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ABSTRACT2

Background & Motivation: Household chaos is an established risk factor for child development.3
However, current methods for measuring household chaos rely on parent surveys, meaning4
existing research efforts cannot disentangle potentially dynamic bidirectional relations between5
high chaos environments and child behavior problems.6
Proposed approach: We train and make publicly available a classifier to provide objective,7
high-resolution predictions of household chaos from real-world child-worn audio recordings. To8
do so, we collect and annotate a novel dataset of ground-truth auditory chaos labels compiled9
from over 411 hours of daylong recordings collected via audio recorders worn by N=22 infants10
in their homes. We leverage an existing sound event classifier to identify candidate high chaos11
segments, increasing annotation efficiency 8.32× relative to random sampling.12
Result: Our best-performing model successfully classifies four levels of real-world household13
auditory chaos with a macro F1 score of 0.701 (Precision: 0.705, Recall: 0.702) and a weighted14
F1 score of 0.679 (Precision: 0.685, Recall: 0.680).15
Significance: In future work, high-resolution objective chaos predictions from our model can16
be leveraged for basic science and intervention, including testing theorized mechanisms by17
which chaos affects children’s cognition and behavior. Additionally, to facilitate further model18
development we make publicly available the first and largest balanced annotated audio dataset of19
real-world household chaos.20

Keywords: auditory classification, deep learning, household chaos, real-world dataset, developmental psychology21

1 INTRODUCTION

Household chaos – characterized by an environment high in noise and crowding and low in regularity22
and routines (1) – is an established risk factor for child development, affecting both brain and behavior23
development (2, 3). Households that have high levels of chaos are associated with increased child behavior24
problems, including decreased self-regulation, attention and arousal, and increased levels of aggression25
(2, 3, 4), each associated with increased risks for child disruptive behavior disorders such as oppositional26
defiant disorder and conduct disorder (5). Higher household chaos is also linked to worse child cognitive27
performance, including lower IQ (3), lower academic achievement (6) and poorer reading and language28
skills (7, 8). Finally, chaotic households also are associated with harsher and less sensitive parenting29
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practices (9, 10, 11) which can both lead to and reinforce maladaptive trajectories of child development.30
Thus, objective, accessible, remote measures of household chaos could be part of a preventative approach31
for identifying and mitigating child development and behavior problems.32

Research in developmental science typically measures chaos using surveys completed by caregivers33
living in the home (2, 3). However, these measures are subjective, meaning that caregivers with different34
personalities or perceptions may have different thresholds for making chaos judgements. Objective markers35
of chaos, for example, markers automatically detected from audio recordings, would allow for more36
systematic assessments of this risk factor. Additionally, current survey methods provide static measures of37
chaos, reflecting a caregiver’s overall assessment of the chaos in their home. However, household chaos38
is likely a dynamic feature of an environment with dynamic effects on children’s behavior. Once mobile,39
children play an active role in determining their sensory inputs in real time (12, 13). For example, a highly40
reactive child may be more likely to seek out spaces in the home that are quieter and less stimulating.41
Alternatively, a highly surgent or ebullient child may seek stimulation and indeed create it. Dynamic42
objective measures of auditory chaos in real-world household settings would allow researchers to develop43
and test more specific mechanisms by which chaos is hypothesized to affect child outcomes. This is critical44
in that much of the prior work cannot disentangle to what extent high chaos environments are a cause or45
consequence of child behavior problems. For example, the temperamental factor of child surgency is also46
a risk factor for later externalizing behaviors (14). Thus, the association between household chaos and47
externalizing disorders could be in part driven by the fact that more surgent children are likely to contribute48
to increased levels of household chaos. Dynamic measures of household auditory chaos could be used49
to disentangle and clarify such complex possibilities. For example, by examining real-time sequences50
of hypothesized predictors and consequences of chaos in real-world scenarios, researchers could test51
bidirectional influences between chaos and physiological arousal, focused attention, or sleep (15, 16, 17),52
and whether characteristics such as child temperament moderate these relationships. However, there are53
no available models to detect household chaos from auditory recordings collected in children’s everyday54
environments.55

A growing community of developmental scientists and engineers are collaborating to develop algorithms56
to detect and classify developmentally relevant activities from sensors worn by children in natural everyday57
environments (18, 19, 20). These include models that can detect parent and child sensory inputs, emotions,58
behaviors, and contexts in order to understand learning and development in everyday settings (21, 22, 23,59
24, 25). Detected behaviors have also been leveraged for early childhood interventions (26, 27, 28, 29). In60
this paper, we contribute to this broader effort by developing a multi-class classifier for auditory chaos61
using daylong audio recordings collected by an infant-worn audio sensor.62

The major contribution of our paper is to build a multi-class auditory chaos classifier that classifies63
input audio segments into four levels of chaos. We define these classes based on descriptions of chaotic64
environments in the developmental psychology literature, specifically, using the gold-standard questionnaire65
measures that are most commonly used to assess household chaos (30, 31). Periods of silence and sounds66
that are low in volume or contain only a single source of sound are classified as relatively low auditory67
chaos (Chaos 0 or 1, respectively). Time periods with sounds that are high in volume, potentially jarring,68
or cacophonous in nature are classified as high in auditory chaos (Chaos 3). Table 1 provides additional69
examples and description of our four-level auditory chaos spectrum, along with some examples on the types70
of everyday sounds included in each category. From an engineering perspective, this problem is distinct71
from typical auditory classification tasks in that the task here is to classify the quality of an environment72
in terms of relative degrees of auditory stimulation rather than identifying distinguishing characteristics73
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between specific sounds or groups of sounds, as is the case for traditional sound event or acoustic scene74
classification tasks, respectively. Therefore, chaos classification poses a modeling challenge insofar as75
the model needs to go beyond learning individual sounds or groups of sounds, instead learning high level76
representations of the overall soundscape, including the proportion of overlapping sounds, number of sound77
sources, or the jarring or cacophonous nature of sounds contained in an audio recording.78

In our aim to build a multi-class auditory chaos classifier, we make the following contributions:79

• We construct and evaluate a high chaos detector to efficiently annotate data to train and test our80
classifier. Our detector improves annotation efficiency of rare high chaos events by a factor of 8.32,81
allowing us to annotate only 9.85% of 244.3 hours of raw daylong recordings and providing us with 4h82
of ground truth high chaos data for model development.83

• We develop and compare multiple real-world auditory chaos classification models. Our best-performing84
model achieves a macro F1 score of 0.701 (Precision: 0.705, Recall: 0.702) and a weighted F1 score of85
0.679 (Precision: 0.685, Recall: 0.680) across all four levels of chaos.86

• Using a data ablation study, we determine the benefit of a large training dataset (∼55 hours) for model87
performance. By varying the amount of training data, we find that the model’s macro and weighted F188
score increases by 4.0% and 4.6% respectively, when the amount of training data increases from 5h to89
40h.90

• We make a subsample (39.4 hours) of our human annotated auditory chaos dataset publicly available1,91
representing the largest and the only dataset of auditory chaos currently available. This subsample92
includes all audio data from only those participants that consented to share their data with other93
researchers; the rest of it remains private. We also make our best-performing auditory chaos multi-class94
classifier publicly available2 for research applications.95

2 RELATED WORKS

This study is a pioneer effort to build an auditory chaos multi-class classifier, so there is no known96
benchmark for comparison. However, in this section, we discuss the traditional approaches used in97
developmental psychology to measure household chaos and highlight how our current work differs from the98
previous efforts, highlighting the value added of our work. Additionally, we present relevant works in the99
domain of auditory classification and in the creation of large annotated datasets. These works inspired our100
modeling approach and the development of the high chaos detector, a tool that we leveraged to construct101
our large auditory chaos labeled dataset.102

2.1 Measuring Household Chaos103

Household chaos, characterized by noise, disorganization, and lack of routines in the home, has been104
associated with adverse outcomes for both children and caregivers. In the developmental community,105
household chaos has typically been measured through the Confusion, Hubbub and Order Scale (CHAOS)106
a subjective survey completed by the caregiver (30). Some work is based on trained observers making107
detailed observations of participant’s homes through Descriptive In-Home Survey of Chaos—Observer108
ReporteD (DISCORD) (31). Thus, most previous research on household chaos (32, 33, 34, 35) has relied109

1 https://homebank.talkbank.org/access/Password/deBarbaroChaos.html
2 https://github.com/dailyactivitylab/AuditoryChaosClassification
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upon static or invariant measures that correspond to either an “overall” level of chaos in the household, as110
perceived by the caregiver, or a single snapshot of household chaos.111

One recent publication (36) used volume of infant-worn audio recordings as a minute-by-minute dynamic112
measure of household chaos. However, our preliminary analyses and baseline models suggest that volume113
is not a robust measure of household chaos (see Section 5.1.1, Figure 5). For example, an adult gently114
speaking to an infant at close proximity may have a greater volume and amplitude than a TV playing in115
the background. In such situations, volume would provide erroneous measures of household chaos. More116
broadly, as volume is directly proportional to the distance from the audio sensor, volume alone is not a117
good measure of chaos.118

As such, we propose to train a real-world auditory chaos classifier grounded in the existing developmental119
psychology literature on chaos (30). Our classification of chaos is drawn from the gold-standard CHAOS120
survey items relating to the auditory components of household chaos. For example, items including “You121
can’t hear yourself think in our home”, “I often get drawn into other people’s arguments at home” and122
“The telephone and the TV take up a lot of our time at home” were used as the basis of our annotation123
scheme. Given the fact that these questions are responded to by a caregiver living in the home, we infer124
that auditory household chaos should include sounds made by the target infant, children, and other family125
members in the home.126

2.2 Audio Classification127

We know of no existing models that aim to classify auditory chaos. To gain insights into developing128
a model for auditory chaos classification, we review recent work in sound event and acoustic scene129
classification - two domains most related to chaos classification. The auditory signal processing and130
ubiquitous computing communities have made strong gains in audio event detection and scene classification.131
Prior works in the field of audio classification span a range of tasks. Many past works do binary classification132
of specific individual sounds including coughing, laughing, snoring, screaming, or infant crying (22, 37,133
38, 39, 40). Other efforts have explored multi-class classification, including classifying multiple individual134
types or categories of sounds (41, 42, 43, 44), for example, animal, natural soundscapes and water sounds,135
human speech and non-speech sounds, domestic, urban and source-ambiguous sounds. These efforts136
typically leverage publicly available datasets including e.g. ESC-10 and ESC-50 (45), UrbanSound (46),137
CHiME-home (47) and Audio Set (48). Other multi-class classification efforts have focused on classifying138
groups or combinations of sounds in the form of scenes (49, 50), for example, training models to detect that139
dishes clanking, water tap running, and cupboard sounds typically occur in a home environment, or that140
car horn, vehicle sounds, and breeze most likely indicate an busy street environment. Multi-class sound141
and acoustic scene classification are relevant to auditory chaos classification insofar as chaos classification142
also requires the model to learn representations of multiple sounds or groups of sounds in the environment143
to determine the chaos level of that environment.144

Many of these works have achieved good or very good performance on multi-class classification,145
indicating that models can learn distinguishing acoustic features between individual sounds or groups146
of sounds. Early models used traditional machine learning techniques such as Support Vector Machines,147
Gaussian Mixture Models and K-Nearest Neighbours with extracted acoustic input features including148
mel-frequency cepstrum coefficients (MFCC), temporal, spectral, energy and prosodic features (51, 52, 53,149
54, 55). However, currently, most state-of-the-art models use deep learning techniques to classify sound150
events or scenes (56, 57, 58). Given large amounts of data, deep learning models can extract complex151
high-level features that can better distinguish between sounds and scenes rather than the pre-selected152
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typically low-level features provided to traditional machine learning algorithms. In the current paper,153
we test out both – traditional machine learning and deep learning approach – to auditory chaos model154
development as there is no previously established baseline for the task of auditory chaos classification. As155
auditory chaos classification is a complex task where distinguishing between chaos levels depends not only156
on low-level acoustic features such as MFCCs, loudness and energy but also on high-level features such157
as proportion of overlapping sounds, level of “cacophony”, etc., we hypothesize that the deep learning158
approach might perform the best.159

A key consideration for model application is whether models are trained and tested on real world data.160
Models constructed with data collected in “clean” laboratory environments have a high performance on161
those datasets, but do not generalize to real-world settings (22, 37, 38, 59, 60). Real-world data is more162
unstructured and noisy than lab-based data, and typically contains a more variable examplars of sound163
classes. Therefore, real-world data is generally thought to pose a harder challenge for models to learn from164
and maintain consistent performance. As the ultimate goal of our auditory chaos model is to understand165
the dynamic effects of chaos on child development as it occurs in children’s everyday environments, it166
is essential that our model works in real-world settings. We, therefore, undertake the task of real-world167
auditory chaos classification.168

Auditory chaos classification is different from these aforementioned audio event and acoustic scene169
classification works, but can likely draw from them. Similar to acoustic scene classification, chaos170
classification depends upon considering groups of sounds rather than identifying specific sounds. However,171
the goal is to distinguish the quality of different environments rather than sounds that can be used to172
distinguish different types environments from one another. This is challenging in that two highly chaotic173
instances of real-world audio might not have any overlap between the characteristic sound qualities that174
classifies them as highly chaotic. For example, an audio segment could be classified as having a high (level175
3) level of chaos due to the presence of a single loud sound, such as of a loud bang or dog barking, or a176
cacophony of quieter sounds occurring over time, such as in a crowded restaurant. Moreover, a given sound177
class can be highly chaotic in one instance but not in another depending on its characteristics in that instant.178
For example, the class speech can be highly chaotic if a person is shouting or screaming but not chaotic179
when gently speaking to an infant. Thus, the chaos classifier must learn a high level representation that180
goes beyond the individual sounds or even types of sounds.181

2.3 Annotation of Rare Events182

A supervised approach for auditory chaos classification requires an annotated dataset to train and test183
the classifier. However, creating a large enough dataset to build a successful model for auditory chaos184
classification is challenging as instances of high chaos are relatively rare in everyday life. For example,185
annotation of 14.1 hours of our raw audio recordings led to highly imbalanced annotated dataset with only186
1.02 hours of high chaos (Chaos 3). This feature is not unique to high chaos alone; other everyday sounds,187
such as coughing or infant crying also occur rarely during daylong recordings. To get enough ground truth188
to train and test their models, some previous works have annotated large volumes of audio data e.g. (22, 37).189
One strategy for annotating large volumes of audio data is to outsource annotation via crowdsourcing,190
which was employed to create Audio Set (48) and OpenMIC-2018 (61). However, crowdsourcing can191
fall short for annotation tasks that require domain expertise. Additionally, for many datasets collected by192
the developmental science community, incuding first-person wearable audio datasets such as our own,193
crowdsourcing could violate participant privacy and is therefore often not an option. Moreover, issues have194
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been raised about the quality of annotations collected (62, 63, 64) as the primary motivation of the online195
workers tend to be monetary (65).196

Another domain dealing with the challenge of rare events is the field of auditory anomaly detection.197
It is hard to collect data for anomalies or abnormal events such as gunshots, screams, glass breaking198
and explosions in the real world as their occurrences are quite rare. To circumvent this problem, to199
obtain enough data to develop classification models for abnormal events, previous works have leveraged200
artificially curated datasets created by superimposing the rare events on background noises from different201
environments (66, 67, 68). Others have collected data by having actors create and enact abnormal situations202
(40). However, such artificially constructed datasets and data collected in structured laboratory contexts203
do not reflect real-world settings, and hence do not generalize to the real-world scenarios that they are204
intended to function in (22, 37, 38, 59, 60).205

We therefore undertake the task of collecting and annotating real-world audio recordings to ensure that206
our auditory chaos classifier works in real-world settings. Inspired by works dealing with annotation of207
large real-world audio recordings (22, 48, 61, 37), we take the approach of identifying candidate sets for208
the rare high chaos class for annotation instead of annotating the entire dataset. Candidate sets represents a209
set of audio segments that have a high likelihood of containing the class of interest. Audio Set, a large-scale210
audio dataset containing 632 labeled sound events,(48) followed a multi-modal approach to select candidate211
sets prior to annotation via crowdsourcing. This included leveraging other sources of information like212
metadata, anchor text and user comments to predict events in videos. Videos with high scoring predictions213
were chosen as candidate videos for annotation. Additionally, they used weak search engines to select214
candidate videos with high confidence.215

Other previous works have employed the use of specific classifiers for candidate set selection. For216
example, OpenMIC-2018, a dataset for multi-instrument classification, trained a classifier on Audio Set217
classes specific to musical instruments to select candidate audio samples for annotation. Similar approaches218
have been used to select sound intervals of high likelihood for snoring and infant crying (22, 39, 69).219

We draw from these aforementioned works to design a high chaos detector (detailed in Section 4) that220
also leverages an existing classifier, YAMNet (41), trained on Audio Set (48) to output a candidate set of221
high chaos audio segments to be annotated. Our annotation task has distinct challenges relative to those222
undertaken by previous works. In particular, we only have one source of information at our disposal (audio),223
whereas Audio Set had multiple (metadata, user comments, links, etc.). Next, given that no prior models224
for auditory chaos classification have been developed, we cannot use a direct one-to-one mapping from225
existing classifiers. As such, there is a need for a creative solution to map the predicted labels from an226
existing audio classifier to our four levels of auditory chaos to select candidate segments.227

3 MODELING AND DATA OVERVIEW

Here, we outline our process for constructing an auditory chaos classifier, as detailed in subsequent sections228
of our manuscript and illustrated in Figure 1. First, we collect a dataset from real-world infant-worn audio229
recordings. Next, to train and test our model we obtain and annotate data via three primary pathways: 1)230
human annotation of unfiltered data, 2) by developing and using a High Chaos Detector, and 3) human231
selection of additional candidate segments. Finally, we combine data from these three pathways to form232
the Annotated dataset, which we use to train and test machine learning models for the real-world auditory233
chaos classification task, detailed in Section 5.234
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Figure 1. Flowchart of our auditory chaos classification model development.

3.1 Device235

Our daylong audio recordings are continuously recorded in naturalistic unstructured home settings using236
the LENA (Language ENvironment Analysis) audio sensor (18) worn by infants in a vest. LENA records237
all audio occurring within 6-10 feet of the infant and can record continuously up to 24 hours on a single238
charge. All audio is stored in PCM format one 16-bit channel at a 22.05kHz sampling rate (70).239

3.2 Participants240

88 families enrolled in the broader study and audio data was collected from 78 participants. The broader241
study aimed at utilizing wearables to characterize mother-infant interactions in everyday home settings242
(22, 71). All participants lived in a mid-sized urban city. All participants provided informed consent for243
using the data in subsequent analyses, including the present study. Due to the time-intensive nature of244
auditory chaos annotation, 22 participants were selected from this larger set of 78 participants for the245
current study. These 22 participants were selected based on the following criteria: English-speaking families246
who shared at least one 12+ hour continuous LENA recording. To ensure socioeconomic representation, we247
selected participants with different levels of income and education. Table 2 depicts sample characteristics.248

3.3 Annotation Scheme249

To facilitate the training and testing of the auditory chaos classifier, all 411.2 hours of data collected from250
22 participants were segmented into 296064 non-overlapping continuous 5-second long audio segments.251
As the primary reason to build this model is to capture the dynamic changes in chaos, having an automated252
measure that predicts chaos levels at a high granularity is preferable. Additionally, if desired, outputs at253
a finer granularity can be combined to obtain chaos measures over a larger timescale i.e. a minute or an254
hour or even a day. As some high chaos events can last only a couple of seconds, for example, a loud bang255
or a bark, we chose the 5 second timescale to be able to capture these changes. Furthermore, we follow256
previous works who have used 0.5-5 second audio segments for sound event classification (37, 22, 42) or257
acoustic scene classification (43, 44), domains most related to our auditory chaos classification task.258
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A subset from these 296064 segments were annotated by trained research assistants as detailed in Sections259
4.2 and 5.2. All annotations were done on a segment-level. Each segment was annotated as one of four260
levels of auditory chaos, namely, no chaos (0), low chaos (1), medium chaos (2) and high chaos (3), with261
each segment having only one chaos label. Sample sounds for each chaos level are described in Table 1262
and the complete auditory chaos annotation scheme can be found in Supplementary Material. Annotators263
included all sounds made by children and infants (e.g. laughing, yelling, crying), including the target264
infant wearing the audio recorder in their determination of the chaos levels for a segment. For example,265
loud infant crying would be labelled as high chaos (level 3). The gold-standard CHAOS questionnaire266
includes items such as “It is a real zoo in here” and “I can’t hear myself think”, which would certainly267
include sounds made by infants, children, and other family members in the home. Given that this particular268
measure of household chaos has been found to be predictive of children and parents’ outcomes in the269
developmental literature (32, 33, 34, 35), it is essential to adhere to this definition of chaos in developing270
an auditory chaos classification model.271

Typically, a segment was annotated with the max chaos level of all the sound classes it contained.272
However, it is important to note here that the chaos level assigned to a segment did not always depend only273
on sound classes it contained but was also labeled by taking into consideration the overall cacophonous274
nature of the segment. This is also consistent with the CHAOS questionnaire items, for example, “There275
is often a fuss going on at our home” which could refer to multiple ongoing events contributing to high276
auditory chaos. For example, multiple medium (level 2) chaos sounds happening simultaneously could lead277
the segment to be marked as high (level 3) chaos even though the max chaos level of all sounds classes is 2.278
We include our detailed annotation scheme in the Supplementary Material Section 1. Annotations were279
conducted according to best practices in behavioral sciences (inter-rater reliability kappa score (72): 0.76,280
corresponding to strong agreement).281

3.4 Datasets282

To obtain a dataset to train and test our auditory chaos models, we first constructed two separate datasets283
– the Unfiltered set and the Filtered set. Table 3 summarizes the volume of data annotated and the number284
of participants in each set.285

Unfiltered set: The Unfiltered set is created by directly annotating subsamples of daily audio recordings in286
two ways: 1) by continuously annotating portions of the daily recordings forming the Unfilt-Continuously287
Annotated set, and 2) by randomly sampling segments from the recordings and annotating those segments,288
forming the Unfilt-Randomly Sampled set. The complete Unfiltered set is used in the development and289
assessment of our High Chaos Detector, and is further detailed in Section 4.2 below.290

Filtered set: We also employ two filtering strategies, 1) our High Chaos Detector and 2) Human Selection291
to more efficiently generate a substantial training and testing dataset, together comprising our Filtered292
set. As detailed in Section 4, the detector is used to identify candidate segments likely to contain chaotic293
sounds which are subsequently annotated by trained research assistants. Similarly, human selection is used294
to identify additional candidate no chaos/silence and high chaos segments (Section 5.2.1) which are later295
annotated.296

We combine the Unfiltered and Filtered sets into the Annotated dataset that is used to train and test the297
auditory chaos multi-class classifiers, as detailed in Section 5.298
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4 HIGH CHAOS DETECTOR

Our first aim was to develop a high chaos detector to aid in efficiently annotating rare high chaos (Chaos299
level 3) events with the goal of creating a balanced training dataset for modeling. Our detector selects300
candidate segments for manual annotation. Candidate segments have an increased likelihood of containing301
ground truth high chaos events as determined by the presence of loud, jarring or otherwise stimulating302
sound classes. To obtain candidate segments, we leverage an existing everyday sound classifier that can303
detect 521 sounds classes of various levels of stimulation (e.g. silence or white noise vs. restaurant sounds304
or dishes clanking) which we use to map audio segments to our four chaos levels (see Table 1). The logic305
of the detector is that mapping a near-exhaustive list of everyday sound predictions to chaos levels will306
aid in identifying high chaos candidate segments. Identifying candidate segments increases the annotation307
efficiency by reducing the annotation set, as only those segments predicted to contain high chaos are308
manually annotated for four levels of auditory chaos. After annotating the candidate high chaos set, we309
found that all four chaos levels including high chaos had sufficient variability of chaos classes annotated310
to form a balanced dataset to train and test our model. As such, we did not label additional data for other311
levels of chaos.312

Below we describe the development, implementation, and evaluation of the detector. It is important to313
note here that the main goal of the detector is to maximize the recall of high chaos events while decreasing314
the size of the candidate set needing to be annotated. The precision of the detector helps decrease the size315
of the candidate set; given the complex nature of auditory chaos, we define the detector to be successful316
as long as the size of the candidate set is smaller than the original dataset and we get a reasonably good317
amount of labeled high chaos segments.318

4.1 Development and Implementation319

The high chaos detector leverages a publicly-available audio classifier, YAMNet (Yet Another Mobile320
Network) by Google (41), to sample candidate audio segments for high chaos. Figure 2 illustrates the321
pipeline for our high chaos detector, which we detail in the text below.322

Figure 2. Step-by-step workings of the high chaos detector starting from a raw audio input segment to the
predicted chaos classes.
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4.1.1 Clustering YAMNet classes into high chaos and non-high chaos groups323

YAMNet is a pretrained classifier employing the MobileNetV1 depthwise-separable convolution324
architecture (73). It is trained on Audio Set (48) and can classify 521 everyday audio events. YAMNet325
takes as input raw audio segments of any fixed length (minimum 975 ms). Audio segments are resampled326
to 16kHz mono and then converted to mel-spectrograms before being passed to the model. YAMNet then327
outputs 521 per-class output scores of the predicted sound events for the entire input audio segment.328

To leverage YAMNet predictions to automatically sample candidate high chaos segments, we first329
manually grouped the individual YAMNet classes into two groups - highly chaotic and not highly chaotic330
sounds. To reduce the rate of erroneous predictions, out of the 521 YAMNet classes, we did not consider331
those that had a quality estimate of 33% or below in Audio Set. Quality estimates are provided by Audio332
Set as a measure of the accuracy of their annotated labels. Furthermore, we also excluded classes that we333
determined would be unlikely to be present in our infant-worn daylong recordings (e.g. eruption, artillery334
fire, motorboat/speedboat), leaving us with 368 YAMNet classes. Next, we manually grouped each of335
these 368 classes into high chaos and non-high chaos groups. These labels were determined by common336
associations with the sound class, e.g children shouting, shatter, bark, etc. were labelled as high chaos337
whereas white noise, shuffling cards were labelled as non-high chaos. Additional examples of Audio Set338
classes predicted by YAMNet assigned to the different levels of chaos can be found in Table 1. Chaos 0, 1,339
and 2 fall in the non-high chaos group and Chaos 3 represents the high chaos group.340

4.1.2 Pruning YAMNet predictions341

During qualitative assessment of the accuracy of YAMNet predictions on our infant-worn audio data, we342
identified two classes that were frequently incorrectly predicted by YAMNet. First, YAMNet frequently343
misidentified positive or neutral infant vocalizations or babbling as infant crying and vice-versa. Thus, for344
any segment where YAMNet predicted both infant crying and babbling, we applied a heuristic to determine345
which was more likely. Specifically, given that crying typically has much higher root-mean-square-energy346
(RMSE) values than non-cry vocalizations, if any of the extracted RMSE values for that segment were347
more than 3 times the mean RMSE for that participant, we kept infant crying and dropped infant babbling348
and vice-versa. RMSE values were extracted for each segment using a sliding window approach with a349
window length of 512 samples with a hop length of 256 samples at the sampling rate of 22050 Hz using350
the Librosa (74) library in Python, giving us a total of 431 RMSE values for our 5s audio segment. Mean351
RMSE for a participant was calculated by taking the average of all extracted RMSE values (using the above352
sliding window approach) for all segments in the entire daylong recording from that participant.353

YAMNet was also unable to distinguish between vehicles and background white noise sounds commonly354
used to facilitate infant sleep. As white noise sounds are typically quieter and have a flatter waveform than355
vehicles, we used spectral flatness and zero crossings to distinguish them. Similar to RMSE, we extracted356
spectral flatness values for each segment using the sliding window approach, giving us 431 spectral flatness357
values for each 5s segment. Zero crossings were computed at the segment level as the total number of times358
the audio signal crossed from positive to zero to negative or negative to zero to positive during the five359
second duration of the segment. If any segment had all spectral flatness values greater than 0.0001 or the360
number of zero crossings were between 1000 and 4000 (corresponding to unvoiced noisy audio) and the361
segment had a predicted label vehicles or similar, we dropped it.362
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4.1.3 Leveraging YAMNet predictions for automatic high chaos detection363

To automatically sample candidate segments for high chaos, we first provided our raw 5s audio segments364
to YAMNet to obtain sound event predictions. YAMNet provides a confidence level for each of its365
predictions. We only considered the top ten predictions based on the confidence level and discarded all366
predictions below 0.01% confidence. Next, we additionally pruned these predictions using acoustic features367
as described above. Finally, for each segment, all remaining YAMNet predictions were assigned a high368
chaos or non-high chaos group according to the groups created above. If any of the YAMNet predictions369
for a segment were mapped to a high chaos group, the segment was chosen as a candidate segment for370
high chaos by the detector. Furthermore, to circumvent YAMNet’s missed or erroneous predictions, and to371
ensure that we captured all high chaos segments, we included all segments in the high chaos candidate set372
irrespective of their YAMNet predictions if any of their extracted RMSE values using the sliding window373
approach were more than 7 times the mean RMSE for that participant i.e. very loud segments. Qualitative374
trial-and-error analyses were used to determine the threshold for identifying very loud segments.375

4.2 Dataset376

We evaluate the performance and efficiency of the detector in identifying high chaos events using both377
subsets of our unfiltered annotated data: continuously annotated data and randomly sampled data (see also,378
Figure 1, top pathway).379

4.2.1 Unfiltered Set: Continuously annotated data (Unfilt-CA)380

To test the performance of our detector for identifying high chaos events, we annotated continuous 2.6381
to 7 hour segments from three unique participants’ daylong recordings, totaling 12.9 hours of annotated382
data (9296 5s segments). This Continuously Annotated data is a good representation of the chaos present383
in continuous daylong audio recordings. We also use this dataset to assess the feasibility of obtaining a384
sufficient sample of rare high chaos events using typical annotation strategies.385

4.2.2 Unfiltered Set: Randomly sampled data (Unfilt-RS)386

To test the efficiency of the detector for identifying high chaos events, we compared the proportion of387
ground-truth high chaos annotated in high chaos candidates (identified by the detector) with randomly388
sampled segments from the same participants. In a sample of 3 participants, we matched the number of389
randomly selected segments to the number of candidate high chaos segments labeled by the detector for390
that same participant. For example, if for one participant, the detector identified 100 segments as high391
chaos, we randomly sampled 100 segments of raw audio data as a comparison from the same participant.392
In total, 3.2 hours of data (2326 5s segments) were randomly sampled from 3 participants and annotated393
by the trained research assistants for four levels of chaos. These annotated segments form the Randomly394
Sampled dataset.395

4.3 Evaluation396

Our detector had a recall of 0.653 and a precision of 0.267 for the high chaos class (Chaos 3), as evaluated397
on the Continuously Annotated data. This means that we missed 34.7% of high chaos events present in398
the raw data. However, given that the goal of our detector was to increase annotation efficiency of these399
relatively rare high chaos segments, we find our detector’s performance adequate. Specifically, the detector400
allowed us to annotate only 9.85% (24.8 hours) of the entire daylong recordings from 14 participants (244.3401
hours) while providing about 4 hours of ground truth high chaos positive examples.402
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Next, we evaluated the extent to which the detector increases annotation efficiency of the rare high chaos403
events. To do so we compared the proportion of ground-truth high chaos segments identified in randomly404
sampled data vs. segments identified as high chaos by our detector. 16.8% of detector-identified high chaos405
segments were labeled as high chaos in ground truth annotation, vs. only 2.02% of the set sampled by406
random sampling. Thus, the detector identified 8.32 times more high chaos events in a matched volume of407
audio randomly drawn from the same three participants’ recordings.408

5 AUDITORY CHAOS CLASSIFIERS

Distinguishing between levels of auditory chaos depends upon many factors including the volume, quantity,409
and quality of sounds, the source and type of sounds, and the extent of overlapping sounds. We explored410
multiple different machine learning models to solve this task. Given the complexity of chaos classification, a411
deep learning approach where the model identifies and learns the most distinguishing features, may perform412
better than a traditional machine learning model that requires human feature engineering. When applied to413
a variety of audio recognition tasks, deep learning models have repeatedly shown superior performance in414
comparison to traditional models (60, 22, 75). However, there is no prior work in the domain of auditory415
chaos classification. Therefore, we evaluate and compare the performance of a traditional machine learning416
model, namely Random Forest (RF), trained using a range of classical acoustic features, and a deep learning417
framework, Convolutional Neural Network (CNN). Additionally, given that volume has been used as a418
proxy for household chaos (36), to provide additional justification for our work, we train a baseline model,419
a RF, using audio volume features only.420

Our goal is to train a model to classify a given input audio segment into four levels of auditory chaos.421
To train our classifiers, we used both filtered and unfiltered annotated data (i.e. the Annotated dataset).422
As is standard, we tested our models on the Annotated dataset as well in a leave-one-participant-out423
cross-validation (LOPO-CV) fashion. Additionally, we tested our models on subsets of our unfiltered424
ground truth data to evaluate if model performance generalizes to real-world scenarios and daylong audio425
recordings. Finally, we explored if human annotation time and effort can be minimized by investigating the426
relationship between size of training data with model performance.427

5.1 Model Development and Implementation428

5.1.1 Baseline model with volume features only: RF-3f429

We developed a baseline model to test whether volume features alone could be used to predict four430
ground truth levels of auditory chaos. For each 5s audio segment that was annotated for ground truth431
auditory chaos (detailed in 5.2), we extracted the peak amplitude and RMSE features, to represent the432
loudness or energy of that audio segment. We evaluated if peak amplitude and RMSE had the predictive433
power to successfully classify ground truth chaos levels using a RF. For each audio segment, RMSE was434
extracted using a sliding window approach for a window size of 512 samples with a hop length of 256435
samples and the mean and standard deviation across the 5s segment was computed and used as features.436
Peak amplitude was computed by taking the maximum amplitude in the 5s audio segment. These three437
features were fed as inputs to the RF (model referred to as RF-3f) with 1000 estimators and the model438
performance was assessed. All features were extracted using the librosa (74) library in Python.439
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5.1.2 Traditional acoustic features model: RF-53f440

In the traditional machine learning approach, we extracted a broad range of classical acoustic features441
from the raw audio segments and fed them as inputs to the RF. For each 5s audio segment, we extracted442
27 features comprised of 20 MFCCs, zero crossing rate, spectral features (flatness, rolloff, centroid,443
bandwidth), RMSE and peak amplitude using librosa. These features were chosen as they have been444
successfully used in previous works for sound event detection (22, 58, 54, 52) and scene classification445
(51, 76, 77), domains most similar to auditory chaos classification. Similar to our baseline models, all446
features were extracted using a sliding window approach for a window size of 512 samples with 50%447
overlap. Mean and standard deviation for 26 out of the 27 features (except peak amplitude) were computed448
across the 5s segment, giving us a total of 53 (26 ∗ 2 + 1) features. These 53 features were fed as inputs to449
the RF (model referred to as RF-53f) with 1000 estimators and the model performances were assessed.450

5.1.3 Deep learning model: CNN451

Our deep learning model is taken from a previously published work in the sound event classification452
literature (42). We chose this model because the previous work has showcased that it has good performance453
when trained from scratch for multi-class sound event classification – a domain most related to auditory454
chaos classification. Moreover, the training dataset used to train the model in (42) consists of 41.2 hours455
of audio data, very similar to our 40 hours of balanced chaos training data. This ensures that the model456
complexity (in terms of number of convolutional layers) is appropriate for the amount of chaos training457
data we have and the model will not overfit or underfit our training data. We train and test this network458
with our real-world first-person infant-centric auditory chaos data.459

The model employs a Convolutional Neural Network (CNN) with three convolutional layers (5x5 kernel),460
incorporating Rectified Linear Unit (ReLU) activations. Two max-pooling operations are interleaved461
with these convolutional layers. Additionally, Batch Normalization (BN) layers are placed before each462
convolutional layer, followed by ReLU activation. At the network’s terminus, two fully connected (dense)463
layers are added. To further enhance model performance, the established pre-activation technique is464
implemented, where BN and ReLU activation are applied before each convolution operation. Figure S1465
in the Supplementary Materials depicts the model architecture along with it parameters. The model has466
≈0.5M weights. It uses the categorical cross-entropy (CCE) loss function, a batch size of 64 and an Adam467
optimizer with an initial learning rate of 0.001 along with Earlystopping applied with a patience of 15468
epoch based on the validation accuracy. All hyperparameters mentioned above were kept exactly the same469
for our chaos model except the input audio segment length was changed to 5 seconds to match the length470
of our audio segments.471

The 5-second raw audio segments are chunked into 2 second patches and these patches are converted472
to log-scaled mel-spectrograms with 96 components (bands) using a window size of 40ms with 50%473
overlap, to be fed as input to the model. Patches which are shorter than 2 seconds are replicated until the474
desired length of 2 seconds is reached. Each patch retains the segment level ground truth chaos label. The475
chaos model outputs segment-level predictions from our four chaos classes (0-3) which are obtained by476
computing predictions at the 2s patch-level and aggregating them using geometric mean.477

5.2 Dataset478

To train and test our classifiers, we combined our filtered and unfiltered sets to create our Annotated479
dataset. In total, the Annotated dataset comprised approximately 55 hours of labelled data across daylong480
recordings of 22 participants. Table 3 provides a summary of the subsets of data that comprise the complete481
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Annotated dataset. For model training, we subsampled a balanced set from the Annotated dataset, as482
detailed below.483

5.2.1 Filtered set484

The Filtered set combines two filtered sets, the Detector Selected set (DS-Filt) and the Human Selected485
set (HS-Filt), (see also Figure 1, pathways two and three). Together, the Filtered set comprises a total of486
38.5 hours (27696 5s segments).487

DS-Filt was created by manually annotating all candidate high chaos segments identified by the detector488
in the daylong recordings of 14 participants, including the 3 participants in the Randomly Sampled set. The489
candidate set containing 17917 segments (24.9 hours) was annotated by trained research assistants for four490
levels of chaos. While filtration successfully increased the proportion of high chaos in the training dataset,491
overall the filtered data was heavily biased towards low and medium chaos segments, which made up 85%492
(20.4h) of the annotated segments. By contrast, high and no chaos segments comprised approximately 12%493
(4.4h) and 3% (0.14h) of the filtered dataset, respectively.494

HS-Filt was created to further increase the amount of training data, specifically for the high and no chaos495
classes. Human annotators identified and annotated an additional set of audio segments from recordings496
containing high levels of no chaos and high chaos. We achieved this through various means, including by497
selecting recordings where families shared with us that they recorded at special events or locations that498
may be particularly chaotic, including museums, restaurants, or daycare settings, as well as by listening to499
parts of the recording to attempt to identify extended periods of time (0.2-2.7 hours) that contained these500
classes of chaos. In this manner, we annotated 8.3 hours of no chaos and 5.2 hours of high chaos. This gave501
us a total of 13.6 hours (9779 5s segments) of annotated data from 12 participants (including 3 participants502
from the Unfiltered set and 5 participants from DS-Filt).503

5.2.2 Unfiltered set504

The Unfiltered set combines the Continuously Annotated (Unfilt-CA) andRandomly Sampled (Unfilt-RS)505
setsused to evaluate the high chaos detector, as detailed in Section 4.2 above (see also Figure . In total, the506
Unfiltered set comprised of 16.1 hours (11622 5s segments) of annotated data.507

5.2.3 Creating a balanced dataset for model training508

As our Annotated dataset was imbalanced, prior to any and all model training we subsampled this dataset509
to create a balanced training dataset. Specifically, the complete Annotated dataset included: 8.7h of no510
chaos, 16.3h of low chaos, 19.0h of medium chaos, 10.7h of high chaos totalling 54.6h. Thus, the maximum511
amount of balanced data we could use to train our auditory chaos model was 40 hours (10h per chaos512
level), limited by the amount of high chaos annotated minus the test set. We did not want to sample with513
repetition for any of the chaos levels other than no chaos. No chaos denotes complete silence or absence of514
any sounds, so sampling with repetition is less likely to change the nature of the class. To ensure that every515
no chaos segment annotated was included in the training set atleast once, all the annotated no chaos data516
from the non-test participants was included in the train set and the amount of no chaos data needed to make517
it 10 hours was sampled with repetition. For chaos levels, where more than needed data was available, the518
required hours were randomly sampled.519
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5.3 Evaluation520

We conducted five analyses to evaluate model performance under different conditions. For each analysis,521
the models were tested using LOPO-CV. For each fold of LOPO-CV, models were trained with a set of522
data balanced across all four levels of chaos, randomly sampled from the Annotated dataset (minus the test523
participant’s data) as described in Section 5.2 and tested on the test participant’s data. The participants as524
well as their data included in the test set varied depending on the analysis as detailed below.525

As our datasets are highly imbalanced, we report both macro and weighted evaluation metrics. We526
calculated both global macro and global weighted F1 scores to assess the model’s performance across527
the entire test set. Global performance metrics take into account all instances in the test set, providing a528
single aggregated metric for the entire dataset. Additionally, we computed participant-specific weighted529
performance scores in order to statistically test the differences between pairs of models on individual530
participants using paired t-tests. Given heavily skewed chaos class distributions and small participant-531
specific datasets, individual participants often had very few samples for some chaos classes e.g. less than 60532
5-second samples i.e less than 5 minutes of data. This led to highly noisy, non-representative performance533
on these minority chaos classes, biasing the overall evaluation metrics. As a result, we refrained from534
computing participant-specific macro accuracy scores to ensure a more accurate representation of our535
model’s real-world performance.536

Table 4 summarizes the global macro and weighted performance of all three models on the different test537
sets. Figure 3 provides the confusion matrices for our best-performing CNN model on the Annotated dataset538
as well as its two component sets, the Filtered set and the Unfiltered set. Participant-specific weighted539
performance metrics, along with complete results for paired t-tests are summarized in Table S1 and Section540
2 of Supplementary Materials, respectively.541

5.3.1 Model performance on Annotated dataset542

On the Annotated dataset, the CNN model achieved the highest F1 score across all three metrics, followed543
by the Acoustic Features RF-53f model. However, when the participant-specific weighted F1 scores were544
compared using paired t-tests, these two models were not statistically differentiated from one another. The545
baseline model, RF-3f, had substantially worse performance than the CNN and the RF-53f models across546
all three metrics and the difference was significant in terms of participant-specific weighted F1 scores.547

5.3.2 Model performance on Filtered set548

The pattern of results on the Filtered set mirrored those of the Annotated dataset, with the CNN having549
higher performance than the Acoustic features RF-53f model in terms of all three metrics, with insignificant550
differences between CNN and RF-53f considering participant-specific weighted F1 scores. Both these551
models exhibited superior performance across all three metrics compared to the baseline model, RF-3f,552
showing a significant variance in participant-specific weighted F1 scores.553

5.3.3 Model performances on Unfiltered set554

To ensure that our models generalize to daylong recordings, i.e. our domain of interest, we tested555
the above model performances on unfiltered data, i.e. that was not sampled by the detector or human556
sampling. This provides a truer representation of the chaos present in daylong recordings. In contrast to557
the prior results, the Acoustic features RF-53f model had higher accuracy than the CNN model on global558
macro and weighted metrics. However, the CNN had the highest participant-specific weighted F1 score.559
Again, the CNN model was not statistically differentiable from the RF-53f using the participant-specific560
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weighted F1 scores. As above, both the RF-53f and the CNN substantially outperformed the baseline561
model, RF-3f in terms of all three metrics and their performance was significantly higher with regards to562
the participant-specific weighted F1 score.563

5.3.4 Model performances on Cry and Non-cry sets564

As infant crying is likely to occur in our infant-worn audio recordings and could contribute a substantial565
proportion of high chaos labels, we tested the performance of our models on both cry and non-cry audio566
segments. Knowledge of our model performance on the non-cry segments is important for research567
questions examining impacts of chaos on infant crying and vice versa, as well as more broadly for568
researchers who want to distinguish chaotic sounds that originated from the target child vs. those that569
originated elsewhere. We used the YAMNet “infant crying” class to identify all segments that included570
infant crying in the Annotated dataset. Cry labels were used to split the Annotated dataset into two subsets -571
Cry and Non-cry set. To ensure accurate evaluation, in the Cry set, we dropped segments predicted as Chaos572
0. The Cry set included no ground truth Chaos 0 segments and less than nine predicted Chaos 0 segments,573
meaning we did not have sufficient segments to assess performance in this class which would otherwise574
bias our global macro metrics. Global evaluation measures were then computed across all 22 participants575
for the Cry and the Non-cry sets separately. The CNN model again performed better than the Acoustic576
features RF-53f model on both the Cry and Non-cry sets. Both models performed substantially better than577
the baseline model, RF-3f. Confusion matrices for the CNN model can be found in Supplementary Material578
Figure S2.579

5.3.5 Effects of training data ablation on best-model performance580

To examine model performance as a function of the size of training data we conducted a data ablation581
study. As the CNN model had the highest F1 scores on 5 out of 6 test sets including the Annotated dataset,582
our largest test set, we used this model to conduct our data ablation study. We ran 12 experiments (3 runs ×583
4 training data sizes) varying the amount of training data sampled from the Annotated dataset. We used a584
range of exponentially decreasing balanced sets, specifically: 40h, 20h, 10h and 5h. For all experiments, we585
trained and tested the CNN using LOPO-CV across all 22 participants. When trained with 5h of balanced586
data, the model achieved a global macro precision of 0.685, recall of 0.674 and F1 score of 0.674 and a587
global weighted precision of 0.661, recall of 0.651 and F1 score of 0.649. Adding 35 additional hours of588
annotated training data (40 total) improved the macro precision by 0.020, recall by 0.028 and F1 score by589
0.027. Similarly, the global weighted precision, precision and F1 score were improved by 0.024, 0.029590
and 0.030 respectively. Therefore, both global macro and weighted metrics improved after the addition of591
more training data. Figure 4 showcases the effect of training data ablation on the CNN model performance592
(exact model performance values can be found in Table S3 in Supplementary Material).593

6 DISCUSSION

To facilitate research and intervention on the effects of household chaos on child functioning (2, 3, 4, 7,594
8, 9, 10, 11), we developed and compared various multi-class classifiers for detecting auditory chaos in595
real-world settings. To efficiently annotate rare high chaos events, we developed a high chaos detector,596
which resulted in an 8.32× increase in efficiency in identifying these events relative to baseline rates. Our597
best-performing auditory chaos model – a CNN trained with 40 hours of balanced annotated real-world598
data– achieved a macro F1 score of 0.701 and a weighted F1 score of 0.679 in challenging real-world599
settings.600
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Figure 3. Confusion matrices for our best-performing auditory chaos CNN model (A) Trained and tested
on the Annotated dataset across 22 participants. (B) Trained on the Annotated dataset; tested on the Filtered
set of 21 participants. (C) Trained on the Annotated dataset; tested on the Unfiltered set of 6 participants.

6.1 CNN Achieves Best Overall Model Performance601

We tested three different models for auditory chaos classification. Our results indicate that the deep602
learning approach using a CNN architecture achieved the highest performance in terms of global macro603
and weighted F1 score in 5 out of the 6 test sets. The acoustic features model trained on 53 features604
(RF-53f) had the highest performance in terms of global metrics on the remaining test set, the Unfiltered605
set (see Discussion in Section 6.2, below). However, when participant-specific weighted performance606
metrics were computed for all models, CNN had the highest performance across all test sets. We note that607
while performance values differed across the CNN and acoustic features model, paired t-tests comparing608
participant-specific weighted F1 scores, indicate that these differences were not statistically significant (see609
Supplementary Materials Section 2). That is, the CNN and RF-53f appear to be statistically equivalent610
models for classifying auditory chaos. However, as the CNN model achieved the highest performance on611
the Annotated dataset, our largest test set, and the majority of the test sets, we recommend that future users612
interested in automated auditory chaos detection use our CNN model. We, therefore, make the trained613
CNN model publicly available on Github for future applications.614

Unsurprisingly, the baseline model trained with three volume-related features had substantially and615
significantly lower performance than both the CNN and the more comprehensive acoustic features model,616
RF-53f (see Supplementary Materials Section Section 2 and Table S1 for t-test results). Overall, it appears617
that volume alone cannot be used to distinguish between the four different levels of chaos. Figure 5618
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Figure 4. Results of the training data ablation study for our best-performing CNN model - global model
performance on the Annotated dataset as a function of training data (Unfiltered + Filtered set). The model
performance drops as we decrease training data.

additionally illustrates this point by visualizing volume features and annotated chaos labels from 7h of619
continuous audio recording shared by one of our participants.These results indicate the value of developing620
a model for the auditory chaos classification task rather than relying on markers of audio volume for621
characterizing auditory household chaos.622

6.2 Model Generalization from Filtered to Unfiltered Data623

Training a model with filtered data can reduce the model’s performance on raw or unfiltered recordings624
which provide a “truer” or less biased representation of chaos found in real-world everyday recordings.625
However, assessing our model’s performance on unfiltered real-world data is challenging due to the lack626
of a large-enough, representative ground truth dataset, especially for the rarer chaos classes. Thus, while627
we evaluate the generalizability of our model on our unfiltered dataset, we remind our readers that this628
dataset comprises 16.1 hours of data annotated from 6 participants and includes approximately 1 hour of629
high chaos data and less than an hour of no chaos data. Thus, it is unlikely to capture the full distribution630
of chaos in everyday settings, as we elaborate below.631

All models showed worse global macro F1 performance on our Unfiltered set relative to the Filtered set632
and the complete training dataset including filtered and unfiltered data (Annotated dataset). This suggests633
that our models, whose training data included ∼70% filtered data, may not fully generalize to unfiltered634
data. Our acoustic features model (RF-53f) showed relatively similar global macro F1 performance on635
filtered and unfiltered data, within .04 points of one another. However, our CNN model showed a 17.1636
point drop in global macro F1 score between filtered and unfiltered data. This may reflect that the CNN637
model overfit more to the training data compared to RF-53f. Due to its higher model complexity, the CNN638
model may have overlearned the characteristics of sound events contained in the filtered segments with639
reduced generalizability to the Unfiltered set. By contrast, the relatively less powerful RF may have less640
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Figure 5. Peak amplitude (orange spikes), mean RMSE (green spikes) and ground truth auditory chaos
levels (blue spikes) for each 5 second audio segment annotated from one participant’s audio recording. The
x-axis represents the audio segment number. Each hour has 720 5s audio segments so the data represented
here is ∼7 hours of continuous audio recording. The red boxed regions highlight sample regions of the
recording where volume is high, as indicated by high peak amplitude and/or mean RMSE values, but a
segment is not annotated as high chaos (level 3) or vice-versa. This illustrates that features representing
audio volume are not consistently able to distinguish between the four levels of chaos, which we we also
documented using our baseline models.

capacity to learn more complex features to distinguish between the chaos classes and thereby generalized641
better to the Unfiltered set.642

Next, as illustrated by the confusion matrix in Figure 3(c), our CNN model had relatively low performance643
for the minority Chaos 0 (no chaos) and Chaos 3 (high chaos) classes in the Unfiltered set in particular.644
This trend is also apparent in both RF models. The models’ relatively low performance on high chaos645
and no chaos classes in the Unfiltered set could be due to the fact that these classes were by far the rarest646
classes in the unfiltered dataset. As such, their ground truth training data was more likely to be obtained647
through the use of filters, relative to more common Chaos 1 and 2 classes. Incorporating filtered ground648
truth data allowed us to efficiently provide the model with large volume and variety of ground truth training649
data. However, these filtered data may have some biases. For example, the high chaos samples selected by650
the detector might not encompass all high chaos sound events occurring in infant’s everyday environments.651
Additionally, filtered high chaos segments selected by human sampling may have been easier for the model652
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to classify given that they lasted many minutes (e.g. ambient sounds from a party or daycare center),653
versus only a few seconds, e.g. a yell, a loud bang, a bark, etc. Thus, one possibility is that the Unfiltered654
set contained more ”difficult-to-identify” high chaos events relative to our Filtered set, contributing to655
challenges with generalizibility. However, as noted above, the limited size of the Unfiltered set raises the656
concern that it does not provide an accurate representation of real-world chaos. As such, while potentially657
biased, our much larger Annotated dataset (54.6h; 22 participants), which included over 7680 5-second658
high chaos segments, is likely to be providing more robust performance measures than our Unfiltered set,659
in particular for rare Chaos 0 and Chaos 3 classes.660

6.3 Model Performance is Consistent with Other Real-world Models661

All model results were achieved in completely unstructured, real-world audio data from recordings worn662
by infants in their everyday home environments. As this is the first published work for developing an663
auditory chaos classifier, our work represents a baseline model for future efforts. Relatedly, there is no664
benchmark to compare our models with directly. We note that published audio detection models trained on665
clean, lab-collected dataset or synthetic datasets often achieve accuracies in the 0.90s. However, it is well666
established that models trained on such “clean” datasets do not generalize to noisy real-world scenarios667
(22, 38, 37, 59). By contrast models trained and tested on real-world audio data generally show substantially668
lower accuracies, with F1 scores often around .6-.7(37, 38) (78). For example, a recent analysis of LENA,669
a widely used platform for speech detection and speaker classification from child-worn audio recordings,670
reported precision and recall values ranging from 0.27 to 0.60. Similarly, a real-world cry detection model671
recently developed by Yao et al. (22) achieved an F1 score of 0.613. Thus, while not directly comparable to672
these models, our CNN model performance falls in the range of recently published real-world sound event673
detection models.674

Additionally, we note that real-world models with accuracies in the range of 0.60 have made real675
contributions to empirical research in child development. For example, measures of overheard speech676
derived from LENA’s speech classifier which has an overall weighted accuracy of 67% (79) have predicted677
various measures of language development in young children. A review paper provides a summary of678
works that used LENA’s in-built algorithms to detect aspects of the speech environment and were found679
to significantly predict individual differences in child language development as well as gold-standard680
laboratory measures (80). These examples indicate that model results much lower than those obtained in681
clean laboratory conditions can be of value to the developmental psychology community.682

6.4 High Chaos Detector Increases Annotation Efficiency683

Our high chaos detector was able to identify 65.3% (recall) of the ground truth high chaos segments in the684
unfiltered Continuously Annotated set. Given that our goal was to maximize the amount and variety of high685
chaos ultimately annotated, a high recall value is optimal. Still, the detector missed 34.7% of the ground686
truth high chaos in the Continuously Annotated set. This could be due to the strategy implemented by the687
detector. The detector leverages a publicly-available everyday sound classifier, YAMNet. The detector’s688
ability to identify high chaos events is largely dependent and limited to the variety and number of highly689
chaotic sound classes that YAMNet can detect. Moreover, YAMNet’s performance on each of the classes it690
can detect also largely drives the high chaos detector’s accuracy. High chaos sound events outside of the691
range of YAMNet’s output classes could also contribute to the missed 34.7% of high chaos segments.692

Next, the precision of our detector for the high chaos class was relatively low (26.7% on Continuously693
Annotated set), meaning that the detector over-identified candidate high chaos segments. This precision694
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is comparatively lower than precision of 36%-49% reported in Audio Set’s original paper (48), the only695
prior paper we are aware of that reports performance of their selected candidates sets for audio annotation.696
This indicates that the detector’s strategy of mapping a near-exhaustive list of everyday sound classes697
from YAMNet to identify high chaos events was not very precise, potentially owing to the fact that many698
individual sound classes may be labelled as more or less chaotic depending on their context. The detector’s699
low precision leads to increased annotation time, counter to our goals. However, given that occurrences of700
high chaos are highly rare, annotating the candidate set identified by the detector provided a huge advantage701
over annotating randomly sampled data. In particular, the detector allowed us to annotate 8.32 times more702
ground truth high chaos data than in a matched volume of audio randomly drawn from the same three703
participants’ recordings. Overall, given that the detector provided substantial reduction in annotation time704
and efforts, our detector’s performance is adequate for our goal of reducing manual annotation time and705
effort for the rare high chaos events.706

While the high chaos detector increased the efficiency of annotating high chaos segments, we also used707
“human filtration” to supplement our chaos annotations. We note however that our human filtration strategy708
does not supplant the high chaos detector. First, we implemented this strategy mainly with participants709
who shared with us that they had engaged in activities or events that were particularly chaotic, meaning710
we had additional information on these relative to other recordings. Next, the sampled listening strategy711
implemented by our research team identified only chaotic activities that were at least 10 minutes in duration.712
As such, sampled listening is likely to miss shorter chaotic events, e.g. a bark, plates crashing, a scream or713
shout, etc and could lead to bias in the data. By contrast, the high chaos detector was able to successfully714
identify high chaos instances present in daily recordings irrespective of their duration.715

6.5 Model Performance Across Contexts and Populations716

Infant crying is a high chaos event likely to occur frequently in infant-worn daylong recordings and717
therefore our training data. As such, model performance could rely on inadvertently training a “cry detector”718
rather than a chaos classifier per se. To test this, we compared CNN model performance on datasets that719
did and did not include infant crying. Model performance was similar between Cry and Non-cry samples.720
Thus, our model successfully classifies the chaos level of non-cry events.721

Next, in attempts to understand the shortcomings of our model, we sampled segments that the722
model erroneously classified. We found that our model consistently misclassified relatively loud sleep723
machine/white noise segments as medium chaos rather than low chaos. This was likely a result of their loud724
volume as sleep machines are typically kept close to the child while sleeping. Moreover, some white noise725
machine sounds are also acoustically very similar to high-frequency engine or mechanical tool sounds726
and the model was not able to differentiate between them and incorrectly identified them as medium or727
high chaos. As sleep machine sounds/white noise can comprise up to 12 hours of an everyday recording728
collected via infant-worn audio sensors, this has the potential to impact the model performance significantly.729
Thus, we caution researchers using our model outputs on audio collected during infant sleep, in particular730
if families use sleep machines/white noise machines. Alternatively, researchers can ask families directly to731
report if they do use sleep machines.732

Finally, we note that the data used to train and test this model was collected mostly from 0- to 6.5- month733
old infants from English-speaking families living in a mid-sized urban city and ∼60% of our participants734
where non-Hispanic White. Models are most likely to generalize well to populations similar to those735
included in the training data (81, 82, 83). Therefore, we recommend additional tests and validation before736
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applying this model to daily recordings collected from families differing in family structure and dynamics,737
sociodemographic characteristics, and language from the dataset used in this study.738

6.6 Increasing Training Data Boosts Model Performance739

Increasing the training data from 5h to 40h provides a meaningful boost to the CNN model performance.740
Large volumes of training data are known to improve model performance (84). This may be particularly true741
for models designed to perform in real-world contexts with high levels of variability in class representations.742
We note also that the scale of the observed effect may be muted by the fact that training data for all data743
ablation models was sampled from the 54.6h of data annotated from 22 participants in the Annotated744
dataset. Sampling from such a large varied annotated dataset could increase model performance relative to745
sampling from smaller datasets drawn from fewer participants.746

6.7 Future Validation Efforts747

An important next step of this work is to assess the validity of our auditory chaos model for predicting748
child behavior and functioning. Given the practical differences between subjective parent reports of chaos749
and our objective real-time measure we may not expect to see strong correlations between these two750
measurements. However, these measures could provide complimentary insights into child functioning.751
At the real-time timescale, we have shown in preliminary work that our chaos predictions correspond752
to real-time increases in infant heart rate (85), as predicted by previous works that increases in volume753
leads to increases in infant arousal (15, 36). Future efforts could also examine other real-time indicators,754
including, e.g. child focus of attention or child regulation, and how these relations differ according to755
child temperament. In addition, prospective studies could examine how objective measures of household756
chaos compare to parent reported measures for predicting children’s longitudinal outcomes, including757
infant negative emotionality (86), behavioral regulation (87), cognitive outcomes (receptive vocabulary and758
attention), behavioral outcomes (anxiety/depression and attention problems) and effortful control (2).759

7 CONCLUSION

In this paper, we developed a multi-class model for real-world auditory chaos classification. To do so,760
we collected and annotated a huge corpus of real-world auditory chaos, the first and largest of its kind.761
Our pioneer effort to classify auditory chaos sets the stage for exciting possibilities in developmental762
psychology. Once validated, automated fine-grained measures of chaos obtained from our model can763
provide a novel opportunity to systematically and objectively assess household chaos as an everyday risk764
factor for child behavioral development in naturalistic settings.765

For the engineering community, this work provides a demonstration of model development challenges766
and solutions in the domain of real-world audio classification. High auditory chaos embodies typical767
real-world activities or environments insofar that it is highly variable, complex, requiring domain specific768
knowledge to obtain reliable judgements, and rare, meaning that it requires strategies for filtering large769
volumes of data to obtain a sizeable training dataset. Our work indicated that annotation of such real-world770
events can benefit from leveraging existing resources to reduce the total amount of data annotated, thereby,771
reducing annotation time and efforts.772
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Table 1. Definitions and examples of types of sounds for the four levels of auditory chaos. Note that the
list of examples provided is not exhaustive

Chaos levels Definition Examples of types
of sounds

Examples of YAMNet
classes

No chaos (0) Silence or absence
of sounds -

Silence, Pulse, Heart
sounds/Heartbeat,
Breathing

Low chaos (1) Soft daily or familiar
sounds

conversation between
parents at normal volume,
low volume calming
music, distant wind chimes,
walking, stroller on gravel,
pouring water, low
dishwasher/microwave hum,
white noise machine

Wind, Singing, Chime,
Classical music, Piano,
Raindrop, White noise,
Shuffling cards, Tearing,
Drip, Purr, Microwave,
Walk/footsteps

Medium chaos (2) Slightly stimulating
sounds

commanding/raised voices,
loud singing, baby laughing,
another child playing/running
around, low-volume TV, toy
music, rattle, shower, faucet,
blow dryer, vacuum cleaner

Child speech/kid
speaking, Toilet
flush, Electric shaver,
Doorbell, Alarm clock,
Hair dryer, Pop music,
Acoustic guitar,
Violin/fiddle,
Sink (filling or washing)

High chaos (3) Highly stimulating,
scary, or jarring sounds

adults arguing, shouting,
many children playing,
baby wailing, loud TV,
crashing sounds, loud
dog barking, crows cawing,
restaurants, swimming pools,
cars honking, drums,
trumpets, blender

Children shouting,
Screaming, Car,
Traffic noise/roadway
noise, Applause, Drum
roll, Electronic music,
Fire alarm, Tools, Chain-
saw, Drill, Inside/public
space, Battle cry
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Table 2. Participant characteristics (n=22)
n (%) M (SD), range

Mother age, years 30.7 (5.5), 22-43
Infant age, months 5 (6.5), 0.87-33
Infant sex, female 11 (50%)
Race/Ethnicity

non-Hispanic White 13 (59.1%)
Hispanic 5 (22.7%)
More than one 2 (13.6%)
Black 1 (4.5%)

Maternal Education
High school or less 2 (9.1%)
Some college or trade school 6 (27.3%)
College 7 (31.8%)
Graduate school 7 (31.8%)

Family Status
Married 18 (81.8%)
Single Parent 1 (4.5%)
Living with a partner without
marriage 3 (13.6%)

Household Income
Under $25k 2 (9.1%)
$25k - $49k 3 (13.6%)
$50k - $74k 6 (27.3%)
$75k - $99k 2 (9.1%)
Over $100k 9 (40.9%)

Number of other children in the home 1 (1.3), 0-5

Table 3. Summary of all annotated data
Annotated Dataset Participants Recordings Hours Segments

Unfiltered Continuously Annotated 3† 3† 12.9 9296
Randomly Sampled 3*ˆ 3*ˆ 3.2 2326

Filtered Detector Selected 14*⋄ 14*⋄ 24.9 17917
Human Selected 12ˆ†⋄ 12ˆ†⋄ 13.6 9779

Total 22 22 54.6 39317
Note: * denotes that 3 participants in the Randomly Sampled Unfiltered set which were also included in the Detector Selected
Filtered set. The segments annotated for these 3 participants in both sets differ but may have some overlap. † denotes the 2
participants in the Continuously Annotated Unfiltered set which were also included in the Human Selected Filtered set. ˆ denotes
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Table 4. Global macro and weighted model performance for our three models on different test sets

Models Test Data Macro Weighted
F1 Precision Recall F1 Precision Recall

RF-3f Annotated (Unfilt. + Filt.) 0.267 0.269 0.266 0.284 0.291 0.278
Filtered (DS + HS) 0.265 0.267 0.267 0.269 0.269 0.271
Unfiltered (CA + RS) 0.240 0.279 0.333 0.338 0.448 0.295
Cry Set 0.352 0.357 0.368 0.411 0.451 0.394
Non-cry Set 0.249 0.253 0.247 0.264 0.271 0.259

RF-53f Annotated (Unfilt. + Filt.) 0.616 0.676 0.592 0.611 0.639 0.614
Filtered (DS + HS) 0.597 0.660 0.582 0.589 0.641 0.586
Unfiltered (CA + RS) 0.560 0.562 0.592 0.676 0.678 0.682
Cry Set 0.626 0.655 0.608 0.666 0.669 0.669
Non-cry Set 0.594 0.673 0.575 0.599 0.646 0.601

CNN Annotated (Unfilt. + Filt.) 0.701 0.705 0.702 0.679 0.685 0.680
Filtered (DS + HS) 0.710 0.725 0.701 0.697 0.708 0.693
Unfiltered (CA + RS) 0.539 0.510 0.674 0.665 0.706 0.647
Cry Set 0.646 0.657 0.644 0.680 0.687 0.681
Non-cry Set 0.692 0.696 0.694 0.681 0.690 0.680

Note: Models were trained using 40 hours of balanced data across four levels of auditory chaos randomly sampled from the Annotated dataset
and evaluated using LOPO-CV on their respective test sets. Global macro and global weighted F1 score, precision and recall were computed
using the chaos predictions and ground truth chaos labels for the entire test set. Results for each analysis are separated using emphasis lines.
Model performances in bold represent the highest F1 score achieved across all five models for that particular test set.
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