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ABSTRACT
Audio has been increasingly adopted as a sensing modality in a
variety of human-centered mobile applications and in smart assis-
tants in the home. Although acoustic features can capture complex
semantic information about human activities and context, continu-
ous audio recording often poses significant privacy concerns. An
intuitive way to reduce privacy concerns is to degrade audio quality
such that speech and other relevant acoustic markers become un-
intelligible, but this often comes at the cost of activity recognition
performance. In this paper, we employ a mixed-methods approach
to characterize this balance. We first conduct an online survey with
266 participants to capture their perception of privacy qualitatively
and quantitatively with degraded audio. Given our findings that
privacy concerns can be significantly reduced at high levels of audio
degradation, we then investigate how intentional degradation of
audio frames can affect the recognition results of the target classes
while maintaining effective privacy mitigation. Our results indicate
that degradation of audio frames can leave minimal effects for audio
recognition using frame-level features. Furthermore, degradation
of audio frames can hurt the performance to some extend for audio
recognition using segment-level features, though the usage of such
features may still yield superior recognition performance. Given
the different requirements on privacy mitigation and recognition
performance for different sensing purposes, such trade-offs need to
be balanced in actual implementations.

CCS CONCEPTS
• Security and privacy → Domain-specific security and pri-
vacy architectures; Privacy protections; • Human-centered
computing → Empirical studies in ubiquitous and mobile
computing.
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1 INTRODUCTION
With development of personal audio sensors such as smart phones
and wearable computers, audio-based sensing and recognition have
been shown to be of value for a wide range of applications, such as
health monitoring and personal assistance. Compared to traditional
inertial features, audio provides rich contextual information about
users and the environments. Consequently, audio has been explored
over the last decade in a variety of human-centered recognition
efforts. For instance, Eronen et al. [10] proposed a pilot study to
detect background environment (context) based on sound with sta-
tistical learning methods. Lu et al. [25] developed a mobile system
to classify human activities at different levels by using audio data
collected from users. Sounds can also be used to infer affect and
physiological markers. For example, Nasir at el. [26] used sound
recordings from couple therapy to analyze emotion in conversa-
tions.

Most current studies of acoustic sensing and recognition are re-
alized with mobile or wearable sensors. In the context of real-world
activity recognition, for example, the sensing devices may not be
able to anticipate the duration of the target activities. Hence, to en-
able reliable detection of sound events in real time, sensing devices
must be capturing and recording audio data continuously, which
raises privacy concerns [16]. Also, by capturing speech, sound
is pervasive and typically mixed with information from multiple
sources, making it difficult for users to know what information
has been captured in their recordings. Consequently, the privacy
concerns due to unexpected capture by the usage of personal sound
sensors largely make the public alert to the generalization of such
technology in their daily life.

To reduce privacy concerns in personal sound-based applications,
many prior works have been developed. For example, audio can
be distorted [3], segmented [39] or partially obfuscated [22]. Given
the computational limits, Kumar et al. [19] explored a simple audio
frame degradation method by random frame dropping. It can be a
generalizable and preferable choice for real-world sensing platforms.
It would therefore be interesting to study whether and how the
leverage of intentional audio degradation can help the mitigation of
people’s privacy concerns in real sensing settings. Recently studied
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by Perez et al. [31], human perception of privacy is subjective in real-
world scenarios and can change with the contexts being recorded
and amount of information that people perceive from the sounds.
Hence, it would also be insightful to incorporate the actual acoustic
contexts when evaluating the effectiveness of the proposed privacy
protection methods.

In this paper, we first qualitatively and quantitatively study how
people’s privacy concerns due to the exposure to personal acoustic
sensing devices can be mitigated with intentional audio degrada-
tion based on a user study with 266 participants and 4 sensing
scenarios. Our findings suggest that the perception of privacy can
be significantly reduced with high levels of audio degradation. We
then conduct generalization analysis to determine how intentional
degradation of audio frames can affect audio-based activity and
context recognition performance while achieving the promising
privacy mitigating effects. By leveraging real-world and online
sound data with common frame-based and segment-based audio
features, we determine that frame-level audio degradation methods
can be effective for the mitigation of people’s privacy concerns
while leaving minimal effects on activity and context recognition
based on audio frame features. Furthermore, we show that it is
still possible to achieve promising performance for the recognition
of segment-based spectrogram features after degradation of audio
frames, but the performance can drop depending on the degrada-
tion and classification choices. The trade-offs of such choices need
to be balanced in actual implementations.

2 RELATEDWORK
2.1 Audio-Based Activity and Context

Recognition
Sounds can be used to capture syntactic features of real-world
human activities, and therefore are widely used for human activity
recognition. Prior research has shown such feasibility on different
sensing platforms and with different application domains. Early
work by Eronen et al. [10] proposed the usage of real-world sound to
recognize common contexts. To advance elderly care, Chen et al. [4]
provided an audio-based solution for the detection of 6 bathroom-
related activities. In recent years, sound-based activity recognition
has been studied in a more human-centered setting. For example,
Yatani and Truong [40] developed the BodyScope system that could
be used to detect 12 human activities related to throat movement.
Thomaz at al. [36] proposed the inference of eating moments based
on statistical sound features from a wrist-mounted sensor. Lu et al.
[25] and Rossi et al. [34] studied the recognition of various human
activity classes using statistical classifiers on mobile platforms.
With deep learning, Lane et al. [20] developed the DeepEar as a
pilot mobile application using deep learning for multi-task sound-
based detection. Becker et al. [2] developed the GestEar for gesture
recognition with neural nets on a smartwatch. Laput et al. [21]
proposed a plug-and-play activity recognition system leveraging
sound features from multiple online data sets. Similarly, Liang and
Thomaz [23] explored the usage of large-scale acoustic embedding
features from public YouTube video sound clips to empower activity
recognition in the wild.

2.2 Privacy Concerns in Personal Sound
Sensing

Sound signals are pervasive in the environment, usually consisting
of compound information from various sound sources. In unob-
trusive sensing, the subjects are typically unaware of the sensing
process. Such factors lead to unexpected exposure of the users
to the audio recordings while leveraging sound-based sensing ap-
plications. As presented by several prior work [6, 16, 17, 29], the
unique mapping between sound and certain human activities or lo-
cations can increase the risks of revealing user’s private information.
Especially studied by Klasnja et al. [16], people are significantly
more concerned about continuous sound sensing in their daily life
comparing to some other types of sensing modalities for activity
recognition such as inertial features or GPS signals. Perez at al. [31]
further quantified how people’s privacy concerns towards sound
recordings can be affected by the actual recorded contexts.

As a natural way of how people interact with each other and
with the environment, speech has always been considered to con-
tain user’s personal information [17, 29]. As pointed out by Raij et
al. [33], the public tends to be more worried about the privacy risks
regarding their conversations captured by wearable and mobile
sensors than other types of behavioral measurement. Diao et al. [8]
discussed the threats from acoustic sensors such as voice assistants.
Ammari et al. [1] investigated the types and cause of people’s pri-
vacy concerns with smart voice assistants. The concerns can be
raised especially when users are not aware of the recording process
and have no access to the data being shared. Correspondingly, many
efforts have addressed privacy protection regarding human speech
in sound sensing.

2.3 Privacy Protection for User Audio
One common way of speech projection is to detect human conversa-
tions in the recorded audio and filter out the intelligible information.
Wyatt et al. [39] proposed the idea of using clustering methods and
pairwise distribution of the speakers to detect human speech in
audio. However, this largely restrict the types of features avail-
able for sound event recognition. Alternatively, Liaqat et al. [24]
proposed the usage of Linear Predictive Coding (LPC) coefficients
to detect human speech that could be filtered out later. Chen et
al. [3] also showed that speech intelligibility can be significantly
reduced if vowels of the speakers are altered. This is useful in cases
where a set of human vocalics can be accessible. With the develop-
ment of deep learning approaches, Vatanparvar et al. [38] used a
Generative Adversarial Network (GAN) architecture to generate
artificial speech and replaced the original data. A more recent study
by Nelus et al. [28] added stochastic feature representation for a
neural network-based feature extractor to alleviate speaker identifi-
cation. While these methods are effective for the mitigation of user
privacy risks, they also lead to considerable computing burdens
with extra processes of model training and feature transformation.

In addition, prior work [22, 41] explored the simplification of
audio spectrogram for privacy protection. Yet this is limited to
specific types of acoustic features and still requires extra compu-
tation efforts that can be obstacle on personal sensing devices. As
an improvement, Kumar et al. [19] blurred the sensed audio simply
by degrading the audio frames. This is promising for light-weight
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Figure 1: Visualization of the replacement-sampling process
with sample frames. (Step 1: The raw audio is copied; Step 2:
Target frames to be replaced are selected in the copied audio
clip; Step 3: Each target frame is replaced with a frame ran-
domly selected from its corresponding neighbouring pool in
the raw clip; Step 4: The raw audio clip is deleted.)

smart phone or wearable sensing. To the best of our knowledge,
however, very few prior works attempted to study the change of
people’s privacy concerns in audio-based recognition tasks with the
actual implementation of such audio degradation methods. Further-
more, it would be insightful to characterize the balance between
effective privacy protection and the cost of performance in audio
recognition.

3 EVALUATION OF PRIVACY CONCERNS
WITH AUDIO DEGRADATION

Audio signals are widely used for human-centered recognition
tasks. Audio sensors integrated in personal wearable and mobile
devices can not only catch the target context and activity sounds,
but also speech information of the users and bystanders. Prior work
[8, 33] already showed the corresponding privacy risks and people’s
concerns towards the unexpected capture of their intelligible speech
information. Hence, in this section we quantify how such concerns
can be mitigated with intentional audio degradation.

3.1 Audio Degradation
To degrade the recorded audio, the prior work by Kumar et al.
[19] proposed frame dropping (down-sampling) and order shuffling
methods. Conversely, the frames can also be randomly up-sampled.
We also explored an alternative replacement-sampling strategy to
keep the temporal size of the sound clips consistent for all test cases.
The basic idea is to randomly replace some of the original sound
frames with their nearby frames in the audio. All these methods
follow the same principle that speech can be degraded without
affecting much the recognition of the target sounds as long as we
disrupt the global audio sequence while maintaining the acoustic
patterns within a frame unmodified.

Figure 1 shows the general process of audio degradation with
replacement-sampling. Given the original audio clip, a proportion
δ of target frames to be processed are randomly selected out of the
sound sequence without replacement. For each of them, a neigh-
bouring frame within a pool range of K is randomly selected and

used to replace the corresponding target frame. The process re-
peats until all target frames are replaced. To avoid the effects of
accumulation during frame replacement, the neighbouring frames
are selected from the original audio clip and the replacing process
is implemented on a copied version of the clip. We controlled the
audio degradation levels by varying the values of δ .

3.2 Online Survey
We then conducted a survey on the AmazonMechanical Turk online
platform to evaluate people’s privacy concerns with the degraded
audio. The general idea of the study is to present the participants
with speech corpus together with simulated sensing scenarios. The
corpus may or may not be degraded and people’s privacy concerns
were studied by recording their attitudes of being captured in a
similar way as presented. As described by Dimiccoli et al. [9] and
Perez et al. [31], human’s sense of privacy can change with different
contextual cues. Hence, in the study we incorporated such factors
by applying 4 simulated sensing scenarios (two outdoor cases and
two indoor cases): 1) couple conversation in the home; 2) family
dinner; 3) phone chat at a public space; 4) interaction with friends at
a party. They also roughlymatch the common types of interpersonal
relationships (family members, friends, acquaintances) as described
by Granovetter et al. [13] with common backgrounds in daily living
(private and public space). The complete scenarios were given as
follows:

• You are at a park and having a phone conversation with a
friend. Someone else nearby is wearing a device (e.g., a smart
watch) that is continuously capturing ambient sounds, which
includes your phone conversation.

• You are in a restaurant at a party and chatting with others.
Someone else nearby is wearing a device (e.g., a smart watch)
that is continuously capturing ambient sounds, which include
your conversation.

• You are at home and talking to your husband/wife. A device
placed in a fixed location in your home is continuously record-
ing audio of the environment, including your conversations.

• You are at home and having dinner with your family. A device
placed in a fixed location in the dining room is continuously
recording audio of the environment, including your conversa-
tion.

For each of the scenarios, we prepared featured conversation
clips varying from 15-18 seconds (around 35 to 45 words) in length.
The dinner corpus consists of simple conversations between two
family members on the food. The party and the couple corpus
consist of chat between a couple about an appointment and two
friends on a party respectively. The phone corpus was a short
monologue by a male calling for an absence of his daughter. All
corpora were generated with a normal speed by voluntary native
English speakers. To simulate the actual sensing environment, the
volunteers were also asked to perform the speech as if they were in
the context and for the party corpus, in particular, the sound was
recorded in an actual restaurant with background noise. A pilot lab
study was conducted to ensured that the audio recordings could be
perceived clearly and correctly by human listeners.
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Figure 2: Division of participants for the Amazon Mechan-
ical Turk online survey. The subjects are randomly divided
into 4 sensing scenarios with 4 audio degradation levels (in-
cluding the control group). At least 30 survey requests were
sent for each sub-group and participants of the same sub-
group were presented with the same scenario and corpus.

All the above frame re-sampling methods are effective to degrade
the audio, but we applied only the replacement-sampling strategy
so that the size of corpora can be consistent across the tested cases.
We determined three levels of audio degradation: low (δ=30%),
high (δ=70%) and full (δ=70% with frame order randomization).
The neighboring range K was selected as 50 each side. During
processing, the audio was sampled at 16kHz mono and framed for
every 60 ms without overlaps. We chose the degradation values
since the audio was only slightly degraded when δ=30%. When
δ=70%, the speech was significantly degraded and the intelligible
information could not be recognized by human listeners in most
cases. The intelligible information no longer remained when frame
order randomization was applied. There was also a control group
in each sensing scenario where the audio was simply left as it was.
Hence, there were 16 speech corpora in total.

Figure 2 shows the overall process of the survey. Each sensing
scenario was divided into 4 sub-groups with at least 30 survey
requests sent each. Before the survey started, background infor-
mation was presented with the overall goal and process of the
survey. The participants were encouraged to use their headphone
while performing the study. Since participants of different age and
technological backgrounds may have different sense of privacy
towards new technologies, the study began with general questions
of the participants’ age and a statement " I consider myself to be a
technology-savvy person". The subjects could respond to the state-
ment based on 5-point Likert-scale with options: Strongly agree,
Agree,Neither agree nor disagree,Disagree and Strongly disagree. The
participants were then presented with one of the sensing scenarios
and one of the speech corpus. Participants of the same sub-group
were presented with the same scenario and corpus. Furthermore,
they were not told if the corpus had been degraded.

The study was then conducted in two phases. The first part
aimed to confirm that the degradation did alleviate the intelligi-
ble information from the participants’ perspectives. We asked the
participants to transcribe the speech corpus in a text box. They
were encouraged to guess if they failed to recognize any of the
words. Besides, they were allowed to replay the audio as many

times as needed. It was also followed by a 5-point Likert-scale re-
garding the statement:"How confident are you that your transcription
is accurate?". The available options were: Very confident, Confident,
Neither confident nor unconfident, Not confident and Not confident at
all. The word error rates (WER) of the transcripts were calculated
to quantify the information accurately captured by the listeners.
We leveraged the Python Jiwer package [37] based on the Wagner-
Fischer algorithm [27] with removal of some abbreviations and
punctuation in the sentences.

In the second part of the survey, we then asked the participants
to consider the statement: "I would not mind being captured in an
audio recording like this." They could response with a 5-point Likert-
scale of options: Strongly agree, Agree, Neither agree nor disagree,
Disagree and Strongly disagree. To further obtain insight of their
selections, we also added a text box for text input and asked the par-
ticipants to briefly explain their selections. The goal of the designed
questions is to determine if audio degradation can be effective to
mitigate people’s privacy concerns if they are captured in personal
sound sensing, and if so, how such mitigation of concerns can be
quantified. We hypothesized that the intentional degradation
of audio canmitigate people’s concerns of being captured by
personal sound sensing in the given sensing scenarios. We
studied the results by comparing the proportion of people choosing
Strongly disagree and Disagree with a two-proportion z-test.

Participants were from the global pool of the Mechanical Turk
system and we did not require specific skills for the study subjects.
However, we required that all participants must be MTurk masters
to ensure the quality of the response. The time limit was set as
10 minutes for each survey. After the study, the participants were
compensated with a range of 0.25-0.5 US dollars. The study was
also approved by an IRB protocol before implemented.

3.3 Results and Findings
The survey lasted for around 3 weeks. Before quantifying the re-
sponses, we noticed that there were high proportion of outliers in
some of the groups. As discussed by Crump et al. [7], the outliers
are expected on the MTurk platform since very little environmental
control can be applied to the survey participants. The number of
outliers can depend on several potential factors include difficulties
and duration of the tasks, compensations and specific requirements
of the devices needed. In our study, two types of outliers were
observed. One was repetition of workers in the same sub-group
such as responses with the same worker IDs or text inputs of un-
reasonable repetitions. The other was entirely irrelevant responses
regarding the contexts such as an input of "I like the speech" as the
explanation of choosing a privacy level. Hence, a filtering process
was conducted by two researchers of the paper to independently
determine the potential outliers. The response would be discarded if
there was agreement between the two decisions. After the filtering
process, we were able to obtain 266 valid responses in total.

Among the survey participants, we found that the top-two age
groups were 20-30 and 30-40 with the proportion of 44.2% and 22.1%
respectively. Besides, 82.3% of the participants chose Strongly agree
or Agree regarding the statement that they were technology-savvy.
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Degradation WER Confidence

None 34% 93%
δ=30% 52% 54%
δ=70% 93% 27%
δ=70% + Randomization 96% 21%

Table 1: Mean word error rates (WER) and proportion of
participants feelingVery confident /Confident regarding the
statement:"How confident are you that your transcription is
accurate?". The speech corpora become almost unintelligi-
ble when the audio frames are highly degraded. (Lab test
WER: 6%, confidence level: 100%)

We started by quantifying people’s perception of the intelligible
speech information with and without the audio degradation. Be-
fore calculating the WER, the transcripts were re-organized with
consistent format to avoid input error. Table 1 presents how the
averaged WER of the transcripts for the four sensing scenarios
and participants’ confidence levels of their transcription change
with the audio quality. We noticed that the WER for some of the
participants could be high even when no degradation was applied
mainly due to typos and abbreviations, and we kept the original
versions for the fidelity of the responses. As expected, there is a
clear negative relationship between the reliability of the transcripts
and levels of audio degradation. When the audio was severally de-
graded (δ ≥ 70%), the WER already reached to over 90%, meaning
that the speech was almost unintelligible in such cases. Besides, we
noticed that it was confusing for some of the participants to report
their confidence levels if they had already failed to respond to the
transcription section, so we counted the confidence levels only over
the population whose WER of the transcript was less than 95%, i.e.,
at least correctness of around 3 words. In table 1, the ratio between
participants in each degradation group reporting Very confident /
Confident and the whole population of that group was reported.
Unlike the rise of the WER, people became less confident towards
their transcription at higher levels of audio degradation. The audio
with over 70% degradation was already unintelligible. By combining
both the WER and confidence results, we can see that degradation
of the audio frames at a strong level effectively removes the
intelligibility of speech information for the given sensing
scenarios.

We then studied how participants’ privacy concerns of being
captured in the audio could change with the audio degradation.
Figure 3 shows the proportion of each choice regarding the state-
ment "I would not mind being captured in an audio recording like
this.". As we can see from figure 3, participants tended to feel less
worried about being captured in the sensing scenarios when the au-
dio was strongly degraded (δ ≥ 70%). By using the two-proportion
z-test, we determined that the proportion of participants choosing
Strongly disagree and Disagree significantly dropped (p<0.05) from
the mild degradation groups (no degradation or δ = 30%) to strong
degradation groups (δ = 70% or with frame shuffling). The effect
size between the control groups and groups of δ = 70%, (δ = 70%
+ randomization) is 0.32 and 0.43 respectively. The responses are
further quantified for each sensing scenario in table 2. We grouped

Figure 3: Distribution of survey responses to the statement
"I do not mind being captured by audio like this" with four
sound quality levels. There is significant drop (p<0.05) of
people’s privacy concerns of being captured by the sensed
audio when comparing the degraded groups of δ = 70% or
full degradation with the control groups. (SD: Strongly dis-
agree, D: Disagree, N: Neither agree nor disagree, A: Agree,
SA: Strongly agree)

Scenarios δ ≤ 30% δ ≥ 70%

Couple 68.6% 50.0% (27.1% ↓)
Dinner 60.0% 43.3% (27.8% ↓)
Party 72.7% 38.7% (46.8% ↓)
Phone 65.8% 50.0% (24.0% ↓)

Table 2: Proportion of participants choosing Strongly dis-
agree and Disagree regarding the statement "I do not mind
being captured by audio like this" for the four sensing sce-
narios. The privacy concerns drop in all test cases when the
audio is strongly degraded.

the degradation levels as mild (δ ≤ 30%) and strong (δ ≥ 70%), and
we compared the results for the sensing scenarios individually. As
we can see from table 2, the participants’ concern levels drop by
an amount varying from 27% to 47% in the tested scenarios after
the audio was disrupted. Hence, we concluded that intentional
degradation of the audio frames at a strong level is effective
for the mitigation of people’s privacy concerns in the given
sensing scenarios. We then investigated the reasons why people
would feel less concerned in such cases by checking the text re-
sponses. As pointed by a participant, the fact that the audio was
no longer intelligible generally eased their concerns: "No one can
understand it, so what I said on it wouldn’t matter." Similar explana-
tions can be seen from other participants: "It was all broken up and
you couldn’t tell what anyone was saying."; "It’s scrambled in a way
that makes speech inaudible."

Nevertheless, some people still worried about being recorded
without permission even at high levels of audio degradation:"I don’t
really want to be eavesdropped on, even if it is garbled."; "Despite this
audio being completely masked so nothing’s really understandable,
it’s uncomfortable to have someone that I have no relation to recording
everything I do around them. It makes me nervous about what that
person might use the recordings for an if there’s some way to unmask
them.".
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As expected, high proportion (63.5%) of the participants felt
concerned about being captured by sound sensing when no audio
degradation was implemented at all. We did not see significant
difference among the sensing scenarios of the control groups. By
checking the responses of the participants, many of them explained
their concerns: "The conversation is private and I don’t want devices
to record this kind of conversation. The information is slightly sensi-
tive and I would mind if it gets recorded."; "I would not like to have
my private conversations recorded." In addition, we noticed that the
speech contents could also play an important role when people
judged privacy. For example, a participant who did not mind being
captured in the original audio of couple conversation mentioned:
"I think that this is a normal conversation between a husband and a
wife and I normally face it.". Another participant choosing Agree in
the groups of no degradation also stated: "There is no sensitive infor-
mation in this recording, so I am not concerned by this type of audio
recording." In other words, people’s perception of privacy towards
general sound sensing could partially depend on the intelligible
information being captured. Some people can feel less concerned
if they can determine that there is no sensitive information in the
sensed sounds.

We did not find statistical difference between the degraded groups
of δ = 30% and the control groups. In fact, the proportion of the
negative responses was even slightly higher when the audio was
degraded at a low level. A possible reason is that people were not
able to fully capture the details of the conversations as in the con-
trol groups and they could not determine if the recorded sounds
contained sensitive information that was not perceived directly,
especially in their opinions that the intelligible information might
still be recognizable. For example, some of the participants pointed
out: "It’s not totally intelligible but enough context comes through
to raise suspicions among people who like to be suspicious."; Even
though it’s hard to discern exactly what’s being said, I can make out a
fair bit of the conversation, and I wouldn’t want others to have access
to private conversations like this. It also depends on who would be
accessing the recording and how it would be used. I would feel less
worried about it if it were totally anonymized and if the voices were
altered." Another possible factor was that speech slightly scram-
bled in such ways may distort people’s perception of the speech
context. For example, some participants misjudged the scenario of
family dinner as couple argument: "It sounded like an argument and
I don’t want it captured."; "It’s argumentative and puts both people,
particularly the man, in a bad light.".

4 MORE DISCUSSIONS ON AUDIO
DEGRADATION APPROACHES

Audio degradation by re-sampling the audio frames is useful for
real-world sensing due to its simplicity in computation and its
generalization capabilities. As discussed in Section 3, audio frame
degradation is valid for speech protection since the sequential in-
formation of speech can be disrupted without affecting much the
acoustic patterns of the target sound frames. When the recognition
is based on independent instances/frames, the recognition perfor-
mance can be maintained because the acoustic features within
frames remain unmodified. When implemented with temporal fea-
tures (e.g. spectrogram or texture window of frames), however, the

sound recognition performance may be affected depending on the
consistency of the frames within a sound segment. We will discuss
such effects in Section 6.

In the audio recognition tests, we will study different types of
frame-level audio degradation methods. The basic approaches pro-
posed by Kumar et al. [19] are frame order randomization and
down-sampling. While randomization can entirely remove the in-
telligible information in the audio, it can also be susceptible to the
brute-force attacks. In addition, the global sequential characteristics
of the audio are broken so that it is not feasible for sequence-based
audio recognition frameworks. Audio down-sampling generally
helps to alleviate the problems of the brute-force attacks. However,
it may bring the cost of recognition performance, especially at high
degradation levels. As an inverse process, up-sampling the frames
by random cloning and insertion can avoid the information loss in
audio degradation.

As a potential alternative, the frame replacement-sampling strat-
egy applied in the Mechanical Turk study has the advantage of
keeping the temporal size of the audio. It is actually a mixture of
both audio down-sampling and up-sampling. Rather than simply
dropping the frames, the frames replaced can still appear again if
selected by the replacement processes of their neighboring frames.
This is the reason why we need the replacement to be implemented
on a copied audio clip. Figure 4 shows a sample case where the tar-
get frames to be replaced are within the candidate pool for selection
of their neighbor, and hence are possible to re-appear again. With
the increase of the degradation levels, there will be higher chances
that such neighboring pools can overlap with each other and all
frames, including the frames replaced, may even be up-sampled
for multiple times. As a result, the loss of frames can slow down at
higher degradation levels. Since all such methods are feasible for au-
dio degradation, we will compare them together in the recognition
analysis.

time

time Copied

Raw

Figure 4: Sample case where the target frames are in the
neighbouring pools of each other. In such cases, a replaced
(dropped) frame in the copied audio clipmay still be selected
from the raw clip and be used to replace its neighbour, and
hence up-sampled.

5 RECOGNITION PERFORMANCE ON SINGLE
AUDIO FRAMES

5.1 Test with field audio
The effect on recognition performance is first examined based on
single audio frames of human activity recordings. We recruited 14
participants to collect the real-world activity sounds. Our data con-
sists of 15 activities of daily living (Bathing/Showering, Squeezing
Juice, Boiling Water, Brushing Teeth, Chatting, Chopping Food, Flush-
ing Toilet, Frying Food, Using Microwave Oven, Listening to Music,
Shaving, Outdoor Strolling, Watching TV, Floor Cleaning, Hands/Face
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Washing) with varying duration of 165 seconds to 2,175 seconds.
The total size of the recordings is around 3.4 hours excluding the
transitions of activities.

To collect the audio, the participants were asked to continuously
perform the activities and the sound was recorded using a smart
phone (Huawei P9) placed nearby. The collection was conducted in
the participants’ actual home environments, and the participants
followed a pre-defined scripted instruction while performing the
target activities. Sample instruction included "first head to the bath-
room, wash your hands and face" or "after juice is prepared, please
warm some food using the microwave oven". The subjects then simply
followed the instruction and an experimenter (one of the authors
of the paper) would follow at a distance for notes. The proposed
setting aimed to help the participants to perform the activities in
their natural ways so that the recordings could reflect the actual
living patterns better.

Each target activity was only performed once per subject with
no timing limits. For class ’watching TV’, participants were asked
to watch 5 different channels for about 30 seconds each to increase
the variation of the data. For activity ’listening to music’ , the
subjects were allowed to either play their own musical instrument
(e.g. piano) or just listen to online musics chosen by themselves.
Besides, the ’shaving’ activity was only for male participants. The
participants were encouraged to use their own equipment and the
home devices (e.g., toilet fan and refrigerator) were left as natural.
The participants were required to sign an IRB form before the sound
collection and they were compensated 5 US dollars per person after
the study.

The audio was converted as 16-bit depth mono and sampled at
16KHz. We applied a consistent 60-ms window size with no over-
laps for framing. Both feature extraction and audio degradation
were implemented with the same frame size. The features we used
for the activity recognition task were 13 mel-frequency cepstral
coefficients (MFCC) at the single frame level. We then applied a
1-dimensional convolutional neural network (CNN) as the classi-
fier. Based on initial tuning on the user data, we determined an
architecture with three convolutional layers and a fully-connected
output layer. The number of channels for the convolutional lay-
ers were 16, 32, 32 respectively. The filter size was 8 with a single
stride. All convolutional layers were activated by the rectified linear
unit activation with the same padding. During training, we applied
the stochastic gradient descent optimizer with a learning rate of
0.01. The loss function was categorical entropy loss. In addition,
we added a dropout layer [35] of 0.1 for each convolutional layer.
The neural network was implemented using the Python Keras [5]
package.

The audio data was then split with a 5-fold basis. However, we
did not shuffle the data globally at this stage to avoid the overlaps
of similar sound frames between the training and evaluation sets.
We then obtained the highest evaluation accuracy observed in each
fold and calculated the average of the 5-fold accuracy as the overall
performance metric. The performance was first reported based on
the original sounds. With the same CNN, we implemented two
paradigms of study. In the first study, both the training and the
evaluation data was degraded. In the second study, only the training
set was degraded. Since the speech mitigation levels are mostly
affected by the degradation level δ , we tested the methods with

Degrading Method δ = 50% δ = 70% δ = 90%

Dropping (training & test) +0.00 -1.20 -3.29
Cloning (training & test) +0.29 +0.66 +0.25
Replacing (training & test) -0.12 -0.37 +0.16
Dropping (training set only) +0.16 -0.88 -2.51
Cloning (training set only) +0.37 +1.16 +0.28
Replacing (training set only) +0.10 -0.29 -0.01

Table 3: Change of averaged 5-fold accuracy (in %) based on
the field audio frames when comparing the results of audio
degradation to the results without any degradation (59.16%).
The accuracy values are examined when both the training
and test sets are degraded or when only the training sets are
degraded. The accuracy remains generally similar with and
without degradation, except that it slightly drops when the
audio is severely down-sampled.

only δ = 50%, 70% and 90% since the privacy mitigation is only valid
at high δ levels. The goal of the study is to investigate if frame-level
audio degradation can maintain the recognition performance with
features extracted only at a single frame level. Also, we hope to
gain deeper understanding of how different ways of adopting the
audio degradation methods can affect the model generalization on
the sounds.

5.2 Field test results
Table 3 shows the results of two paradigms of studies: testing on
the distorted sound frames and testing on the raw audio frames.
In addition to the averaged 5-fold accuracy, we also calculated the
variance of the 5-fold performance. In the study, the highest evalu-
ation accuracy values were mostly observed after early stages of
training (5-12 epochs). The mean 5-fold recognition accuracy based
on the original sounds is 59.16% with variance of 7.21%. The results
obtained using the frame order randomization method is 59.56%
with a variance of 8.86%. The performance is as expected since
the shuffling process does not affect the frame-level feature extrac-
tion. We see that the audio recognition performance remains stable
around the original results, indicating that the implementation of
the degrading methods generally does not harm the classification.
However, we notice that down-sampling the frames too much can
still lead to decrements on the accuracy, as also reported in the
study by Kumar et al. [19].

5.3 Test with online public audio
To further demonstrate the effects, we also conducted audio frame
recognition by leveraging the public ESC-50 audio dataset [32]
which consists of 5-second audio clips of common nature and be-
haviour classes observed in daily life. These sounds were extracted
from the Freesound dataset [11]. In our study, we selected all classes
in the urban category since they are commonly involved in people’s
daily activities. The selected classes wereHelicopter, Chainsaw, Siren,
Car horn, Engine, Train, Church bells, Airplane, Fireworks, Hand saw,
totaling 400 audio clips.
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Degrading Method δ = 50% δ = 70% δ = 90%

Dropping -0.59 -0.07 -0.19
Cloning +0.33 -0.11 -0.33
Replacing -0.60 -0.77 +0.35

Table 4: Change of averaged 5-fold accuracy (in %) based on
the ESC-50 [32] audio frames when comparing the results
of audio degradation to the results without any degradation
(50.16%). Similar to the field tests, the overall performance
remains similar even when the audio is severely degraded.

Similarly, the audio data was split with a 5-fold basis. Before
processing, the audio was re-sampled to 16KHz mono with 16-bit
depth.We then extracted 19MFCC features for every 50-ms window
without overlaps. The audio was then degraded based on the same
set of frames. Here we did not repeat the two paradigms as in the
previous tests and we degraded both the training and test data. The
training and test audio is from different audio clips, so there is no
potential overlaps between the training and test sets.

The classifier is also a sequential neural network. Based on initial
tuning on the raw audio, the network consists of two convolutional
layers and four fully connected layers including the final output
layer. There are 64 channels each for the convolutional layers and
the filter size is 4 with a stride of 2. We added 0.1 dropout [35] and
batch normalization [15] to both layers. The number of neurons is
64, 64 and 128 for the fully connected layers except for the output.
The dropout of the fully connected layers is 0.3, and there is no
batch normalization for them. All layers are activated by the ReLU
function except for the output which is activated by the softmax.
We used the cross entropy loss and the stochastic gradient descent
optimizer with 0.01 learning rate and 0.9 momentum. The learning
rate was dropped by a factor of 0.5 for every 3 steps whenever there
was no improvement on validation. The network was developed
using Python Keras [5].

5.4 Online test results
Table 4 shows the recognition performance of the ESC audio frames.
The averaged 5-fold accuracy with no audio degradation is 50.16%
with variance of 22.15%. The recognition performance obtained is
comparable to some similar prior attempts [14, 32]. Similar to the
field tests, recognition of the audio frames is also not affected by
the implementation of the audio degradation. We also notice that
dropping the frames does not harm the performance as in the field
tests. That is possibly because the variability of the ESC audio is
generally less than the field audio, and thus it requires less data to
well-train a classifier.

6 RECOGNITION PERFORMANCE ON AUDIO
SEGMENTS

Rather than studying just the frame-level features, we further ex-
amined the effects applying segment-level spectrogram for audio
recognition. The intuition of this study is that frame degradation

can potentially disrupt the temporal distribution of the original au-
dio, so we hope to explore how the effects can be when integrating
the degrading methods with segment-wise audio features.

6.1 Implementation
We still leveraged the same audio clips from the ESC-50 dataset [32]
for the study. To extract segment-level spectrogram, each 5-second
audio clip is windowed at the size of 1024 ms with 512 ms hops.
The formulated spectrogram is in two dimensions with 128 mel
bins along the time axis. We then developed our audio recogni-
tion framework based on a deep learning-based feature extractor
proposed by Kumar et al. [18]. The feature extractor is a 19-layer
convolutional neural network pre-trained on the Audio Set [12]
weakly labeled data. The network takes as input 2D spectrogram
and we extracted embedding features from the 16th layer of the
network as the segment representations. Each embedding feature
is in 512 dimensions. The features are then fed to a classifier.

In our tests, we applied both the random forest (RF) classifier
and a neural network (NN). Both classifiers are fine-tuned based
on 5-fold cross validation using the raw audio clips and are fixed
afterwards. The RF consists of 600 estimators with gini classification
criterion. It was developed with the Python Scikit-learn package
[30] and all other parameters were left as default. The NN consists
of three convolutional layers and four fully connected layers. Each
convolutional layer is connected with 0.1 dropout [35] and batch
normalization. The number of channels is all 32 and the filter size
is 2 with single-step stride. The fully connected layers are of 128
neurons each with 0.3 dropout except for the output layer. All
layers are activated by the ReLU activation. We used the categorical
cross entropy loss and the stochastic gradient descent optimizer
with 0.001 learning rate and 0.9 momentum. The learning rate was
dropped by a factor of 0.5 for every 5 steps when there was no
validation improvement. Further, the NN was developed with Keras
[5].

To degrade the audio, we used a similar degrading window size
of 50 ms with the same hop length. The neighboring range of
replacement was 10 frames per side for the replacement-sampling
method. The audio clips were then distorted before the computation
of their spectrogram. Similar to the frame-level studies, we tested
with only the valid audio mitigation levels (δ = 50%, 70%, 90%). We
then reported the highest mean of the 5-fold accuracy in each test
case.

6.2 Results
Table 5 presents the recognition performance with the segment
spectrogram. The 5-fold accuracy values based on the original
sounds are 79.50% and 81.25% for the RF and NN respectively. The
corresponding 5-fold variance is 22.25% and 47.50%. The overall
recognition performance is comparable to the results obtained by
Kumar et al. [18].

First of all, we can see that the recognition accuracy drops in
all test cases. It shows that the disruptions of the audio frame
distributions can leave non-negligible impact on the recognition
of the spectrogram. This is especially true when the audio frames
are overly down-sampled. When δ = 70% in the down-sampling
case, for example, the classification accuracy for the RF and the
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Audio Processing Method δ = 50% δ = 70% δ = 90%

Frame Dropping + RF -5.75 -8.50 -22.50
Frame Dropping + NN -9.25 -20.00 -48.50
Frame Cloning + RF -7.10 -7.50 -5.75
Frame Cloning + NN -5.50 -6.00 -5.00
Frame Replacing + RF -5.25 -5.25 -6.00
Frame Replacing + NN -6.75 -7.00 -8.25

Table 5: Change of averaged 5-fold accuracy (in %) based
on the ESC-50 [32] segment spectrogram when comparing
the results with audio degradation to results without any
degradation (79.50% for RF and 81.25% for NN). Generally
speaking, the classifiers are still able to classify the audio
clips after the frames of each clip are re-sampled, but the
global recognition performance drops from the original in
all tested cases.

NN drops to 71.00% and 61.25% respectively. The reason can be
that the spectrogram becomes less distinguishable when there are
fewer frames within the segment. Due to the model complexity, the
neural network tends to be even more sensitive to such frame loss.
Secondly, both classifiers may still be able to recognize the audio
segments despite the mitigation effects. As in the table, the accuracy
values for δ = 70% in the replacement-sampling / up-sampling tests
are 74.25% / 72.00% for the RF, and 74.25% / 75.25% for the NN. If
our goal is to perform global recognition of the classes, we can see
that the accuracy values based on the segment recognition are still
promising when comparing to the results of the frame-level studies,
even after degradation. This is due to the advantage of segment
spectrogram and neural network embedding in interpretation of
complex sounds. In other words, the degrading methods may still be
applied to audio recognition when using segment-level features, yet
we need to optimize the choice of the audio features and recognition
methods for the best balance between privacy mitigation effects
and recognition performance.

7 DISCUSSIONS AND FUTUREWORK
7.1 Discussions
From the Mechanical Turk studies, we can see that degradation of
the audio at a strong level does help to mitigate people’s privacy
concerns towards the sensed audio in the given scenarios. From
their responses, people are less concerned generally because the
audio is mostly not intelligible when high proportion of the frames
are re-sampled. However, some people are still worried about the
risks potentially brought by the sensing processes, even with data
degradation.

Combining results of the field tests and tests with the public
online data, we see that the frame recognition accuracy remains
generally unchanged from the base cases with no audio degrada-
tion to the tested cases. This is actually intuitive since the frame
re-sampling processes do not disrupt the patterns within a frame,
and hence the classifier can still distinguish the frames. The excep-
tion is when the audio is down-sampled at an extremely high level

(δ ≥ 90%) for the field data. This is possibly because the variabil-
ity of the field data is higher than that of the online data, and the
learning process is affected when there is not sufficient data for gen-
eralization. The extra tests when only the training sets are degraded
further confirm our findings that learning and generalization of
the classifier at a global level is not affected by individual frame
re-sampling, and the audio recognition can be done across datasets
with and without degradation. Hence, the audio frame degrada-
tion methods provide good opportunities for reliable sound frame
recognition with effective mitigation of resulted privacy concerns.

From the results of the segment-level tests, we can see the trade-
offs between sound privacy mitigation and the target class recog-
nition. Potential factors such as the disruption of the frame dis-
tributions inside the spectrogram and change of the spectrogram
resolution due to frame re-sampling may all hurt the classification
results. Dropping the frames leads to the worst accuracy since it
was implemented on individual segments and the valid segment
size becomes much smaller when too many frames are removed.
Correspondingly, the resolution of the spectrogram is lowered and
it becomes more difficult to distinguish the patterns. However, we
see that most of the segment-level accuracy is still over 70% on the
ESC-50 data despite the performance drop from the raw test cases.
Given the success of segment-level features over pure frame-level
features such as the MFCCs for better interpretation of complex
sounds, it can still be reasonable to leverage such features with
audio degradation sometimes. In other words, the choices of the
audio features, classification methods, and audio degradation pa-
rameters should be determined in a case-by-case manner in actual
deployment.

7.2 Future work
In our study, the privacy mitigating effects are characterized based
on an online study with pre-defined sensing scenarios and recorded
sounds. However, privacy attitudes can be tied to several factors.
For example, people could be more concerned if they realize that
their own voice is being recorded even if the speech is unintelligible.
People may also have different attitudes towards different sensing
situations, especially those more sensitive ones in their daily living.
Due to the scale of our study and the limitations of the online
platform, we were not able to further explore such factors and they
are left as future directions.

Both the audio frame degradation methods and our audio classifi-
cation frameworks are prone to several limitations or assumptions.
For example, the local device processing the audio frames needs
to be trusted. Also, segment-level recognition of sounds has been
studied for long and includes a large body of approaches. The actual
trade-offs between privacy mitigation and audio recognition per-
formance with different sensing and recognition methods should
be further studied in the future.

8 CONCLUSIONS
In this work, we studied the extent to which frame-level audio
degradation can mitigate people’s privacy concerns with regards to
acoustic sensing in mobile applications. Specifically, we designed
and conducted an online survey with 4 common sensing scenarios
by collecting responses from 266 participants using the Amazon



MobileHCI ’20, October 5–8, 2020, Oldenburg, Germany Liang et al.

Mechanical Turk platform. We then analyzed the impact of audio
degradation in audio-based human activity and context recognition
with data collected in the home of 14 participants and from an
online dataset. The effects on audio recognition performance were
quantified by tests with frame-level and segment-level features and
at different levels of degradation. Given the findings of our studies,
degradation of audio frames shows a promising direction in privacy
protection in a wider range of sound sensing and audio-driven
human activity recognition domains.
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