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Abstract—Advancements in audio neural networks have es-
tablished state-of-the-art results on downstream audio tasks.
However, the black-box structure of these models makes it
difficult to interpret the information encoded in their internal
audio representations. In this work, we explore the semantic
interpretability of audio embeddings extracted from these neural
networks by leveraging CLAP, a contrastive learning model
that brings audio and text into a shared embedding space. We
implement a post-hoc method to transform CLAP embeddings
into concept-based, sparse representations with semantic inter-
pretability. Qualitative and quantitative evaluations show that the
concept-based representations outperform or match the perfor-
mance of original audio embeddings on downstream tasks while
providing interpretability. Additionally, we demonstrate that fine-
tuning the concept-based representations can further improve
their performance on downstream tasks. Lastly, we publish three
audio-specific vocabularies for concept-based interpretability of
audio embeddings.

Index Terms—interpretabilty, contrastive learning, zero-shot,
general-purpose audio representation

I. INTRODUCTION

Neural networks for audio recognition and classifica-
tion have improved significantly in recent years with the
development of models, such as the convolution neural
network(CNN)-based family of Pretrained Audio Neural Net-
works (PANNs) [1] and the transformer-based Hierarchical
Token-Semantic Audio Transformer (HTS-AT) [2]. These
models not only established state-of-the-art (SOTA) results
in audio tasks, such as sound event detection and text-
audio retrieval, but have also formed a basis for subsequent
multimodal models. For instance, the audio language model
Pengi [3] uses the HTS-AT as its audio encoder to realize
downstream tasks ranging from audio captioning to music
analysis. Despite the advantages of these neural networks, their
black-box structure makes it difficult to understand their inner
audio representations. In this work, we aim to establish seman-
tic interpretability of audio embeddings extracted from these
models. To achieve this, we draw on text embeddings, which
encode semantic information and enable alignment between
audio representations and linguistic meaning. Since audio and
text embeddings exist in different spaces (spectrogram space
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versus latent space of a deep network), we leverage contrastive
learning to address this gap.

Contrastive learning learns a representation such that similar
pairs of data points are closer together in a shared embedding
space while dissimilar pairs are farther apart. It has become
increasingly popular for multimodal representation learning,
galvanized by models such as CLIP [4] for image-text pairs
and CLAP [5], [6] for audio-text pairs. CLAP models, which
leverage either CNN14 from the PANNs family or HTS-AT as
their audio encoder, have been trained to provide the advantage
of a joint multimodal latent space that yields semantically-rich
representations of audio data. This shared latent space enables
efficiency and scalability on high-performing downstream
tasks, such as zero-shot classification and information retrieval
[4], [6], [7]. Despite the semantic information encoded in the
audio embeddings, the embeddings within the latent space are
not easily interpretable to humans. In this work, we aim to
explore the question: how can we understand the semantics of
the audio data encoded in CLAP embeddings?

As machine learning becomes increasingly deployed to real-
world systems, explainability is an integral component of its
responsible use, if not a legal requirement altogether [8]. While
there have been increased efforts for interpretability in the
computer vision and image domain [9]–[11], there has been
significantly less work in interpretability and explainability for
audio machine learning models. In this work, we aim to utilize
the multimodal nature of CLAP embeddings to transform
dense CLAP embeddings into a sparse, human-interpretable
representation. Specifically, our contributions increase the in-
terpretability of audio embeddings:

1) We explore a post-hoc method to transform original
CLAP embeddings into concept-based representations
comprising a sparse combination of interpretable, se-
mantic concepts in a computationally efficient manner
in section III. Additionally, we present an initial explo-
ration in fine-tuning the concept-based representations
to further improve the performance of concept-based
representations on downstream tasks.

2) We perform an extensive set of experiments demonstrat-
ing our concept-based representations improve upon the
downstream performance of original CLAP embeddings
while providing added interpretability in section IV.



Fig. 1. A diagram of our concept decomposition system illustrates how dense CLAP embeddings (z) are transformed into concept-based representation (w)
by solving for a sparse, non-negative linear decomposition over a concept vocabulary (C).

Furthermore, we investigate factors, such as concept
set construction methods and number of concepts, that
further the performance of our concept-based represen-
tations on downstream tasks.

3) We create three audio-specific vocabularies for concept-
based interpretability of audio embeddings and make
them publicly available here1.

II. RELATED WORK

A. Audio Interpretability

Prior works have utilized visualization techniques to high-
light input spectrogram features that contribute to a model’s
decision [12], [13]. However, visualization of audio as time-
frequency images provides limited interpretability to a general
user [14]. Additional work operates on audio as spectrogram-
like 2D images and leverages image-based approaches for
interpretability such as feature perturbation, perturbing the
input and observing the changes in the output [15].

Other works have built upon Local Interpretable Model-
agnostic Explanations (LIME) [16], a feature-attribution
method that treats machine learning models as a black box
and explains a model’s prediction by observing outputs of
the black box in response to a large number of inputs.
SoundLIME [17] localizes the time or time-frequency region
in an input spectrogram that contribute most to a model’s
decision, and audioLIME [18] creates listenable interpretations
through source separation. While audioLIME generates more
interpretable explanations than SoundLIME, audioLIME de-
pends on a source separation system that works with a limited
number of predefined audio sources and is therefore not easily
scalable to diverse audio sounds or datasets. Parekh et al.
[19] also create listenable interpretations using non-negative
matrix factorization to learn a spectral pattern dictionary and
then decompose an audio signal into its constituent spectral
patterns.

In this work, we implement a post-hoc explainability
approach to explain a trained model rather than build an
explainable model by-design [20]. To address the limited
scalability of existing methods, our method is concept-based
and task-agnostic, with high-level human-friendly concepts
that can more easily scale to various audio sounds and sources.
Our concept-based method provides the advantage of directly

1https://osf.io/3cgsu/?view only=ecbf92d4b10a48a38441323fc275a97f

understanding the semantic content within audio embeddings
whereas methods such as perturbation of counterpart text
embeddings are indirect and assume that the text embeddings
well capture nuances of the audio signal.

B. Concept Bottleneck Models

Concept bottleneck models (CBMs) are a family of in-
terpretable models that map input features onto a set of
interpretable concepts and then express their prediction as a
linear combination of the concepts [21]–[23]. However, these
models require expert-labeled concept datasets for training.
While recent works on CBMs have leveraged querying large
language models (LLMs) to obtain concept datasets, these
concept datasets are subject to the biases of LLMs [22],
[24], [25]. Furthermore, CBMs often do not match the per-
formance of unrestricted neural networks [23]. In our work,
we create a large-scale and overcomplete concept dictionary
that does not require specific domain knowledge. Additionally,
we demonstrate that our concept-based representations of
audio embeddings match or improve upon the performance
of corresponding dense audio embeddings. Lastly, prior work
has focused primarily on CBMs for interpretability of image
tasks with little work on audio tasks [21]–[23], [26].

III. METHOD

Our method, which is inspired by the SpLiCE [10] method
for interpreting CLIP (image) embeddings, is illustrated in
Figure 1. The inputs are an audio waveform and a vocabulary
of natural language concepts. The output is a sparse vector
in which each dimension represents a concept and most
dimensions are zero. By removing the zero elements, the
output can be further simplified as a compact set of concepts
that semantically represent the input audio.

A. Concept Vocabulary Construction

Prior work in interpretability established three desired prop-
erties of concept-based explanations of machine learning mod-
els: meaningfulness - providing standalone semantic definition,
coherency - instances of a concept should be similar to each
other and different from instances of other concepts, and
importance - the concept is necessary for the true prediction of
samples in a class [20]. Here, we define concept as a semantic
unit expressed by an English word, and we use combinations



of semantic concepts expressed as natural language to meet
these desiderata.

For the baseline vocabulary, we want a concept set that
is not task specific and instead covers a large lexicon of
sounds. Therefore, we scrape the audio tags of the FSD50K
dataset [27], which is a human-labeled dataset with over
50,000 audio samples spanning a variety of sound sources
including animals, humans and machines. Out of an initial
total of 20,793 unique, human-provided audio tags, we sort
the tags by frequency, remove expletives, and finally select
the 2,000 most frequent English audio tags. We also build two
alternative concept vocabularies from this baseline vocabulary:
1) a pruned vocabulary and 2) a clustered vocabulary.

For the pruned vocabulary, we first consider the 10,000 most
frequent audio tags in the FSD50K dataset. Then, we filter the
concepts to remove mis-spelled English words, single letter
audio tags, and numeric audio tags. We also identify synonym
concepts and concepts sharing the same root word and keep
only the most frequent audio tag representing the concept.
For instance, the concepts “cough”, “coughs,” and “coughing”
appear in the 10,000 most frequent audio tags of FSD50K.
We keep only the concept “cough” to represent all the three
concepts since it appears most frequently. After aggregating all
synonyms and root words and their frequency counts, we keep
the 2,000 most frequent concepts for the pruned vocabulary.

For the clustered vocabulary, we also first consider the
10,000 most frequent audio tags in the FSD50K dataset. Then,
for all 10,000 audio tags, we cluster the 1,024-dimension text
embedding for each tag obtained via the CLAP text encoder
into 2,000 clusters via k-means clustering. For each cluster,
we select the concept with the text embedding closest to
the cluster’s centroid to serve as the cluster’s representative
concept.

We choose to manually create our concept set over querying
LLMs, as recent work has shown that concept sets generated
via LLMs are reliant on the domain knowledge and subject
to the biases of LLMs. As a result, LLMs may fail to
generate concepts important to certain classes [22], [24], [25].
Therefore, we choose to create an over-complete vocabulary
set so that the concept set is task-agnostic. To maintain
interpretability with the over-complete set, we enforce sparsity
in the concept decomposition.

B. Sparse Linear Embedding Decomposition

We use the general method of sparse linear embedding
decomposition from SpLiCE [10] and apply it to audio em-
beddings. Let xaudio and xconcept be a raw audio sample
and a concept respectively. Given a CLAP audio encoder
f : Rda → Rd and text encoder g : Rdt → Rd, we
define CLAP representations in Rd as zaudio = f(xaudio) and
zconcept = g(xconcept).

Then, the goal is to approximate zaudio ≈ Cw∗ where C =
{z1concept, ..., zcconcept} ∈ Rd∗c is a fixed vocabulary with c
concepts, and w∗ ∈ Rc is the concept-based decomposition.

We can find a sparse solution vector by minimizing the L0
norm of the vector w∗ such that the cosine similarity between

Fig. 2. Example audios from Clotho with their captions and corresponding
concept representation (concept, prominence value) of audio signals. We show
the top-3 concepts but the audio embedding decompositions have a total of
35-45 concepts.

the original audio embedding and the reconstructed embedding
through concept-based representation Cw∗ is greater than 1−ϵ
for some small ϵ. This is defined formally as:

w∗ = min
w∈Rc

∥w∥0s.t.⟨zaudio,Cw⟩ ≥ (1− ϵ)

for some small ϵ. We relax the L0 constraint as is standard
practice due to the non-convexity of the L0 norm. We refor-
mulate the objective as minimizing the convex L1 norm using
Lasso regression, defined as:

w∗ = min
w∈Rc

∥Cw − zaudio∥22 + λ∥w∥1

In its implementation, we use sklearn’s Lasso solver with a
non-negativity flag to enforce non-negativity. Therefore, the
solution to this equation is a sparse, non-negative vector where
non-zero values correspond to the prominence of concepts
present in the original audio sample or audio embedding.
The hyperparameter λ (L1 penalty) determines the number
of non-zero concepts in the concept-based representation.
While other sparse, linear solvers exist such as orthogonal
matching pursuit, the guarantee of non-negative weights in the
solution vector aids in the understanding of concepts present in
the input audio. Through subjective human evaluations, prior
works have indicated that concepts with non-negative weights
are easier to understand and more meaningful than concepts
with negative weights [28], [29].

C. Fine-Tuned Sparse Embedding Decomposition

We can further fine-tune the original CLAP audio em-
bedding to a specific downstream task prior to embedding
decomposition. We project the original audio embedding with
a single linear layer H ∈ Rd∗d where H is initialized as
a random d × d matrix. In other words, we use H to map
zaudio onto the text embeddings extracted from the text prompt



Fig. 3. Distribution of top-5 concepts across two audio classes.

corresponding to a downstream task, and then solve for the
vector of weights that best approximates the projected audio
embedding Hzaudio. The solution we seek is then:

w∗ = min
w∈Rc

∥Cw −Hzaudio∥22 + λ∥w∥1

Section IV-C provides additional implementation details.

IV. EXPERIMENTS

There are two existing CLAP models, one trained by
LAION on 630K audio-text pairs [6] and one trained by
Microsoft on 4.6M audio-text pairs [7]. Since Microsoft’s
CLAP model was trained on a larger dataset, we focus our
evaluations on Microsoft’s CLAP model. We note, however,
that our proposed method works with either LAION’s or Mi-
crosoft’s CLAP model. We evaluate our method qualitatively
and quantitatively on 7 datasets (Urbansound8K, DCASE2017
Task 4 Subtask A, ESC-50, AudioSet, Vocalsound, TUT2017,
and Clotho) from 5 different domains (sound event classifica-
tion, vocal sound classification, acoustic scene classification,
audio-text and text-audio retrieval) as downstream tasks.

A. Qualitative Evaluation

We qualitatively evaluate the audio concept decompositions
by the semantic meaning of the extracted concepts represent-
ing the input audio sample. The qualitative evaluations were
conducted with an L1 penalty of 0.15 which yielded 35-45
non-zero concepts in the concept-based representation with a
vocabulary size of 2,000. An example of the top-5 non-zero
concepts extracted from an audio sample of a train is illustrated
in Figure 1. In Figure 2, we provide 5 concept-representations
of audio samples from the Clotho audio-captioning dataset
[38] with their corresponding captions. We find that the
concepts describe the audio content as indicated by the original

captions and can provide semantic explanations of CLAP em-
beddings. Notably, this qualitative evaluation demonstrates that
our concept-based representations are able to capture semantic
concepts corresponding to multiple audio sources within an
audio embedding with the sparsity constraint. Additionally, the
decomposition method works with audio of varying lengths,
from 1 to 15 seconds.

We further extend our decomposition method to entire
sound classes or datasets to gain a better understanding of
a collection of audio samples without needing to listen to
each sample individually. We perform concept decomposition
on each audio sample within a target class or dataset and
average the prominence values of each concept across all
audio samples to better understand the semantic distribution of
the datasets. For instance, in the “beach” class in TUT2017,
the top concepts besides “beach” are “splashing” and “chil-
dren,” suggesting that the audio samples were collected from
recreational beaches rather than wildlife beaches. We visualize
the distribution of top-5 concepts for this class in addition
to the “siren” class in Urbansound8K in Figure 3. This
decomposition at the class level shows at a glance the siren
sounds in the dataset are primarily from ambulance or police
vehicles. Despite the availability of other concepts in the
vocabulary that can explain siren sources, such as weather
warnings or sports game celebrations, these concepts are
omitted from the decomposition and highlight the utility of
class-level decomposition.

B. Quantitative Zero-Shot Evaluation

We evaluate the proposed method on audio classification
and information retrieval to show the effectiveness of our
concept-based representations on downstream tasks and verify
that the additional interpretability does not compromise down-
stream tasks. For initial quantitative evaluations, we fix the L1
penalty at 0.05 resulting in 90-100 non-zero concepts and use
the baseline vocabulary with a size of 2,000 concepts.

Zero-Shot Classification To evaluate the performance of
concept-based representations on zero-shot classification, we
calculate the cosine similarity between the concept-based rep-
resentations, which can be viewed as a concept-based recon-
struction of the original audio embedding, and text embeddings
encoding the class label prompt. The logits are transformed
into probability distributions by applying a softmax for multi-
class classification. For fair comparison to the performance of
original, dense CLAP audio embeddings, we follow the CLAP
evaluation setup and use the prompt, “This is a sound of [class
label].”

We summarize the results of zero-shot classification for
sound event detection, vocal sound detection and acous-
tic scene classification in Table I and compare the results
to those of SOTA zero-shot methods and original CLAP
embeddings. As shown, the performance of concept-based
representations consisting of 90-100 non-zero concepts in
zero-shot classification outperform that of the original CLAP
embeddings for Urbansound8K, DCASE2017, Vocalsound,
and TUT2017. With the exception of Vocalsound, these three



TABLE I
PERFORMANCE OF CONCEPT-BASED REPRESENTATIONS ON ZERO-SHOT CLASSIFICATION TASKS. WE BENCHMARK AGAINST THE SOTA ZERO-SHOT

RESULTS IN LITERATURE AND THE ORIGINAL CLAP MODEL. EVALUATION METRICS ARE F1-SCORE FOR DCASE17 (IMBALANCED DATASET), MAP FOR
AUDIOSET, AND ACCURACY FOR ALL OTHER DATASETS. CONFIDENCE INTERVALS OBTAINED FROM BOOTSTRAP SAMPLING EACH DATASET’S

EVALUATION SET.

Sound Event Classification Vocal Sound Classification Acoustic Scene Classification
Model Urbansound8K [30] DCASE2017 Task 4 [31] ESC-50 [32] AudioSet [33] Vocalsound [34] TUT2017 [31]

1. Benchmark 0.806 [35] 0.3 [5] 0.948 [35] 0.277 [36] 0.849 [37] 0.296 [5]
2. CLAP [7] 0.823 0.466 0.939 0.268 0.8 0.538

3. Concept-Based Rep. (ours) 0.828 ± 0.006 0.47 ± 0.021 0.937 ±0.011 0.265 ± 0.007 0.821 ± 0.011 0.556 ± 0.027

TABLE II
PERFORMANCE OF CONCEPT-BASED REPRESENTATIONS ON ZERO-SHOT INFORMATION RETRIEVAL TASKS. WE BENCHMARK AGAINST SOTA SYSTEMS

THAT USE THE HTS-AT ARCHITECTURE AS THE AUDIO ENCODER FOR FAIR COMPARISON TO THE CLAP MODEL EVALUATED IN THIS WORK, WHICH
ALSO USES THE HTS-AT ARCHITECTURE AS THE AUDIO ENCODER.

Audio-Text Retrieval Text-Audio Retrieval
Model R@1 mAP@10 R@1 mAP@10

1. Benchmark 0.234 [35] 0.138 [6] 0.195 [35] 0.204 [6]
2. CLAP [7] 0.229 0.155 0.157 0.257

3. Concept-Based Rep. (ours) 0.240 0.151 0.162 0.261

datasets also surpass benchmark zero-shot results for their
respective datasets. These results demonstrate that concept-
based representations with added interpretability can also
improve the performance of downstream classification tasks.
On datasets with a larger number of sound event classes such
as ESC-50 and AudioSet, which have 50 and 527 sound
event labels respectively, the concept-based representations
very closely approach the performance of the original CLAP
embeddings. These results show that, even on large-vocabulary
datasets, adding interpretability to audio emebddings does not
take away from their performance.

Zero-Shot Information Retrieval Similar to zero-shot
classification, we compute the cosine similarity between the
concept-based representation and the text embeddings encod-
ing the text query to determine the best audio-text pair. We
evaluate on Clotho and compare our results to SOTA zero-
shot methods and original CLAP embeddings. The results are
summarized in Table II. We observe mixed performance with
our concept-based representations, with our method improving
the R@1 and mAP@10 of audio-text and text-audio retrieval
respectively compared to the benchmarks.

C. Fine-Tuned Decomposition Evaluation

We evaluate the effectiveness of the fine-tuned audio em-
bedding decomposition on four datasets (Urbansound8K, ESC-
50, Vocalsound, and TUT2017), with a focus on examining
how downstream task performance of datasets with fewer
training samples can benefit from this fine-tuning. We train
the linear projection layer to maximize the cosine similarity
between the original, dense CLAP embedding extracted from
the CLAP audio encoder and the text embedding extracted
from the CLAP text encoder that encodes the prompt “This is
a sound of [class label].” We train and evaluate the projection
layer using the defined development/evaluation splits or folds
corresponding to each dataset. After training the projection
layer, we use the layer to transform the original CLAP audio
embeddings in the evaluation set and then perform embedding
decomposition to obtain concept-based representations of the
projected CLAP embeddings. Similar to the zero-shot setups,

Fig. 4. Zero-shot classification on multiple datasets as the L1 penalty varies
from 0.01 to 0.50, resulting in solutions with L0 norms between ∼5-200 and
as the vocabulary size varies from 2,000 to 5,000 concepts.

we determine the cosine similarity between the concept-based
representations of the projected audio embeddings and text
embeddings of the class prompts to obtain a prediction for
each audio sample and calculate the final performance metric.

The comparison results are shown in Table III. We observe
that the projected CLAP embedding followed by concept
decomposition (row 3) improves upon the performance of
downstream tasks on average, compared to the fined-tuned
CLAP embedding (without concept decomposition, row 1);
it also has significant improvement compared to the results



TABLE III
PERFORMANCE OF FINE-TUNED CONCEPT DECOMPOSITION, COMPARING WITH STATE-OF-THE-ART supervised METHODS AND FINE-TUNED CLAP

EMBEDDING. EVALUATION METRIC IS ACCURACY.

Sound Event Classification Vocal Sound Classification Acoustic Scene Classification
Model Urbansound8K [30] ESC-50 [32] Vocalsound [34] TUT2017 [31]

1. SoTA Supervised 0.9007 [39] 0.991 [40] 0.929 [41] 0.649 [41]
2. Fine-Tuned CLAP Embeddings (No decomposition) 0.897 ± 0.021 0.972 ± 0.012 0.865 ± 0.01 0.615 ± 0.019

3. Fine-Tuned Concept-Based Rep. 0.9 ± 0.023 0.969 ± 0.012 0.855 ± 0.011 0.647 ± 0.021

TABLE IV
CONCEPT DECOMPOSITION ACROSS THREE VOCABULARIES FOR AN AUDIO EMBEDDING FROM CLOTHO DATASET WITH ORIGINAL CAPTION “A PERSON

IS POURING SOMETHING METAL INTO A DISH.”

Baseline vocabulary Pruned vocabulary Clustered vocabulary

Top-3 concepts, prominence
rainstick, 0.170 coffee, 0.130 coin-spinning, 0.170

gold, 0.112 bongo, 0.100 rattling, 0.151
rattling, 0.096 rattle, 0.098 corn, 0.129

Cosine similarity 0.856 0.871 0.857

Fig. 5. Cosine similarity between the concept-based representation and
original CLAP embedding.

Fig. 6. Zero-shot information retrieval on the Clotho dataset as the L1 penalty
varies from 0.01 to 0.50, resulting in solutions with L0 norms between ∼5-
200 and as the vocabulary size varies from 2,000 to 5,000 concepts.

without the projection layer in Table I (row 3). With a single
linear projection layer, it seems to match the SoTA supervised

audio classification methods for Urbansound8K and TUT2017
datasets at accuracies 0.9 and 0.646 respectively. Our re-
sults also show an accuracy gap in the VocalSound dataset,
indicating room for improvement in the use of supervision
for concept-decomposition, such as the use of more complex
models or different loss functions.

D. Sparsity-Performance Tradeoffs

We investigate the relationship between the number of non-
zero concepts used in building concept-based representations
and their downstream zero-shot classification performance by
sweeping the L1 penalty between [0.01, 0.5]. As shown in
Figure 4, beginning with ∼40 concepts and above (correlating
to L1 penalties less than 0.15), performance of zero-shot clas-
sification using concept-based representation for all datasets
except ESC-50 and AudioSet surpasses that of original CLAP
embeddings. Using only ∼20-40 non-zero concepts in our
representations, we can achieve similar performance as the
dense CLAP embeddings, displaying a significant reduction in
memory while maintaining performance compared to original
CLAP embeddings.

Interestingly, we observe that performance does not always
improve with a greater number of non-zero concepts, as
seen with Urbansound8K, ESC-50, and AudioSet. For ESC-
50 and AudioSet, we hypothesize this is partly due to their
large-label nature. With granular classes that span multiple
sound categories, it is possible that additional concepts do not
contribute meaningfully to the audio representation for down-
stream classification. However, further research is required to
better understand this trend.

In Figure 5, we also investigate the impact of the L1
penalty on the cosine similarity between the concept-based
representation and the CLAP audio embedding. As expected,
the cosine similarity increases as the number of non-zero
concepts representing the audio embedding increases.

For the downstream retrieval tasks, the recall rate of the
concept-based decomposition with an L1 penalty of 0.05
(∼100 non-zero concepts) surpasses that of the original CLAP
embedding on average (Table II). As the L1 penalty increases
to 0.1 (∼60 non-zero concepts) and above, retrieval perfor-
mance decreases significantly as shown in Figure 6.



Figures 4, 5, and 6 also show results for additional vocab-
ulary sizes which will be discussed in the following section.

E. Effects of Concept Set Construction and Size

As mentioned in section III-A, we construct a baseline
vocabulary of 2,000 concepts from audio tags in the FSD50K
dataset. Here, we consider the effect of larger vocabulary sizes.
Additionally, we build two additional pruned and clustered
vocabularies of 2,000 concepts by filtering and clustering
audio tags in the FSD50K dataset.

Effects of Concept Set Size While we initially use the
2,000 most frequent audio tags in FSD50K, we now examine
using a larger subset of the most frequent audio tags in
FSD50K. We therefore consider the 3,000 and 5,000 most fre-
quent audio tags in FSD50K without any pruning or clustering.
We find that the size of the vocabulary used to decompose
the audio embedding has a minimal impact on downstream
task performance (Figures 4 and 6). Furthermore, Figure 5
indicates that the cosine similarity between the concept-based
representation and the original CLAP audio embedding does
not vary significantly as the size of the vocabulary changes.

Effects of concept set construction We qualitatively and
quantitatively examine the performance of the three different
vocabulary sets on audio embedding decomposition. To reit-
erate, the vocabularies differ in their method of construction
but all three vocabularies have 2,000 concepts. Qualitatively,
we show the top-3 concepts extracted by each vocabulary set
from an audio file containing sounds of objects pouring into
a dish from the Clotho dataset in Table IV. The three concept
sets capture similar semantic ideas and reconstruct well the
original CLAP embedding (cosine similarity > 0.85). Notably,
all three concept sets identify variations of the concept “rattle”
as a top concept. The pruned vocabulary identifies “rattle”
unlike the baseline and clustered vocabularies, which identify
“rattling”, because “rattling” was removed in favor of “rattle”
in the pruned vocabulary.

Quantitatively, we examine the performance of zero-shot
classification and retrieval using the three concept sets with
the L1 penalty sweeping across [0.01, 0.5] as in section IV-D.
Figure 7 shows the baseline and clustered vocabulary generally
outperform the pruned vocabulary for zero-shot classification.
In contrast, Figure 8 shows the clustered and pruned vo-
cabulary outperforming the baseline vocabulary for text-to-
audio retrieval. However, there is no significant performance
difference between the vocabularies for audio-text retrieval.
We hypothesize that the improvement in using the pruned or
clustered vocabularies over the baseline vocabulary for the
text-to-audio retrieval task is due to the pruned and clus-
tered vocabularies spanning a larger concept space to better
represent the original CLAP audio embeddings. Despite all
vocabularies having 2,000 concepts, the pruned and clustered
vocabularies have a set of more unique concepts, since their
redundant concepts have been removed. Consequently, CLAP
audio embeddings represented by richer semantic concepts
allow for a given text query to better find the audio file with
the content specified by the text query.

Fig. 7. Zero-shot classification as the L1 penalty varies from 0.01 to 0.50
using a constant vocabulary size of 2,000 concepts across three concept sets.

Fig. 8. Zero-shot information retrieval on the Clotho dataset as the L1 penalty
varies from 0.01 to 0.50 using a constant vocabulary size of 2,000 concepts
across three concept sets.

V. CONCLUSION

In this paper, we introduce a method to transform original
CLAP embeddings into concept-based representations for in-
creased interpretability of audio embeddings, which has been
understudied in comparison to image and text embeddings.
Our approach removes the need to collect labeled data for pre-
defined concepts, which is time consuming and labor intensive,
and a limitation of existing audio interpretability methods. We
demonstrate that the concept-based representations improve
or match the performance of original CLAP embeddings on



downstream classification and retrieval tasks. Our concept-
based representations enable future work in concept-based
audio editing or generation.
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