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ABSTRACT
Recent advances in Automated Dietary Monitoring (ADM) with
wearables have shown promising results in eating detection in nat-
uralistic environments. However, determining what an individual is
consuming remains a significant challenge. In this paper, we present
results of a food type classification study based on a sub-centimeter
scale wireless intraoral sensor that continuously measures tem-
perature and jawbone movement. We explored the feasibility of
classifying nine different types of foods into five classes based on
their water-content and typical serving temperature in a controlled
environment (n=4). We demonstrated that the system can classify
foods into five classes with a weighted accuracy of 77.5% using
temperature-derived features only and with a weighted accuracy
of 85.0% using both temperature- and acceleration-derived features.
Despite the limitations of our study, these results are encouraging
and suggest that intraoral computing might be a viable direction
for ADM in the future.
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Figure 1: A sub-centimeter scale (7 mm x 5 mm) intraoral
sensor was placed on aU.S. Quarter for size comparison. The
device samples temperature and acceleration data at a rate
of 54 Hz.
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1 INTRODUCTION
Gold standard methods of dietary assessment are self-report-based
approaches such as food frequency questionnaires (FFQ), 24-hour
recalls, and food diaries [9, 12, 13, 20]. While these methods have
been used by nutritional scientists and medical professionals for
decades, they are fraught with biases, which increase the risk of
false characterization of dietary habits [10, 14, 20]. In addition, the
need for active input from people makes dietary monitoring highly
dependent on people’s own motivation and honesty for accurate
accounts of dietary habits[19]. As a result, Automated Dietary Mon-
itoring (ADM) continues to be an active area of research.

Over the past decade, the most promising ADM efforts have been
mostly centered on improving eating detection performance (i.e.
detecting eating or drinking) in naturalistic environment. Signifi-
cantly, recent approaches have become increasingly more practical
and usable in naturalistic environments [2, 3, 5, 21, 24]. However,
in spite of these encouraging developments, the ability to infer
additional, objective information about diet such as the type of food
individuals consume remains a challenge. This is one of the key
areas where ADM approaches lag significantly behind self-report-
based methods.

Researchers have explored numerous options to characterize
what individuals consume [8, 17, 22, 23]. Due to the richness in
information that imaging provides regarding food type, food type
classification based on the automated analysis of photographs has
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Figure 2: The intraoral temperature was measured from a subject for a day. During running activity (purple), the subject
breathed through themouth, which lead to a decrease in the intraoral temperature. Drinkingwater at room temperature (25 °C)
produced sharp downward spikes (blue). The consumption of hot pasta increased the intraoral temperature (red). Throughout
the day, the subject’s sporadic inhalation through the mouth lead to a brief decrease in the intraoral temperature (green).

been a popular approach [8, 17]. However, this approach often re-
quires active engagement from users as the photos of foods need
to be manually and individually taken. Additionally, identifying
foods and food groups with computer vision techniques has turned
out to become a very difficult task considering the large space of
food options and how they are prepared. An alternative to food
photos has been to try to identify food type with wearable-based
approaches using acoustic and inertial sensors [1, 15]. Since these
sensors are not in direct contact with the food, only indirect infor-
mation about foods, such as chewing sounds, is available for food
type classification.

The intraoral space holds unique advantage over the other ap-
proaches as sensors can come in contact with foods. Thus, many
efforts have been made to-date to put intraoral instrument inside
mouth. Li et al. attached accelerometers onto the teeth of eight par-
ticipants using dental cement and used the accelerometer data to
infer dietary activities [11]. While the feasibility of eating detection
was well-demonstrated in this study, the food type classification
was not explored, and the lack of wireless communication necessi-
tated the participants to have wires attached to the intraoral sensors.
Tseng et al. presented a 2mm-by-2mm passive dieletric sensors with
porous layers for intraoral sensing [22]. The sensor’s resonant fre-
quency is modified as the porous layers absorb surrounding solvent,
and this change is monitored by an external system. While the di-
electric passive sensor is small in size and battery-free, the sensor
requires a dedicated transmitter that generates a wave in specific
frequency range.

In this paper, we present an intraoral device designed for ADM
that canmeasure intraoral temperature and acceleration. The device
is small (5 mm by 7 mm), Bluetooth-enabled, battery-powered,
and waterproof. It is designed to be placed on the inner side of
two central incisors on the lower jaw, and continuously measure
intraoral temperature and motion of the jawbone. Moreover, it can
transmit the data to an Android device via Bluetooth Low Energy
(BLE). Due to its intraoral placement, the wearable has a unique
advantage over other systems designed for this purpose, as the

sensors can come in contact with foods, thereby enabling direct
measurement of diet-related information.

2 INTRAORAL TEMPERATURE SENSING
While intraoral temperature is influenced by breathing patterns,
talking and smoking, the intake of food and fluid is associated
with quicker changes of intraoral temperature than other factors
[16]. Throughout a 24-hour period, the mean intraoral temperature
fluctuates between 33.9°C and 35.9°C [4]. However, when food is
ingested, the intraoral temperature can quickly deviate from this
range depending on the temperature of the ingested food (See
Figure 2) [16]. With this observation, we hypothesized that the
sharp change in intraoral temperature could be leveraged to detect
dietary intake events and provide further insight into consumed
diet such as the volume of fluid ingested or the temperature of
foods.

3 SYSTEM DESIGN
For intraoral sensing, the sensing device has to be small enough to
be placed inside the mouth. In addition, a robust sensing system
that can withstand high level of humidity and mechanical stress
inside the oral cavity is a prerequisite. To this end, a sub-centimeter
scale, wireless and low-powered sensing device was developed (See
Figure 1).

3.1 Hardware Design
The overall system is comprised of a microcontroller (MCU), an
accelerometer sensor and a battery. A wireless MCU (nRF52811,
Nordic Semiconductor) was used to enable wireless communication
via BLE, and the MCU’s internal temperature sensor was used for
temperature sensing. The 3-axis accelerometer (MC3635, mCube)
sampled data at 54Hz and a non-toxic, non-inflammable coin cell
battery (XR7734, ZPower) was used [25]. Due to signal attenuation
by living tissue [7], transmission power was set to the maximum
level supported by the MCU, +4 dBm.
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Figure 3: The list of foods consumed during the food intake data collection is shown along with their served temperature
and approximate water-content level. The temperatures of the foods were measured directly before consumption and the
water-content for each food was referenced from the study by Popkin et al.. [18]

3.2 Moldable Mouthpiece
The sensor was embedded into a personalized and moldable mouth-
piece. Prior to the study, the participants’ lower incisor teeth were
molded using thermoplastic, a material that softens when heated
and stiffens when cooled. Then, the intraoral sensor was inserted
on the inner surface of the mold, facing the intraoral cavity (See
Figure 1). Next, the sensor was sealed by applying an additional,
thin layer of thermoplastic over the intraoral sensor. To ensure that
the intraoral sensor does not detach from the teeth during the study,
the plastic mold was secured to the teeth with dental floss.

4 DATA COLLECTION
As part of this work, we conducted controlled and field studies.
In the controlled experiment, five data sets containing intraoral
temperature and jawbone acceleration were collected from four
participants (3 males and 1 female) aged between 19 and 31 years
old (26.5 ± 5.4). A total of 9 types of foods shown in Figure 3 were
consumed by each participant. The foods were chosen because
they are frequently consumed in human daily lives and represent
wide variety of serving temperature and texture. The foods were
classified into five categories. Class I represents dry foods (water-
content < 50%) that are typically consumed at room temperature.
Class II represents dry foods that are consumed at hotter tempera-
ture. Class III includes foods that are moist (water-content > 50%)
and served at hotter temperature. And Class IV represents foods
that are moist and served cold. Lastly, Class V contains cold foods
that require minimal chewing such as yogurt.

Before each food was consumed, its temperature was measured
using an infrared thermometer. Figure 3 shows the temperatures of

Table 1: Average Food Intake Durations

Food Duration (s) Food Duration (s)
Banana 139.9 ±28.9 Nuts 150.4 ±50.1
Chips 149.0 ±39.3 Pizza 194.6 ±51.7

French Fries 157.0 ±42.3 Pork Steak 268.6 ±96.8
Fruits 177.9 ±76.4 Sandwich 211.3 ±32.0
Noodle 243.4 ±90.8 Yogurt 119.8 ±53.5

the foods and their approximate water-content. The water-content
of each food was referenced from the study by Popkin et al. [18].
The average duration of food intake activity from all subjects was
28 minutes and 49 seconds. The food intake duration for each type
of food is shown in Table 1.

In the in-the-wild study, intraoral temperature and acceleration
data was collected for 9.5 hours from one participant. During this
time period, normal daily activities were performed, and the data
was manually labeled on an smartphone as the data was collected.
The participant reported two eating events (eating bread and pasta).
Non-eating activities included talking, reading out loud, running,
walking, sitting, lying on a bed, watching a video, washing dishes
and typing on a computer.

5 DATA ANALYSIS
5.1 Food Type Classification
The data obtained in the controlled study was used to create a
food type classification algorithm. To reiterate, a total of five data
sets were collected from four individuals. Each data set represents
consumption of 9 types of foods shown in Figure 3. From each food
consumption data, a set of features listed in Table 2 was extracted.
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Figure 4: With only acceleration-derived features, the five classes of foods were classified with a weighted average accuracy
of 55.0%. The acceleration features are shown to be effective at differentiating Class V (e.g. yogurt) from the rest of the classes.
When only temperature-derived features were used, the classification accuracy improved significantly. However, with temper-
ature only, fruits and yogurt are confounded as they are typically consumed at similar temperature. When both acceleration-
and temperature-derived features were used, the best weighted average accuracy of 85.0% was obtained.

Table 2: Summary of Features for Food Type Classification

Feature Description Feature Description
1 variance 13 sum of FFT for 0.5 Hz <f <2 Hz
2 maximum 14 signal power
3 minimum 15 max temp. slope
4 mean 16 mean temp. slope
5 max. - min. 17 min temp. slope
6 root mean square 18 variance
7 sum of FFT for 1 Hz <f <5 Hz 19 minimum
8 max of FFT for 1 Hz <f <5 Hz 20 maximum
9 sum of FFT for 5 Hz <f <15 Hz 21 mean
10 max of FFT for 5 Hz <f <15 Hz 22 max. - mean
11 sum of FFT for 15 Hz <f 23 max. - min.
12 max of FFT for 15 Hz <f 24 begin temp. / (max. - min. temp)

The temperature-derived features are shaded, and the acceleration-
derived features are unshaded in Table 2. A Random Forest (RF)
classifier was trained with the data; its accuracy was evaluated with
leave-one-fold-out (LOFO) cross validation.

5.2 Eating Detection
To examine the feasibility of eating detection with the intraoral
sensor, we collected an additional 3rd data set representing non-
eating activities such as running, walking, talking, sitting still and
washing dishes. With this non-eating dataset and the controlled
data set, a RF classifier was trained. The three-phase signal pro-
cessing pipeline proposed by Chun et al. was applied for eating
detection [6]. In this pipeline, a sliding window of 4-second with
50% overlap was used to generate frames. From each frame, features
were extracted to train the RF classifier, and the trained classifier
was applied to the free-living data set for testing. The predictions
for each frame represent chewing activity. The predictions were
subsequently clustered to infer eating events.

6 RESULTS AND DISCUSSION
With LOFO cross validation, 9 types of foods were classified with
weighted average accuracy of 77.5% when the features derived from
the intraoral temperature were used (See Figure 4). When only ac-
celeration features were used, the weighted average accuracy was
55.0%. However, with both acceleration and temperature-derived
features, the weighted average accuracy increased to 85.0%. With
only acceleration features, the classifier was only effective at dis-
tinguishing Class V (e.g. yogurt) from the rest. This is because
Class V foods require minimal chewing while the other classes
require significantly more mastication. The acceleration features
were not effective at distinguishing foods from Class I through
Class IV. On the other hand, the temperature-only features were
effective at differentiating the five classes. Class IV (e.g. fruits) and
Class V (e.g. yogurt) were confused because they were typically
consumed at similar temperatures. However, when both acceler-
ation and temperature features were used, Class IV and Class V
could be differentiated. For eating detection, we collected a free-
living data set for 9.5 hours in a naturalistic environment from one
participant. In this data set, two eating activities were present. With
a RF classifier, the eating activities were detected with precision of
93% and recall of 96%.

7 CONCLUSION
In this work, we explored the feasibility of using a novel sensor for
intraoral food type classification and eating detection. Through a
study with 5 participants, we demonstrated that 9 types of foods
can be classified into 5 categories with 85.0% weighted accuracy.
Eating activities were detected with 93% precision and 96% recall.
Despite limitations in terms of the number of study participants
and food types, we believe our results are encouraging, and suggest
that additional intraoral sensing research is warranted towards
developing new and alternative avenues for ADM methods.
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