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Abstract—Developing a system that automatically and pas-
sively recognizes activities of daily living (ADLs) would be
transformative for numerous health applications. However, engi-
neering approaches for building such a classifier today requires
the availability of large and rich annotated datasets representing
ADLs in a generalizable way. In this work, we evaluated state of
the art large language models (LLMs) to perform fully-automated
and assisted manual annotations of first-person images with
ADLs. We performed automatic evaluations on four different
vision language pipelines (VLPs): concept detector, concept
detector + GPT-3.5, BLIP2, and GPT-4. Three of them were
tested on 31,849 first person images and one of them, GPT-
4, was tested on 3,446 images first person images. Among the
four VLPs, BLIP2 scored the highest cosine similarity of 0.86.
Furthermore, we evaluated assisted manual annotation with 20
participants who annotated 100 ADL images with recommended
labels from three different VLPs. We show that annotation with
BLIP2 assistance has highest pick rate of 0.698 and a subjective
workload (NASA Task Load Index) score of 39.41 in a scale
of 100. Despite limitations, our work demonstrates how large
language model can be leveraged to optimize the difficult task of
data annotation for building ADL classifiers.

Index Terms—Large Language Models, Vison Language Mod-
els, Human Activity Recognition, Data Annotation, Activities of
Daily Living

I. INTRODUCTION

Recognizing activities of daily living (ADL) plays a cru-
cial role in health applications, particularly in the fields of
elderly care [1], [2], rehabilitation [3], and chronic disease
management [4]. ADLs refer to the basic tasks that individuals
perform every day, such as eating, bathing, dressing, toileting,
and moving around. Monitoring these activities can provide
valuable insights into a person’s health status and functional
abilities [5].

Researchers have explored numerous methods over the years
aimed at building systems that can automatically and passively
recognize ADLs. This task centers on building and evaluating
machine learning models that are trained to discriminate ADLs
using sensor data [6]–[10]. Engineering recognition models
that perform well in real-world conditions is a major under-
taking. A significant challenge is the acquisition of ground
truth data to train supervised models. Direct observation, self-
report-based diaries and experience sampling are some of

the data collection methods that have been traditionally used.
Unfortunately, these approaches suffer from several practical
and methodological flaws such as biases and subjectivity.

More recently, the use of wearable egocentric imaging has
emerged as an objective way of recording everyday activities
outside the lab [6], [11]. However, reviewing and annotating
thousands of first-person photos or video clips is a tedious,
time-consuming, and error-prone process.

In this paper, we leveraged LLMs and vision models to
develop and evaluate novel annotation approaches aimed at
reducing the time and effort required in reviewing and la-
beling egocentric photos representing ADLs. In our proposed
pipeline, as shown in figure 1, a person wears a wearable
camera and captures images in regular interval while they go
about their daily life. A VLP then infers the human activity
based on the contents of the image. We explored four distinct
vision language pipelines (VLPs): (1) Concept Detector (2)
Concept Detector + GPT-3.5, (3) BLIP2 [12] and (4) GPT-4
[13]. These VLPs are evaluated under two scenarios: fully-
automated annotation and assisted manual annotation. In the
fully-automatic annotation case, the inferred activities from the
VLPs were directly compared against the ground truth. For the
assisted manual annotation scenario, the labels were selected
manually using an interface in which annotation suggestions
were provided by the VLPs.

The specific contribution of our work are:
• A novel fully-automated annotation strategy to annotate

first-person images representing ADLs using LLMs. We
annotated 31,849 first person images automatically from
the ADL video dataset [14] using four VLPs: concept
detector, concept-detector + GPT-3.5, BLIP2, and GPT-
4 (3,446 images). Compared to ground truth, BLIP2
outperformed the other methods with a cosine similarity
score of 0.86 on average.

• A comprehensive analysis of an approach where labels
produced by the VLPs were offered as suggestions for
assisted manual annotation. We ran a human study with
20 participants and evaluate the approach in terms of task
completion time, annotation accuracy, workload and pick
rate. We observe that the suggestions from BLIP2 has



the highest pick rate of 0.698 and a subjective workload
score of 39.41 (scored out of 100).

Fig. 1. We present a methodology for data annotation wherein an individual
utilizes a wearable camera to capture images at predetermined intervals during
their everyday activities. Subsequently, a vision-language pipeline can be
employed to infer human activities from the egocentric images.

II. MODELS

In this work, we used a combination of vision and large
language models to generate and support the assignment of
annotations. We compared the performance of these models
against a concept detection baseline.

A. Concept Detector

We used Clarifai’s general-image-recognition-v2 to list dif-
ferent concepts detected in the egocentric images. Concepts,
as defined by clarifai, are adjectives, verbs, and objects that
are associated with the image. These concepts have been used
in the past works by Thomaz [11] to aid annotation of first-
person images and by Fast [15] to derive language signals
from images.

B. Concept Detector + GPT-3.5

This VLP adds an LLM on top of the concept detector.
We used the list of concepts obtained from clarifai’s image
recognition model and fed it to OpenAI’s GPT-3.5-turbo using
a prompt with few shot examples [16].

C. Vision Language Model (VLM)

VLMs are multi-modal models which accept vision and
language inputs. In this work, we chose GPT-4 [13] and BLIP2
[12] as our VLMs. BLIP2 is different from concept detector
+ LLMs because BLIP2 bridges the modality between vision
and language through pre-training, whereas, concept detector
+ GPT-3.5 bridges the modality gap by using vision models’
outputs to prompt the LLM. BLIP2 bootstraps language-image
pre-training from off-the-shelf frozen pre-trained image en-
coders and frozen LLMs. BLIP2 was trained on various dataset
like COCO [17], Visual Genome [18], CC3M [19], CC12M
[20], SBU [21], LAION400M dataset [22]. The authors of
BLIP2 also created synthetic captions for web images using
CapFilt method [12], [23].

We used BLIP2 with the ViT-g/14 encoder for the image
encoder and pre-trained OPT-2.7b [24] for the frozen LLM.
The implementation of BLIP2 is provided by HuggingFace.

The prompt used for the BLIP2 is “What is the person
doing?”. In this case, we empirically decided to use the shorter
and simpler prompt since it provided decent inferences.

We used GPT-4 as the other VLM. GPT-4 is a multi-modal
chat-bot service provided by OpenAI. It can accept image
and text inputs, and can have conversations with users. In
this work, we used the gpt-4-vision-preview API provided by
OpenAI with few-shot prompting to retrieve GPT-4 inferences.

III. EVALUATION

A. Dataset

We used an open source dataset, activity of daily living
(ADL) video dataset [14], to evaluate the different VLPs. The
ADL dataset consists of egocentric videos collected from a
chest-mounted camera from n = 20 participants. The videos
were annotated with 18 different activities including combing
hair, putting on makeup, and brushing teeth. We sampled
frames from the videos at 1 frame per second to get egocentric
images. Only windows of videos that consisted of ADL
activity annotations were sampled for frames. We sampled a
total of 31,849 frames. Every frame we sampled consisted of
a ground truth made available by the ADL video dataset.

B. Fully-automated annotation

For the automatic annotation scheme, we took the 31,849
egocentric images extracted from the ADL dataset and passed
them through the the three VLPs: BLIP2, concept detector,
and concept detector + GPT-3.5. We passed 3,446 egocentric
images from the dataset to GPT-4. The smaller dataset for
GPT-4 was obtained by sampling the frames at 1/10 frames
per second. This was done because OpenAI severely rate limits
the GPT-4 API and running inference on the full dataset was
infeasible. We later calculated similarity metrics between the
inferred activity and ground truth pairs. These metrics are
described in section III-D.

C. Assisted manual annotation

To understand if the VLPs can help the annotators perform
the annotation faster with better accuracy, we performed a
user study. We hypothesized that with the VLP suggestions
provided to a human annotator, the annotation performance
would increase in terms of speed, subjective workload, and
accuracy.

We enrolled 20 participants in a study involving the pre-
sentation of a user interface (UI) featuring first-person images
for annotation by the participants. Along with the picture, the
UI showed suggestions for possible annotations for the first-
person image which were obtained from the different VLPs.
The user either selected one of the suggestions or typed a more
appropriate annotation for the image. The study was performed
in a laboratory.

We used four different sessions for the study, namely; 1)
Unassisted 2) Concept Detector 3) Concept Detector + GPT-
3.5 and 4) BLIP2. Unassisted provided no options for the user
to choose from. So, the users needed to type annotations for



Fig. 2. Egocentric image frames were extracted from ADL video dataset. The images were passed through the four VLPs: BLIP2, Concept Detector, Concept
Detector + GPT 3.5, and GPT-4. The outputs of the VLPs were compared with the ground truth to get similarity scores between inferred activity and ground
truth. For evaluation of manual annotation with VLP suggestions, we took a subset (100 images) of egocentric images from ADL video dataset. The inferred
activities from the VLP outputs were presented to the annotators as options to choose from. The selected activity and the ground truth were compared to
calculate a similarity metric.

all of the images in the session. Rest of the sessions provided
suggestions using their respective VLPs.

All participants went through all four sessions. Each session
consisted of 25 first-person images which were randomly
sampled from the ADL video dataset frames. Given that there
were four sessions, each participant annotated 100 first-person
images in total.

We recorded four metrics during the user study: 1) NASA
TLX score 2) Annotation time 3) Pick rate and 4) Cosine
similarity of picked annotation. For each image annotated,
we recorded the time it took to annotate each image. After
each session, the participant was presented with Hart and
Staveland’s NASA Task Load Index (TLX) [25].

NASA TLX is a multi-dimensional rating procedure that
assesses the overall workload score based on six sub-scales:
Mental Demand, Physical Demand, Temporal Demand, Perfor-
mance, Effort, and Frustration. It is widely used for measuring
subjective workload across a wide range of industries. The
TLX score ranges from 0 to 100.

After all the sessions were completed, the users were asked
to provide open-ended comments about their experience with
the annotation process. We provided some interesting quotes
from the users which are reported in section IV-B. For any
VLP, we define the pick rate as ratio of the number of times
the user selected an option from the VLP to the total number
of annotations performed by the user. We also calculated
the cosine similarity between the selected annotation and the
ground truth to get a notion of accuracy of the selected

annotation.

D. Calculation of Similarity

For both the fully-automated annotation and assisted-manual
annotation with VLP suggestions schemes, we obtained in-
ferred/selected activity and ground truth pairs. For each ground
truth and activity pair, we pre-processed the text to have
a lemmatized verb + object form by using Spacy’s part of
speech (POS) tagging tool. We calculated distance metrics
between the inferred activity and the ground truth using the
distance metrics: 1) Cosine Similarity 2) Euclidean Distance
3) Manhattan Distance, and 4) Levenshtein distance

Levenshtein distance is calculated between two strings. It
is the minimum number of single-character edits (insertions,
deletions or substitutions) required to change one word into the
other. On the other hand, cosine similarity, euclidean distance,
and the Manhattan distance are computed on embedding
vectors. We operated on OpenAI’s embedding vectors, called
text-embedding-ada-002.

IV. RESULTS

We calculated various metrics to compute similarity as
described in section III-D. This section presents the results in
two sections: fully-automated annotation and assisted-manual
annotation.

A. Fully-automated annotation

Figure 3 shows the probability of the scores falling in
different bins for each of three VLPs: BLIP2, concept detector,



and concept detector + GPT-3.5, and Figure 4 shows the
probabilities for GPT-4.

Fig. 3. Histogram of cosine similarity scores for differnt VLMs.

Fig. 4. Histogram of cosine similarity scores for GPT-4.

Note that the cosine similarity we used for the textual
embeddings operates in a very small region (0.70 to 1). To get
a better sense of what cosine similarity means, we show a table
of different ranges of cosine similarities and some examples
of the pairs of texts that the score represents in Table I.

Table II shows the mean and standard deviation of different
types of scoring metrics for ground truth and inferred activity
pairs for different types of VLPs.

B. Assisted manual annotation

We measured four metrics in the user study: 1) NASA
TLX scores 2) Time 3) Pick rate 4) Accuracy measure. They
are described in section III-C. Table III shows the different
scores averaged across different users along with the standard
deviation.

1GPT-4 was tested on 1/10th of data.

Range (Ground Truth, Inferred Activity) pairs
0.7-0.75 (making cold food/snack, indoors), (drinking wa-

ter/bottle, clean), (drinking coffee/tea, relax)
0.75-0.8 (watching tv, relax), (watching tv, furniture), (reading

book, room)
0.8-0.85 (watching tv, room), (brushing teeth, mirror), (read-

ing book, read a crossword puzzle), (brushing teeth,
taking a selfie)

0.85-0.9 (using computer, people), (reading book, study), (us-
ing computer, surf the web)

0.9-0.95 (washing hands/face, washing their hands), (laundry,
washing clothes), (eating food/snack, eating)

0.95-1.0 (watching tv, watch TV), (using computer, work),
(reading book, reading a book)

TABLE I
EXAMPLES OF INFERRED ACTIVITY AND GROUND TRUTH PAIRS FOR

DIFFERENT COSINE SIMILARITY BINS. THE PAIRS SHOWN ARE BEFORE
LEMMATIZATION.

V. DISCUSSION

A. Fully-automated annotation

Figure 3 illustrates that BLIP2 exhibits a higher probability
of yielding a high cosine similarity score compared to its
counterparts. Approximately 10% of activities inferred by
BLIP2 scored between 0.95 and 1, and between 0.90 and
0.95, indicating a perfect match between inferred activity and
ground truth pairs for approximately 20% of the dataset. More-
over, BLIP2 demonstrates a lower probability of obtaining a
score below 0.80 compared to its counterparts, implying that
BLIP2’s human activity annotations are more aligned with the
ground truth.

Similarly, in Figure 4, the likelihood of obtaining a high
score for GPT-4 is notably low. However, it’s important to
note that the images for GPT-4 were sampled at a frame rate
of 0.1 frames per second, resulting in a smaller number of
tested images compared to the other three VLPs.

B. Assisted-manual annotation

Table III shows that BLIP2 has one of the highest average
time taken per image, one of the lowest NASA TLX score,
and the highest pick rate. The unassisted session achieved the
lowest NASA TLX score with average time taken per image
of 10.84 seconds. This shows unsassisted session is better than
using any VLPs. However, we think this is attributed to the
design of the annotation tool rather than the VLPs themselves.

Some users noted that it took more time to make annotations
using BLIP2. This was because the text output form BLIP2
was longer and needed more time to scan through the options.
One of the reasons was that different options suggested by
BLIP2 were very similar to one another, which increased the
time it took to scan through them all. Other reasons included
high cognitive load required to read through the descriptive
texts. Some users mentioned it was easier to type out the
answer by themselves in the unassisted session rather than
going through the descriptive texts.

VI. CONCLUSION

In this work we explored the use of state of the art LLMs,
vision models, and VLMs to aid in the annotation of first-



VLP Levishtein Dis-
tance ↓

Cosine Similarity ↑ Euclidean Dis-
tance ↓

Manhattan Dis-
tance ↓

BLIP2 12.33 ± 8.52 0.86 ± 0.07 0.50 ± 0.22 15.48 ± 6.20
concept detector 11.78 ± 3.26 0.80 ± 0.03 0.65 ± 0.12 20.13 ± 2.36
concept detector + GPT-3.5 11.70 ± 3.67 0.81 ± 0.04 0.63 ± 0.14 19.35 ± 3.23
GPT-4 1 11.26 ± 1.20 0.76 ± 0.015 0.68 ± 0.027 21.30 ± 0.87

TABLE II
SIMILARITY METRICS FOR DIFFERENT VLMS.

VLP Average time taken per
image (s) ↓

NASA TLX score ↓ Pick Rate ↑ Cosine Similarity ↑

BLIP2 11.15 ± 7.86 39.41 ± 21.35 0.698 0.8512 ± 0.070347
concept detector 11.35 ± 7.38 41.48 ± 20.91 0.24 0.8461 ± 0.074309
concept detector + GPT-3.5 10.56 ± 7.55 46.9 ± 20.18 0.45 0.8607 ± 0.078150
unassisted 10.84 ± 8.69 39.16 ± 24.10 N/A 0.8599 ± 0.078028

TABLE III
AVERAGE TIME TAKEN, NASA TLX SCORE, PICK RATE, AND COSINE SIMILARITY ASSOCIATED WITH EACH ASSISTED-MANUAL ANNOTATION SESSIONS.

person images with ADLs. We showed that BLIP2 performed
the best among concept-detector, concept-detector + GPT-
3.5, and GPT-4 for the fully-automated annotation scheme.
This work represents a step forward towards AI assisted data
annotation in the field of human activity recognition.
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