of the correspondence between hypergraphs and
flow networks, one can find a min-net-cut in a circuit.

Algorithm 1: Finding A Min-Net-Cut

0) Construct the flow network for as
described in Section II-B;
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1) Find a max-flow in from to ;
2) Find a cut of minimum capacity in as

described in the max-flow min-cut theorem;
3) Find a min-net-cut in as described in Theorem

II.2-2).

Theorem II.3: Algorithm 1 finds a min-net-cut in a circuit
, and terminates in time where is

a connected circuit.
Proof: The correctness of Algorithm 1 has been estab-

lished in Theorem II.2 and Corollary II.2.1.
Steps 0, 2, and 3 take linear time in the size of. We use

the simple augmenting path algorithm [8] to implement step
1. Finding an augmenting path in takes time. The
number of augmenting paths in is equal to the number
of bridging edges in a min-net-cut, which is at most
(usually much less). Hence Algorithm 1 takes

time by Lemma II.1.
There are other asymptotically faster (worse-case) algo-

rithms for finding a max-flow than the simple augmenting path
algorithm based on the Ford and Fulkerson method. The fastest
preflow method takes time [12] with
a large constant factor. The Ford and Fulkerson method takes

max-flow-value time. The latter method is efficient in
our application, since the max-flow-value in the special flow
network we construct is at most (usually much smaller
than ).

The min-cut bipartition may yield unbalanced components.
The max-flow computation defines a set of min-cuts with the
same cut size, but with varying weights in the two partitions. It
is natural to ask the question of whether one can find a min-cut
that is themost r-balancedamong all the min-cuts defined by
a max-flow, i.e., among all possible min-cuts defined
by a max-flow find the min-cut such that is as
close to 0 as possible. One can show that the decision version
of the problem is NP-complete by reducing the weighted
subset sum problem [11] to it [26].

III. M IN-CUT BALANCED BIPARTITION

It is not difficult to see that repeatedly applying the max-
flow min-cut technique to cut the larger of the two partitions
will eventually produce a balanced bipartition with a natural
small net-cut. However, this approach was overlooked as a
viable heuristic approach to circuit partitioning due to its
high complexity (possibly max-flow computations). In this
section we first describe a repeated max-flow min-cut heuristic
algorithm, Flow-Balanced-Bipartition (FBB), for finding an-
balanced bipartition that minimizes the number of crossing
nets. We then give an efficient implementation of FBB that
has the same asymptotic time complexity as one max-flow
computation. For ease of presentation, we will describe our
algorithm in terms of the original circuit and net-cuts, instead
of the flow network constructed from the circuit (as shown in
Section II-B) and forward bridging edges, when there is no
confusion. An illustration of Algorithm 2 is shown in Fig. 5.

A. Balanced Bipartition Heuristic

Given a circuit , FBB randomly picks a pair
of nodes and in , and then tries to find an-balanced

bipartition that separatesand , and that minimizes the num-
ber of crossing nets. Let be the total weight of the circuit

. Since in practice there is little reason to strictly enforce
the -balanced criterion, we allow the component weights to
deviate from to . Given a subcircuit
of , let denote the total weight of nodes in.

Algorithm 2: Flow-Balanced-Bipartition (FBB)

0) Randomly pick a pair of nodesand in ;
1) Find a min-net-cut in ; Let be the subcircuit

reachable from through augmenting paths in the flow
network, and the rest;

2) If then stop and
return as the answer.

3) If

then 3.1 collapse all nodes in to ;
3.2 collapse to a node adjacent to ;
3.3 goto 1;

4) If then

then 4.1 collapse all nodes in to ;
4.2 collapse to a node adjacent to ;
4.3 goto 1.

Step 1 can be implemented by Algorithm 1. In step 3.2,
we need to collapse a node incident on a cut net to

since otherwise the same set of nets inwill again be
chosen as the min-net-cut in the next iteration in step 1. The
reasons why we adopt this node collapsing method instead of
a more gradual method (i.e., increasing the unit capacities of
the bridging edges by a fixed amount as in [17] are (1) the
capacity of the cut would no longer reflect the real net-cut
size, and (2) the runtime would not be bounded by one flow
computation. By collapsing to , FBB is able to explore a
different net-cut with alarger in the next iteration. Note
that the size of the min-net-cut found in the next iteration will
be the same as or larger than the size of the min-net-cut in the
current iteration. A similar argument holds for step 4.2.

We now describe our strategy for picking a node in steps 3.2
and 4.2. To find an -balanced bipartition that minimizes the
net-cut size, our heuristic is to always focus on finding a min-
net-cut at each iteration. But when the remaining circuit is very
large, the current min-net-cut has less influence on what the
final balanced min-net-cut would be. Therefore, we randomly
pick a node in steps 3.2 and 4.2 in order to speed up the
algorithm. When the remaining circuit becomes small enough,
we need to be more careful about which node we pick, and we
can afford to try out more than one node. We give a threshold
value for the number of nodes in the un-collapsed subcircuit.
If the number of remaining nodes is larger than, then we
randomly pick one node from the nodes incident on the cut
nets in . Otherwise, we try all nodes incident on the cut nets
in and pick the node whose collapsing induces a min-net-
cut with the smallest size. We can also let the probability of
choosing a node be inversely proportional to the number of
nodes in the remaining (un-collapsed) circuit.

B. Efficient Implementation of Algorithm 2

A drawback of the repeated max-flow heuristic is that it
has a relatively high time complexity. Iteratively applying
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Fig. 5. An illustration of Algorithm 2 forr = 1=2, � = 0:15 and unit weight for each node. Hence a component can have weight between 5 and 7.
If � = 0:45, then a component can have weight between 3 and 10, and Algorithm 2 would terminated after finding cut(X2; �X2). A small solid node
indicates that the bridging edge corresponding to the net is saturated with flow.

Algorithm 1 in step 1 of Algorithm 2 to compute a max-
flow and a min-net-cut from the zero flow can be very
time-consuming. We show an efficient way to deal with this
problem. In fact, it is not necessary to do the max-flow
computation from the zero flow in every iteration. Instead,
we can retain the flow value in the flow network, and only
find additional flow to saturate the bridging edges of the
min-net-cut from iteration to iteration.

In Procedure 1, we describe the incremental max-flow
computation in step 1 of Algorithm 2. Initially, the flow
network retains the flow function computed in the previous
iteration.

Procedure 1: Incremental Flow Computation

0) While an additional augmenting path fromto
1) increase flow value along the augmenting path;

/* There is no more augmenting path fromto .*/
2) Mark all nodes such that

an augmenting path from to ;
3) Let be the set of bridging edges whose starting

nodes are marked and ending nodes are not marked;
4) Return the nets corresponding to the bridging edges in

as the min-net-cut , and the marked nodes as

Since the max-flow computation using the augmenting path
method is insensitive to the initial flow values in the flow
network and the order in which the augmenting paths are
found, the above procedure correctly finds a max-flow with
the same flow value as a max-flow computed in the collapsed
flow network from scratch (i.e., the zero flow).

We show in Theorem III.1 that if we fix the threshold
used in the node-picking strategy described in the previous
subsection as a constant, then the total complexity of FBB
is , which is the same as the complexity of one
max-flow computation.

Theorem III.1: If Procedure 1 is used to implement step
1 of Algorithm 2, then Algorithm 2 has time complexity

for a connected circuit .
Proof: Since each augmenting path computation takes

time, we prove that the total time complexity of step 1

of Algorithm 2 is by showing that there are at most
augmenting path computations in the following iterations.

The total flow value in the flow network constructed
from at the end of Algorithm 2 is the number of forward
bridging edges in the final min-net-cut. Hence is at most

. Since bridging edges have unit capacity, there are
- augmenting paths found at the end of Algorithm 2,

We now consider an augmenting path computation in step 0
of Procedure 1. Either an augmenting path is found, in which
case the number of augmenting paths increases by 1, or at
least one node will be collapsed toor in steps 3.1 and
3.2 or 4.1 and 4.2 of Algorithm 2. Hence the number of
augmenting path computations in the following iterations is
at most .

Note that step 3 of Procedure 1 can be accomplished during
the searching for an augmenting path in step 2 of Procedure
1, and steps 4 and 5 of Procedure 1 takes time in the
worst case.

In practice, as shown in the experimental results, Algorithm
2 terminates much faster than the worst case time
complexity. Because of the construction of the flow network
in Section II-B where the bridging edges have unit capacity,
the number of augmenting paths found in Algorithm 2 is the
same as the size of the net-cut found in, which is much
less than .

Theorem III.2: The number of iterations and the final net-
cut size of Algorithm 2 are nonincreasing functions of.

Proof: Fewer iterations are needed in Algorithm 2 when
is larger, since the condition in step 2 of Algorithm 2 is

satisfied in fewer iterations.
If an augmenting path from to is found in step 1 of

Procedure 1, then the flow value is increased by at least 1
and hence the size of the min-net-cut is increased by at least
1. If an augmenting path from to is not found in step 1
of Procedure 1, then the size of the min-net-cut is equal to
the flow value of the previous iteration, which is equal to the
previous min-net-cut size. Hence the net-cut size found in each
iteration is nondecreasing.
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TABLE I
COMPARISON OF BIPARTITION RESULTS OF SN, PFM3,AND FBB (WITH r = 1=2 AND � = 0:1)

TABLE II
COMPARISON OFBIPARTITION RESULTS OFEIG1, PARABOLI,AND FBB (WITH r = 1=2 AND � = 0:1). ALL RESULTSALLOW UP TO 10% DEVIATION FROM BISECTION

Theorem III.2 guarantees that with a largerdeviation factor
we can improve the efficiency of Algorithm 2 and obtain a
better partitioning solution. This property is not true for other
partitioning approaches such as the K&L heuristics. Another
interesting corollary of Theorem III.2 is that the longer the
execution time of Algorithm 2, the worse the net-cut size in
the final solution. This property of Algorithm 2 can be utilized
to further improve the efficiency of Algorithm 2.

IV. EXPERIMENTAL RESULTS

We implemented Algorithm 2 in a package called FBB
using the C language, and integrated FBB in SIS/MISII [1].
Currently FBB runs on circuit formats accepted by SIS/MISII.
We tested FBB on a set of large ISCAS and MCNC benchmark
circuits using a SPARC 10 workstation with a 36 MHz SS10
and 32 MB memory (the C code was compiled with gcc
without the optimizer). For each circuit tested, the number
of gates and latches, the number of nets4 and the average net
degree (i.e., the average number of nodes connected to a net)
are given in Tables I and II. Note that the actual number of
nodes in a circuit includes PI nodes, and is therefore more
than the the number of gates and latches.

Table I compares the average bipartition results of FBB
with the results reported by Dasdan and Aykanat in [5]. The
program SN is based on the K&L heuristic algorithm in
Sanchis [24], which is a generalization of the Krishnamurthy

4Although we do not count a PI node in the second column in Tables I and
II, we do consider the set of nodes receiving a fanin from the same PI node
as being in a net.

[21] algorithm. The program PFM3 is based on a K&L
heuristic with free moves as described in [5]. SN was run 20
times and PFM3 was run 10 times on each circuit starting from
different randomly generated initial partitions, while FBB was
run 10 times on each circuit from different randomly generated

and as the source and the sink respectively. Table I shows
that with only one exception, FBB outperforms both SN and
PFM3 on the 5 circuits. On average, FBB finds a bipartition
with 24.5 and 19.0% fewer crossing nets than SN and PFM3,
respectively. This is not too surprising since max-flow min-cut
techniques tends to find a natural small cut. The average actual
ratios of the two partitions obtained by FBB are also shown
in Table I. Since we set , the actual ratios of the two
partitions are roughly the same (1:1.10 on average).

We did not compare the runtime of SN, PFM3, and FBB
since they were run on different workstations. SN and PFM3
were run on a SUN SPARC ELC, and FBB were run on a SUN
SPARC 10. For example, for C3540, the average elapsed time
(not CPU time) in seconds of SN, PFM3, and FBB for each
run are 90.3, 71.0, and 13.6, respectively; and for C7552, the
average elapsed time in seconds of SN, PFM3, and FBB for
each run are 44.3, 81.8, and 18.8, respectively.

Table II compares the best bipartition net-cut size of EIG1
(Hagen and Kahng [15]), PARABOLI (Riess, Doll, and Frank
[23]), and FBB. EIG1 and PARABOLI are two programs
based on analytical methods and their results were obtained
from [23]. The results produced by PARABOLI were the
best previously known results reported on the benchmark
circuits. The results for FBB were the best of 10 runs. The
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elapsed time of FBB for the run that generates the best result
was also recorded. All results in Table II allow up to 10%
deviation from bisection. On average, FBB outperforms EIG1
and PARABOLI by 58.1% and 11.3%, respectively. For circuit
S38417, FBB produces a larger net-cut than PARABOLI does.
We consider the following possible explanations: 1) If FBB is
run more than 10 times, the best net-cut result is likely to be
better. 2) In a huge circuit like S38417, the solution is sensitive
to the selection of the initial pair of nodes. Applying circuit
clustering techniques based on the connectivity information
before partitioning may improve the partitioning result of FBB.

Note that different programs using the same MCNC bench-
mark circuits reported different properties such as the number
of cells and the number of nets for these circuits. This is be-
cause when a netlist format is translated to a hypergraph, some
unnecessary details such as inverters are omitted. However, the
underlying netlist structures are the same.

In the experiment, we have consistently observed that
for the runs with longer-than-average runtime, FBB always
generates exceptionally poor solutions. This can be explained
by Theorem III.2, since the net-cut size is nondecreasing with
more iterations. This property of FBB is in contrast to both the
K&L heuristics and the simulated annealing heuristics, where
longer runtime means better solutions. This property of FBB
provides another way of improving the efficiency of FBB. We
can pick a reasonable upperbound for the runtime of FBB (for
example, based on a few runs of FBB), stop FBB when the
runtime exceeds the upperbound, and restart FBB using a new
pair of nodes and . By doing so we are not likely to lose
any good solutions, but we will further improve the efficiency
of FBB.

V. CONCLUSION AND DISCUSSIONS

We have described a method for exactly modeling a netlist
by a flow network, presented a balanced bipartition heuristic
based on the repeated max-flow min-cut techniques, and given
an efficient implementation of a good theoretical method. We
implemented our algorithm in a package called FBB. The
experimental results demonstrate that the repeated max-flow
min-cut heuristic outperforms K&L heuristics and analytical
methods in terms of the number of crossing nets, and the
efficient implementation enables our heuristic algorithm to
partition large benchmark circuits with reasonable runtime.

FBB has predictable behavior in terms of the sizes of the
two partitions, and the direct relationship between efficiency,
solution quality of FBB, and relaxing the-balanced criterion
by using a larger . Such a direct relationship was not shown
in previous heuristics for circuit partition. We also believe
that the choice of the pair of nodes and as the initial
configuration of FBB has less influence on the solution than
an initial bipartition would have. Hence the solution quality of
FBB is less sensitive to the initial choice ofand .

Our algorithm can be easily extended to handle that case
where the nets in a circuit have different weights. We can
simply assign the weight of a net to its corresponding bridging
edge in the flow network, and FBB will find a net-cut with its
weight minimized. -way min-cut partitioning for can

be accomplished by recursively applying FBB, or by setting
and then using FBB to find one partition at a time.

We are currently investigating more natural methods based on
flow networks for the -way min-cut partitioning problem.

Pre-partitioning circuit clustering according to the connec-
tivity or the timing information of the circuit can be easily
incorporated into FBB by treating a cluster as a node. A
possible extension to FBB would be to combine FBB with
the K&L heuristics and the simulated annealing heuristics. We
can use FBB to find a natural small net-cut as a good initial
partition, and then apply the K&L heuristics or the simulated
annealing heuristics with low temperature to fine-tune the
solution.
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