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Abstract—Human activity monitoring has become widely 
popular in recent years, and has been utilized in a vast number of 
fields and applications. Most of the activity recognition algorithms 
proposed have emphasized the use of inertial sensors in 
smartphone devices or other bodily-worn sensors. However, 
wearable inertial sensors are not interactive, and smartphones are 
not easily worn. Thus, with the advancement of smartwatches, 
unique opportunities exist to provide user interaction and highly 
accurate personalized activity recognition. Through the use of 
Active Learning, an interactive machine learning technique, 
specific behaviors can be learned by querying for unknown 
actions. This paper describes a smartwatch-based active learning 
method for activity recognition to identify 5 commonly performed 
daily activities. The results of this study revealed that this system 
can obtain a 93.3% accuracy across 12 participants. From our 
results, we demonstrate that an interactive learning approach 
using active learning in smartwatches has significant advantages 
over smartphones and other devices for activity recognition tasks. 

Keywords—activity recognition; smartwatch; active learning; 
inertial sensors; wearable devices 

I. INTRODUCTION 
Human activity monitoring has become widely utilized in 

recent years among a vast number of fields [1, 2], particularly in 
healthcare [3, 4, 5, 6, 7]. As [8] explains, recognizing and 
monitoring activities such as walking and running in patients 
with chronic disease conditions such as diabetes, obesity or heart 
disease is necessary to monitor treatments and improvements in 
behaviors. Moreover, as [9] suggests, prevention of many health 
disorders in children is possible by monitoring their activity 
patterns. Currently, most smartphones and smartwatches are 
equipped with motion and direction sensors, which can be 
utilized to identify human activities. However, most effort has 
focused on smartphone based activity recognition, such as those 
presented in [10, 11, 12, 13]. 

There have been few studies that have focused on 
smartwatches. For instance, [14] used a combination of 
smartwatch and smartphone for improving activity recognition 
accuracy. The lack of attention towards these devices may be 
due to several reasons. First, it hasn’t been until recent years that 
smartwatches have become popular among the general public 
[15]. Also, Android-based smartwatches have been limited in 
terms of computation power, battery life, and have lacked WiFi 
support prior to the Android Wear 5.1.1 update. Prior to this 
update, smartwatches were only able to connect to the Internet 
through the smartphone, requiring them to be proximally 

tethered. Thus, in the absence of a smartphone or device with 
WiFi or other form internet connectivity, smartwatches were not 
able to play a gateway role by performing data collection and 
sending this information to a web server to perform 
computations in real time. As a result, it was previously 
impractical to use smartwatches as the sole device in large scale 
and complex activity recognition applications. However, since 
many of these issues are now resolved and smartwatches are 
becoming more popular, they have become a promising tool for 
activity recognition applications. 

Smartwatches pose several advantages over other wearable 
inertial sensors and smartphones. First, smartwatches combine 
features of smartphones with continuous data monitoring [16]. 
By providing a screen similar to those seen in smartphones, 
smartwatches can provide interactive feedback to allow for 
direct communication with the user from any location [17]. They 
are also ubiquitous in that they are typically worn even when at 
home and during nighttime. Furthermore, unlike smartphones 
that are bulky and not always worn by the individual during 
behaviors of interest such as exercise, smartwatches can easily 
be worn during high levels of activity to provide continuous 
sensing information beyond accelerometry, such as heart rate, 
global positioning satellite (GPS), gyroscope, and compass data 
[18]. This is particularly promising in applications that require 
continuous activity monitoring to identify unexpected changes 
in behavior patterns and propose alarms and guidance based on 
the given localized area. The messages and alarms delivered to 
the user are also more easily observed than those sent to 
smartphones, as individuals can receive vibrations, text, and 
sounds within immediate proximity to their line of sight. Finally, 
the modularity of apps that can be deployed on smartwatches 
provides an unlimited resource regarding their use in physical 
activity monitoring and other applications. 

To provide an accurate estimate of a wide range of activities 
from smartwatches, active machine learning algorithms can be 
utilized to provide improvements to the activity recognition 
model. Active Learning provides queries to the individual to 
annotate data points and thus provide valuable information to 
improve the current model. In this context, it requires 
individuals to select the activity that was being performed during 
data points that are unknown, thus increasing the number of 
informative samples and provide an individualized training 
model for various physical activities [19]. 

In this study, we demonstrate that smartwatches can identify 
daily activities, and can become an invaluable tool for future 
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activity recognition applications. Furthermore, we show how 
active machine learning models can be leveraged in 
smartwatches to provide personalized models of each individual 
and improve the accuracy of the activity recognition classifier. 
Since smartwatches provide an easy to read interface to interact 
with individuals, active learning methods were easily deployed 
on this device to provide individualized and continuous activity 
recognition monitoring. We also propose a strategy for the 
balancing number of queries that is made through the 
smartwatch. Finally, we show that by employing only two 
Android-based sensors, we can improve the classification 
accuracy compared to commonly used raw inertial sensors. 

II. RELATED WORK 

A. Activity Recognition 
Human activity recognition from inertial sensors has been 

widely studied. Historically, initial work in this area such as 
those described in [20, 21, 22, 23] monitored activity using 
multiple inertial sensors that were mounted on different parts of 
the body. However, researchers found that this was not cost 
effective nor user friendly [24], and with the advancement of 
smartphone technology, activity recognition studies began to 
rely on the use of smartphones to measure activities from inertial 
sensors. For example, [10, 11] used smartphones and basic 
machine learning models such as Random Forests and Support 
Vector Machine to classify activities of users. In addition, [25] 
reviewed and compared different supervised algorithms, 
placement of inertial sensors, and their impact on activity 
recognition accuracy. These methods, although provided 
accurate results on the collected dataset, were not personalized 
and required a large dataset to classify different behaviors. 
However, as [3] explains, in the healthcare domain, we are 
confronted with small datasets and rare events. Furthermore, 
streams of data encounter temporal changes and this cannot be 
modeled using a fixed dataset [19].  

To solve aforementioned problems, some studies such as the 
study presented in [26] used semi-supervised learning to reduce 
the size of the dataset. However, semi-supervised learning 
methods do not allow for personalized models for individuals 
who exhibit varying behaviors, as their dataset is not updated 
during training. Active Learning gives us the opportunity to train 
the model with each user’s data on selected and limited training 
samples. 

B. Active Learning 
Unlike more commonly used supervised machine learning 

methods, Active Learning allows us to generate activity 
recognition models with significantly smaller training datasets. 
This is particularly beneficial in applications that target the 
elderly, children, and those with disease conditions, as 
performing certain activity tasks such as exercise for long 
periods of time may be too difficult in these populations. The 
key hypothesis in Active Learning is how to choose training 
instances and ask for their label such that the model learns 
improves its accuracy with fewer training samples.  

The first family of active learning methods that was studied 
was Membership Query Synthesis [27]. As [28] explains, this 
approach generates arbitrary combinations of features and 
queries for labels.  However, because many of these samples are 

not collected from real world behaviors, collecting labels from 
human user is difficult and awkward to perform.  

Query by Committee [29] methods are a more recently 
studied approach that have been used widely in real-world 
applications. In  this  method,  a  committee  of models  is  
created  to  vote  for  the  label  of  each  sample.  The sample 
with the largest disagreement is considered the most informative  
sample,  and  thus  used  to  query  the  individual for a label.  

Other Active Learning methods mainly rely on different 
query strategies that decide when to make a query for label of an 
instance. For instance, one the most popular query strategies that 
has several variations and has been widely used is Uncertainty 
Sampling [30]. In this method, the uncertainty of the label is 
defined as a measure and those samples with the highest 
uncertainty are selected to query the user for labels.   

Many of the initial applications of Active Learning have 
been pool-based. In this approach, all training samples are 
available prior to testing and the most informative samples are 
selected to be queried for a label. However, in many real-world 
applications, such as in activity recognition problems, stream-
based Active Learning is required. This is because users cannot 
remember their activity history for a long period of time and 
cannot determine the activity that was performed simply by 
looking at the recorded sensor data at the end of the recording 
period. As a result, stream-based active learning must be utilized 
to decide whether to query for an activity label upon the arrival 
of each sample in real time, and then improve its model 
instantly.  This method requires instant and easy user interaction 
capabilities in the activity recognition system.  

Few studies have focused on the stream-based nature of 
inertial sensor data for activity recognition problems. In [31], a 
smartphone activity recognition system was proposed that 
employed a stream-based segmentation technique. However, 
their active learning model was reliant on hyper-parameters that 
required a large annotated dataset to be calculated, which is 
counter intuitive in Active Learning. Another smartphone based 
activity recognition framework was introduced in [19] in which 
a lightweight clustering-based active learning model was used 
to predict activity. However, their model did not place any 
limitations on the number of queries sent to the user. This is 
problematic, as [32] suggests, as a high number of queries will 
reduce compliance with use of the system. Thus, an activity 
dependent query strategy must be utilized to minimize 
unnecessary queries and reduce user burden. 

To the best of author’s knowledge, no study has used active 
learning on smartwatches for activity recognition problems. 
However, with advancement of smartwatches, few studies such 
as [15] have shown that new generations of smartwatches can 
replace smartphones for activity recognition problems, as 
interaction capabilities of smartwatches for improving activity 
recognition has previously been neglected. These newer 
smartwatches are promising in that they can provide queries to 
users performing activities for Active Learning methods, thus 
providing highly accurate and personalized activity recognition 
models. 
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III. BACKGROUND 
Prior to describing our methods, we will first introduce some 

basic concepts that will be used throughout the study. 

A. Software-based Sensors 
As described in reviews such as the one described in [33], 

most supervised activity recognition models use raw hardware-
based inertial sensor features. However, the Android 
framework provides a set of software-based sensors that to the 
best of authors knowledge, has yet to be assessed in activity 
recognition problems. These sensors have also been used in 
[34] for recognizing transportation modes, which had 
promising results. In addition, they provide simpler features, 
which aids in reducing the power consumption of the activity 
recognition algorithm implemented on the smartwatch. In the 
following sections, we will briefly introduce these commonly 
used sensors in Active Learning.  

1) Linear Acceleration Sensor  
 The linear acceleration sensor provided by Android 
smartwatches utilizes a tri-axial accelerometer that measures the 
acceleration applied to it in the X, Y, and Z-axes relative to the 
device’s coordinate system (Fig. 1). The acceleration applied to 
the smartwatch that is read by the raw accelerometer sensor 
includes the force of gravity, which is used to determine the 
orientation of the smartwatch on the individual’s wrist. 
However, acceleration due to gravity makes it difficult to find 
the acceleration solely due to the user’s activity. As a result, the 
linear acceleration sensor excludes the force of gravity from the 
accelerometer’s measurement and reports only the acceleration 
applied to each axis by the individual.  

2) Rotation Vector Sensor 
The rotation vector sensor reported by Android is a fused 

sensor that measures the orientation of the device relative to the 
East-North-Up coordinate system. This vector sensor mainly 
uses integration over the gyroscope on the smartwatch to obtain 
the orientation of the smartwatch. In addition, the sensor 
incorporates information from the watch’s accelerometer and 
magnetometer sensors to obtain a more accurate estimation of 
the current orientation. The rotation vector sensor then returns 
the smartwatch’s orientation as a unit quaternion. The 
quaternion is a four-dimensional extension of the complex 
numbers system, which is very useful for spatial rotations [35]. 
Specifically, a rotation of angle  around the obtained axis will 
transform the East-North-Up coordinate system to the 
smartwatch’s relative coordinate system using the form:  

 (cos( /2), x·sin ( /2), y·sin ( /2), z·sin ( /2)) (1) 

where (x, y, z) in (1) is the axis of rotation in three dimensions. 

B. Active Learning 
Active Learning is a learning strategy that learns based on 

query and the main idea is to query only when model can learn 
something new and improve performance. There are two main 
advantages in this approach, as described in [15]. First, for many 
systems, labeling instances is very difficult and time-consuming, 
and active learning can eliminate the need for excessive labeling. 
Second, for applications like activity recognition, it allows for 
better personalization as the system learns based on subjects’ 
answers to queries. Specifically, Active Learning algorithms 
define a strategy to decide when to query for label of a sample 
and use it as a training sample. Here, we explain two commonly 
used querying approaches that were also utilized in our study. 

1) Uncertainty Sampling 
The uncertainty sampling query strategy [36] allows the 

active learner to issue queries for those samples that model is 
least certain about their labels. Uncertainty can be defined based 
on application. For instance, as [15] exemplifies, in binary 
classification, one can define uncertainty as how near the 
posterior probability of being positive is to 0.5 and then query 
for points with uncertainty less than a threshold. In multi-class 
classification, after calculating uncertainty measure for each 
label, it is required to define a query strategy based on these 
uncertainties. For instance, one can query for the instance that 
has the least confidence as being the most probable label. It 
should be noted that this algorithm can be used both as a pool-
based and stream-based method for defining the uncertainty 
measure. 

2) Query by Committee 
In the Query by Committee strategy [37], a committee of 

models is defined and each member votes for whether to issue a 
query. In this approach, the most informative data point is the 
one that has the most disagreement among its votes. These 
committee classifiers and voting system can be designed based 
on the desired application. Furthermore, Query by Committee is 
a pool-based method as it compares all data points at each step. 
Thus, modification is required to use it in a stream-based Active 
Learning model. 

In this study, we employ a variation of these two commonly 
used Active Learning algorithms and query strategies in a 
stream-based activity monitoring application. Through the use 
of smartwatches, queries were given to the user in real time 
given two query strategies that minimize user burden. The 
remaining sections will describe how this was accomplished and 
tested among several participants wearing smartwatches. 

 

Fig. 1 Embedded accelerometer and its axes in a smartwatch. 
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IV. METHODS 

We developed an Android-based smartwatch application 
that can be installed on any smartwatch to record and 
determine several commonly performed activities from 
individuals in real time. A sample of the application’s user 
interface is depicted in Fig. 2. To test this application, we used 
the Samsung Gear Live (Samsung Electronics, Samsung, 
Seoul, South Korea) smartwatch that streamed inertial data at a 
frequency of 10 Hz to a webserver for online analysis. First, 
the performance of the Android software-based sensors was 
examined (the linear acceleration and rotation vector sensors), 
followed by exploring various Active Learning models through 
a small pilot study for activity recognition.  

A. Experiment Setup 
Twelve individuals participated in the study, consisting of 8 

males and 4 females between the ages of 22-28 years old. To 
collect activity data, each individual was asked via the 
smartwatch to select and perform one of five activities: running, 
walking, standing, sitting, and lying down.  Note that the "None" 
activity option was designed so that the user could inform the 
application that an activity that is not listed was being performed 
such as cycling. Each activity was then performed for a total of 
10 minutes, except for running which was performed for a total 
of 5 minutes to minimize discomfort and remove unwanted 
noise in the data when the participant was fatigued. The 
individuals performed each of these activities without the 
experimenter’s supervision and provided a brief description of 
the actions performed during the activity. For example, during 
the standing activity, some users reported drinking and speaking 
while standing. In the sitting activity, individuals were allowed 
to move their upper body and some reported playing the piano 
or using a smartphone. During the lying down activity, some 
users also reported using a smartphone.  

To evaluate the performance of the active learning model, 
the same activity dataset was used; however, the data was fed in 
a stream-based format into the model to simulate real-time 
activity recognition.  On arrival of each data point, the active 
learner decided whether to query the point for a class label, and 
after each query, updated the model. To evaluate the model after 
each modification, each subject’s data was divided into two 
equal length parts. Let these parts be described as sets A and B. 
In this phase, we treated set A as a time period in which the 
algorithm can issue queries. We then simulated the answers 
from the subject using our knowledge of the true labels for set 
A. Finally, we tested the updated active learning model on 
dataset B, which is further described below. To compare the 

accuracy of classification among different models, we used the 
F1 score, which is defined as: 

                      (2) 

B. Feature Extraction 
To extract important features for classification of activities, 

we first performed time-based segmentation over other 
techniques described in [38]. As [9, 39] suggests, 10 second 
window-sizes were chosen as this window size is a reasonable 
choice for activity recognition in young adults using 
smartphones with similar inertial sensors. For each window, a 
set of features was then generated that summarized the readings 
in this time window. 

Another important feature to determine the activity being 
performed is the magnitude of the acceleration vector. This was 
calculated from the accelerometer readings and was generated 
as a new time series data. A summary of this data alongside the 
calculated rotation vector sensor, whose methods for 
calculation are described below, was also generated for each 
dataset. 

In order to use the data collected from the rotation vector 
sensor, we transformed quaternions into an informative feature. 
To accomplish this, for each sample in each window, we rotated 
the (0,0,1) vector (the unit vector towards the sky) by each 
quaternion to obtain the (x,y,z) coordinates of the unit normal 
vector of the smartwatch surface. Although the unit normal 
vector of the smartwatch surface does not uniquely specify the 
orientation of the watch, its combination with other sensor data 
was able to infer the correct orientation. Furthermore, we 
noticed that including other vectors increased the complexity 
and worsened performance of the model, so these features were 
removed from the activity classification model. A list of 
resulting features that were used to generate summaries of the 
10 second windows is provided in Table 1.  

TABLE I.  LIST OF FEATURES USED IN THE ACTIVITY CLASSIFIER. 

Features Sensors 

Mean Acceleration & Orientation  

Standard Deviation Acceleration & Orientation 

Skewness Acceleration & Orientation  

Kurtosis Acceleration & Orientation  

Dynamic Time Warping Distance Acceleration & Orientation  

Energy Acceleration 

Inter Quatile Range Acceleration 
Average of the absolute differences 
between successive data points  Acceleration 

Standard deviation of the absolute 
differences between successive data 
points  

Acceleration 

 
Fig. 2 Smartwatch user interface used to collect activity data by the 
participants.  
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C. Comparison of Features 
In the first part of the experiment, we trained a supervised 

model on our dataset to be used as our baseline activity 
recognition model and compared models that use different 
combination of features from different chosen sensors. 

The following hardware and software-based sensors and 
combinations of them were examined for accuracy using the 
activity classification model: accelerometer, linear acceleration 
sensor, and rotation vector sensor. Features extracted from 
these sensors were used as an input into 5 different 
classification algorithms described in [25] as previously 
utilized in activity recognition problems: Random Forest, Extra 
Trees, Naïve Bayes, Logistic Regression, and Support Vector 
Machine. The performance of each model was then tested using 
leave-one-subject-out (LOSO) cross-validation. Specifically, 
for each participant, we trained the classifier on the data 
collected from the other participants and then tested it on the 
subject’s own data. This method was used over 10-fold cross-
validation, as cross-validation can obtain deceptively high 
accuracies in activity recognition classifiers [40]. 

D. Active Learning Model 
In this study, we employed the two most reliable Active 

Learning algorithms, Uncertainty Sampling and Query by 
Committee, based on the review conducted in [28], and 
customized them based on the application needs. These two 
algorithms allowed us to perform online active learning and 
query subjects as sensor-data was being received. We compared 
the performance of these two methods for activity recognition 
to determine which method is most appropriate for this 
application. As illustrated in Fig. 3, both Active Learning 
algorithms queried for labels on two different datasets. It then 
retrained the classifier for each dataset, and made predictions 
for the opposite dataset that was not queried. Using this 
approach, annotating one sample did not result in a falsely high 
accuracy of the model by having prior knowledge of its future 
classifications. 

1) Uncertainty Sampling 
As described earlier, the Uncertainty Sampling strategy 

selected the most informative samples to be queried for label 
based on an uncertainty measure. Here, we used a variant of 
multi-class uncertainty measure, margin sampling which is 
described in [41]. In this approach, the model was considered 
uncertain about a sample when the difference of the most 

probable and second most probable label for a sample was not 
large enough. Moreover, we defined the probability of a label 
as the number of estimators in the Extra Trees classifier [42] 
that predicted the same label divided by the total number of 
estimators. As a result, the certainty of the prediction was 
computed as: 

 
               (3) 
 

If the algorithm was not certain between two or more labels 
and had certainty difference less than a threshold, then the 
subject was queried for the real activity label through the 
smartwatch interface. This threshold was determined for each 
activity in a flexible manner. To assign thresholds to each 
activity type, which prevented skewing of query requests 
toward specific activities and issuing excessive queries for each 
activity, we set thresholds so that the percentage of 
misclassified instances for each activity was the same. Previous 
samples and labels received by the system gave us an insight 
into which percentage of samples was expected to be classified 
correctly, for different given thresholds. With this statistical 
data, we first determined the percentage of misclassification 
that was tolerable and the percentage of queries that should be 
issued. Then, based on these results, a different uncertainty 
threshold was calculated for each activity. With this approach, 
when the certainty of an activity was lower, the number of 
queries issued for that activity increased. 

2) Query by Committee 
In this study, to implement the Query by Committee 

strategy in the smartwatch activity recognition system, we 
needed to define the committee and voting system in a way that 
allowed the model to support stream-based query generation 
and decision making based on the current incoming sample. We 
used 3 different classifier models to determine when to query 
the individual: Extra Trees classifier, Support Vector Machine 
with a linear kernel, and a Naïve Bayes classifier. We issued a 
query when any pair of these classifiers predicted different 
labels for the incoming data point. After issuing the queries, we 
then re-trained the classifiers and returned a final decision of 
the algorithm. 
  

 
Fig.  3. Workflow of the active learning model evaluation. 
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V. RESULTS 

A. Baseline Results 
Fig. 4 depicts the accuracy of the tested classifiers for each 

set of sensor combinations. As seen in the figure, the addition of 
the linear acceleration sensor slightly increased the model’s 
accuracy compared to the accelerometer sensor. More 
importantly, the combination of the rotation vector sensor with 
the linear acceleration sensor gave the highest accuracy across 
all classifiers tested. However, the rotation vector sensor itself 
did not provide accurate results. Finally, as Fig. 4 illustrates, 
combining the data from the rotation vector sensor and the 
accelerometer sensor did not provide significant improvements 
in accuracy. This may be due to the fact that the orientation of 
the device is already considered in the accelerometer data 
analysis. 

Fig. 4 also illustrates that the Extra Trees classifier 
outperformed the other classifiers tested in this application. The 
hyper-parameters determined for the Extra Trees classifier was 
1000 and 5 for the number of estimators and split threshold, 
respectively.  

By selecting the Extra Trees classifier as the main underlying 
activity model, we were able to compare how well each 
combination of sensors distinguished activities. Fig. 5 depicts 
the performance of the Extra Trees classifier given the different 
sets of sensors using the F1 score.  

It can be inferred from the results presented previously that 
the linear acceleration sensor can accurately classify walking 
and running activities, however, this sensor performs poorly 
when detecting standing and sitting activities. Conversely, the 
combination of linear acceleration and rotation vector sensors 
resulted in a better or equal performance in classification across 
all activities compared to any other combinations of sensors. 
This may be due to the fact that by having access to only the 
linear acceleration sensor, the algorithm had no sense of the 
orientation of the coordinate system of the device, which was 
necessary for classification of certain activity types. Overall, the 
software-based sensors used in the model, linear acceleration 
and the rotation vector sensor, improved the overall accuracy of 

the supervised activity recognition model from approximately 
85% to 93% when the Extra Trees classifier was used.  We used 
this model as our baseline classifier for evaluating the active 
learning model as it produced the highest performances 
compared to the other classifiers tested. The average accuracy 
achieved for each subject using this model is provided in Table 
2. These results demonstrate that the current smartwatch activity 
recognition system is a good option for this type of application.  

TABLE II.  F1 SCORE ACROSS SUBJECTS FOR THE BASELINE MODEL 

Subject 
ID 

Baseline 
Accuracy 

Subject 
ID 

Baseline 
Accuracy 

1 0.985 7 0.950 

2 0.893 8 0.943 

3 0.946 9 0.957 

4 0.935 10 0.839 

5 0.843 11 0.858 

6 0.954 12 0.991 

 

B. Active Learning Resutls 
1) Uncertainty Sampling 
Fig. 6 shows the cumulative distribution of certainty among 

correctly and incorrectly classified instances for each activity 
type. In other words, for each level of certainty, the graphs show 
the percentage of correctly and incorrectly classified instances 
with less or equal certainty. As seen in this figure, the classifier 
had less certainty for misclassified instances which is expected.  
Therefore, by querying for uncertain points, we gain 
information and decrease the uncertainty for that particular 
activity. 

Another interesting result that can be seen in Fig. 6 is that 
in each threshold, a different percentage of misclassification 
occurs for different activities. This can be used to balance 
number of queries for each activity. For instance, when the 
certainty threshold is set to 60%, a data point that is incorrectly 
predicted as walking is a good candidate to be annotated by the 
user for the true label. Specifically, this threshold is less than 

Fig. 4. Accuracy of the classifier tested for each sensor combination. 

 

Fig. 5. F1 score of activities obtained by the Extra Trees classifier for each 
sensor combination.  
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10% of the data points that were correctly classified as walking 
while the threshold for lying down is 40%. Therefore, by 
determining the percentage of misclassified instances and 
consequently calculating the threshold for each activity type, 
the model is able to decide whether to query for a label or not. 
For instance, to query for 80% of misclassified instances, we 
obtain a certainty threshold of 61% for walking and 42% for 
standing.  

Fig. 7 shows the results of our active learning model using 
the Uncertainty Sampling algorithm for each subject. It can be 
determined from this figure, particularly from the increase in 
accuracy using different thresholds, that the two subjects with 
the poorest classified activities in the baseline model had a 
considerable increase in accuracy after implementing the 
Active Learning model. Specifically, there was more than a 7% 
increase in accuracy of activity classification for Subject 9. This 
is due to the personalization of the model that is inherent in the 
Active Learning algorithm. Moreover, after assessing the 
accuracy of classifying each activity, depicted in Fig. 8, our 
model improved activities that were particularly harder to 
distinguish from other activities such as standing and sitting. 
This is true given that the number of training samples was 46% 
of the total number of samples available in the dataset. 

Another important result found from this analysis is that the 
number of queries issued for each subject was correlated with 
the amount of increase in accuracy that the active learning 

model achieved. For example, when the active uncertainty 
threshold was set to 60%, our algorithm issued only 21 queries 
for Subject 1, which had the most accurate predictions, while it 

issued 91 queries for Subject 9, which had the least accurate 
predictions in the baseline model.  

C. Query by Committee Results 
Fig. 8 also compares the mean and standard deviation of the 

F1 score achieved for each query strategy. To objectively 
compare the performance of different query strategies, we 
issued the same number of queries. As a result, the Query by 
Committee strategy issued 566 total queries, and the 
Uncertainty Sampling strategy with a threshold set to 64% 
issued the same number of queries. Moreover, a random query 
generator was used as baseline to compare the performance 
across these two methods. This random query generator was 
also designed such that it generated the same total number of 
queries. 

It can be seen that both strategies outperformed the random 
query strategy. More importantly, given the same number of 
queries, the Uncertainty Sampling strategy was slightly better 
than the Query by Committee strategy. The Uncertainty 
Sampling strategy is also more flexible for activity recognition 
problems as it can modify the query issuance rate by modifying 
the algorithm uncertainty threshold. As it can be seen in Fig. 9, 

 

Fig.  7.  Simulation results after performing Uncertainty Sampling. Accuracy, number of queries, and increase in accuracy for each subject is shown based on 
the uncertainty threshold.  

 
Fig. 8. Model certainty based on the number of visited samples for the 

different activities.  

Fig. 6. A comparison of the F1 score for each activity achieved by 
different Active Learning approaches. 
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using a 90% threshold in the Uncertainty Sampling strategy 
completely outperformed the other strategies, even after issuing 

queries for all samples. Table 3 provides the final accuracy that 
is achieved by our Active Learning model for each subject. 

By comparing results of Table 3 with Table 2, we can see 
that our approach improved the activity recognition accuracy 
across all subjects as a result of the personalization capabilities 
in our approach. Furthermore, our approach used far less number 
of samples for training, further making it ideal for real-world 
activity recognition problems. 

TABLE III.  F1 SCORE ACROSS SUBJECTS FOR THE ACTIVE LEARNING 
MODEL.  

Subject 
ID 

Active 
Learner 

Accuracy 

Subject 
ID 

Active 
Learner 

Accuracy 
1 0.989 7 0.954  

2 0.900 8 0.950  

3 0.954 9 0.900  

4 0.946 10 0.904  

5 0.962 11 0.908  

6 0.962 12 0.985  

 

VI. DISCUSSION 
In this study, we provided a novel approach for activity 

recognition problems through the use of smartwatch-based 
active learning methods. By including the most recent 
advancement of technology in our method, we were able to 
significantly increase the accuracy of activity recognition 
classifiers and provide personalized activity models for each 
individual.  Finally, we showed that recent advancements in 
smartwatches and their increase in popularity among the 
general public enables future applications to use them as an 
accurate and usable activity recognition tool.  

We demonstrated that using two software-based sensors, 
namely the rotation vector sensor and linear acceleration 
sensor, the performance of activity classifiers can be improved. 
We then approached the problem of ground truth creation by 
providing methods for labeling samples that is feasible and 
reduces user burden in real world activity recognition problems. 
Labeling samples is cumbersome, or in some cases, 

problematic, particularly during activity recognition 
applications that target elderly, disabled or pediatric 
populations. We showed that through the use of active learning 
machine learning models, we can utilize not only a smaller 
number of samples for dataset creation, but also create 
personalized models for each individual.  Furthermore, through 
the use of active learning algorithms, we were able to achieve 
an average accuracy of 92% using 46% less samples than 
supervised machine learning methods.  

Future work will focus on developing new stream-based 
active learning algorithms that can update the model quickly 
and on the fly. It is also desirable to have light algorithms that 
enable us to update the model on the smartwatch while reducing 
the amount of power consumption. Furthermore, noise and 
outlier detection algorithms for streams of data will be 
improved and applied to our smartwatch-based active learning 
algorithm. The query strategies described here will also be 
further developed so that they consider the number of queries 
made to reduce user burden and improve compliance with use 
of the system.  

VII. CONCLUSION 
In this study, we demonstrated that an active learning 

approach for activity recognition using sensor data collected 
from smartwatches is a viable option for future applications. 
Given the desirable personalized models that result from this 
method, this approach can be applicable to all types of 
populations that require activity monitoring. The high accuracy 
we achieved in this study given the small number of required 
training samples demonstrated that this approach is significantly 
better than previously studied supervised learning methods. 
Finally, we demonstrated that the use of software-based 
smartwatch sensors can improve the accuracy of activity 
recognition models and provide a desirable platform for future 
applications. 
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