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Eating is one of the most fundamental human activities, and because of the important role it plays in our lives, it has been
extensively studied. However, an objective and usable method for dietary intake tracking remains unrealized despite numerous
efforts by researchers over the last decade. In this work, we present a new wearable computing approach for detecting eating
episodes. Using a novel multimodal sensing strategy combining accelerometer and range sensing, the approach centers on
a discreet and lightweight instrumented necklace that captures head and jawbone movements without direct contact with
the skin. An evaluation of the system with 32 participants comprised of three phases resulted in eating episodes detected
with 95.2% precision and 81.9% recall in controlled studies and 78.2% precision and 72.5% recall in the free-living study. This
research add technical contributions to the fields of wearable computing, human activity recognition, and mobile health.
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1 INTRODUCTION
Good nutrition is vital for optimal growth, development, and prevention of disease [21, 27]. In particular, poor
eating habits are strongly tied to obesity, a major public health problem [28]. The World Health Organization
estimates that more than 1.9 billion adults, 18 and older, were overweight in 2014 [1]. Of these, over 600
million were obese [1]. Due to the importance of diet in human life, health researchers have been interested
in understanding the science of measuring dietary intake for decades [40], often relying on self-report-based
instruments such as food frequency questionnaires (FFQ), 24-hour recalls, and food diaries. Unfortunately, these
methods have been widely recognized to have serious shortcomings such as biases, which increase the risk of
false characterization of dietary habits.
To circumvent the weaknesses observed in self-report-based methods, and by leveraging advances in mobile

and sensing technologies, a large body of research work around automatic dietary monitoring has emerged
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over the last decade. Automatic eating detection has grown to become a key area of interest since it captures
the temporal dynamics of eating behaviors and can trigger processes such as behavioral interventions [41].
Although steady progress has been made in the field, many proposed systems for eating detection have required
individuals to wear obtrusive devices. These systems, exemplified by neck collars for swallow detection [3, 12, 26]
or microphones inside the ear canal to detect chewing [30] proved to be largely impractical and unpopular for
everyday usage. Consequently, few human subject experiments targeting automated dietary monitoring have
been conducted in naturalistic settings for an extended period of time. In the last couple of years, techniques
based on off-the-shelf consumer devices such as mobile phones, smart watches, and wearables (e.g., Google Glass)
have been developed. However, despite their practicality, these methods have not yet demonstrated performance
results that meet application requirements. These limitations have prevented eating detection, and thus automatic
dietary monitoring, from having significant real-world impact.
In this paper, we present a wearable device in the form factor of an instrumented necklace that can detect

eating episodes, a keystone towards implementing a fully autonomous dietary monitoring system. The device
operates by capturing jawbone movements through a distance measure obtained with a proximity sensor and
using this signal to distinguish eating versus non-eating activities. Even though it is a neck-mounted device,
the sensor does not need to be in direct contact with skin, allowing for a lightweight design and form-factor if
compared to previous systems. The contributions of this work are:

• The design and implementation of the wearable system alongside a computational approach for analyzing
and classifying proximity sensor data as eating or non-eating.

• An evaluation of the system with 32 participants comprised of three phases, a controlled laboratory study,
a controlled-field study, and an in-the-wild study. Eating episodes were detected with 95.2% precision and
81.9% recall in the controlled studies and 78.2% precision and 72.5% recall in the free-living study.

• An annotated dataset of proximity sensor data collected in the user studies that we share with the community
to encourage other researchers to expand upon our work.

2 THE NEED FOR OBJECTIVE DIETARY MONITORING
Due to the importance of diet in human life, health researchers have been interested in understanding the science
of measuring dietary intake for decades [40]. Bingham traced the first attempts to perform this measurement
outside of a controlled setting to the 1930s and 1940s [9]. Widdoson et al., for instance, presented an examination
of English diets using the weighted food record in 1936 [48, 49]; the process involved recording the weight of
each item of food and beverage consumed. Soon thereafter, Wiehl, Turner and Reed pioneered interview-based
dietary recall and food frequency methods, with the goal of estimating energy intake[47, 51, 52].

Dietary recalls, food records and food frequency questionnaires (FFQ) remain the primary dietary assessment
mechanisms in use today, and are considered to be the gold-standard by nutritional epidemiologists. In dietary
recall, an interviewer assists an individual in remembering what was eaten over a period of time, typically 24
hours. Dietary records are different in that participants are asked to write down what is consumed shortly after
the eating moment. Jacobs observed that in practice people often wait until the end of the day to record what they
ate [23]. In this case, the dietary record becomes a self-administered recall. With food frequency questionnaires
(FFQ), which come in many flavors in terms of the number and specificity of questions, the objective is to obtain
more general dietary knowledge and habits. For instance, a question in a FFQ might be "How often do you eat
pizza, and if so, how often and how many slices do you typically consume?". More detailed questions might
be asked, such as "When you drink milk, is it typically fat free, 1%, or whole-milk?" or "Do you prefer white
or whole-wheat bread?". Despite the use of these self-report methods, observations have shown that people
tend to forget items that were eaten, underestimate large portion sizes, over-estimate small ones and, in general,
are susceptible to a large variety of errors and biases [23, 33]. Recently it has become possible to measure the
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Table 1. A summary of different dietary monitoring approaches.

Sensing Modality Proxy Sensor Sensor Location Performance
Inertial Bite Accelerometer Wrist F-scores of 76.1% [45]
Inertial Bite Gyroscope Wrist 81% Accuracy at 1-sec resolution [15]
Acoustic Mastication Microphone Neck/Ear detection accuracy of 83% [35]

Physiological Mastication EMG Sensor Neck 80% classification accuracy [3]
Piezoelectric Swallowing Piezoelectric Sensor Neck F1-score of 85% on solid foods, 86% on liquid [26]
Proximity Mastication Proximity Sensor Ear 95.3% Accuracy [8]

accuracy of these gold-standard dietary assessment instruments thanks to the doubly-labeled water technique
[29]. Findings confirmed their weaknesses. In light of these limitations, researchers have begun to question the
validity of nutritional data collected by self-report methods. Archer et al. focused on the National Health and
Nutrition Examination Survey (NHANES), stating that "methodological limitations compromise the validity of
U.S. nutritional surveillance data and the empirical foundation for formulating dietary guidelines and public health
policies" [4]. Dhurandhar et al. believe traditional instruments like dietary recalls and records should not be used
at all for energy intake (EI) and physical activity energy expenditure (PAEE) assessment. In their own words, "...it
is time to move from the common view that self-reports of EI and PAEE are imperfect, but nevertheless deserving
of use, to a view commensurate with the evidence that self-reports of EI and PAEE are so poor that they are wholly
unacceptable for scientific research on EI and PAEE." [13].

3 RELATED WORK
Dietary assessment challenges and limitations have fueled interest in automated processes starting in the 1980s.
At the time, researchers tried to detect chews and swallows using oral sensors in order to measure the palatability
and satiating value of foods [42]. Today, most of the work in dietary assessment involves mobile and wearable
devices and the utilization of various forms of sensing modalities such as acoustic, inertial, physiological, visual,
capacitive, and piezoelectric sensing.

3.1 Acoustic Sensing
Wearable-based acoustic sensing has been widely explored in dietary monitoring. Sazonov et al. proposed a system
for monitoring swallowing and chewing that included a small microphone located over the laryngopharynx
[31, 39]. Similarly, Olubanjo and Ghovanloo tracked swallowing events from tracheal acoustics [34]. Passler
investigated the problem of intake monitoring using microphones in the outer ear canal [35]. Bodyscope explored
how accurately a large number of activities, including eating and drinking, could be recognized with a single
acoustic sensor attached to the user’s neck [53]. In 2012, Liu et al. developed a food logging application based on
the capture of audio and first-person point-of-view images [30]. The system processed incoming sounds through
a head-mounted microphone and a classifier identified when chewing was taking place, prompting a wearable
camera to capture a video of the eating activity.

3.2 Inertial Sensing
The widespread availability of small wearable accelerometers and gyroscopes has opened up a new avenue for
detecting eating activities through on-body inertial sensing. Almost a decade ago, Amft et al. detected eating
gestures with a measurement system comprised of five inertial sensors placed on the body (wrists, upper arms
and on the upper torso) [2, 3, 25]. In 2013, Dong at al. put forth a method for detecting intake gestures in
real-world settings based on a wrist-motion energy heuristic [14, 15]. The authors evaluated the approach by
having participants wear a smartphone on the wrist collecting continuous inertial sensor data. As a follow up to
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Fig. 1. Several instrumented neckbands aimed at chewing and swallowing detection have been developed over the years but
their size, form factor, and aesthetic have limited their mainstream adoption. [3, 12, 17, 26]

this work, Thomaz evaluated an approach for inferring eating moments based on 3-axis accelerometry collected
with a popular smartwatch, the Pebble watch [44]. Trained with data collected in a semi-controlled laboratory
setting with 20 subjects, the system recognized eating moments in two free-living condition studies with F1 scores
of 76.1% and 71.3%. These results were highly encouraging since one of the field experiments was conducted over
30 days, longer than previous ecologically-valid automated dietary monitoring studies.

3.3 Physiological Sensing
Electroglottography (EGG) and electromyography (EMG) have been used to detect chewing and swallowing
activities. EGG uses two electrodes placed on the neck to measure the impedance changes induced by the
movements of larynx during eating [6]. Farooq et al. evaluated the approach of using EGG on 25 participants
(12 male and 13 female) and compared the performance with that of acoustic sensing [17]. The EGG approach
resulted in better performance than acoustic sensing approach on both male and female participants. While EMG
also uses two electrodes like EGG, the measurement made for EMG is the activation of mandibular muscles as
opposed to the impedance change in EGG. Since EMG focuses on detecting action potentials associated with the
contraction of mandibular muscles, EMG is more often used for characterizing chewing behavior while EGG is
more focused on characterizing swallowing behavior. While both EMG and EGG can accurately monitor eating
activities, both EMG and EGG necessitate that the sensors be attached to the skin. In addition, the attachment of
electrodes often leads to larger form factors. As all the previous studies involving EGG and EMG took place in
laboratory settings, and the wearability and the practical application of physiological sensing in the real world
need to be further investigated.

3.4 Camera Based Dietary Monitoring
Camera-based approach provides an effective means of monitoring eating activities using images captured in
intervals. Unlike other methods which leverage swallowing or chewing as proxy for eating detection, camera-
based approach relies on the visual information from photos or videos that are captured either continuously or at
a regular interval [7, 43]. The camera-based approach has been successfully employed in many applications, and
proven to be useful for recording the ground truth [5, 7]. In addition, with image processing, the method has
demonstrated that the amount of food consumption can be accurately estimated [10, 24]. Despite its strength, the
camera-based approach presents a privacy concern as the camera would capture other people’s images as well as
their daily activities [43].
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3.5 Capacitive Sensing
In 2010, Cheng et al. proposed a new sensing approach that leverages capacitance change induced by contraction of
muscles or movements of body. [11]. Cheng et al. demonstrated that the conductive textile can be incorporated in
a neckband for eating detection. [12] The application of capacitive sensor in neckband resulted in 84.4% accuracy.
While Cheng et al. proposed that neckband can be useful for elderly care or cognitive disease monitoring, the
neckband presents a significant challenge for mainstream adoption for dietary monitoring in real world situations
due to its large form factor. (Shown in the fourth image on Figure 1). [12]

3.6 Piezoelectric Sensing
Piezoelectric sensors generate electric signal in response to mechanical changes.[38] This principle has been
leveraged in multiple applications of dietary monitoring, specifically for chewing detection and swallowing
detection. [18–20, 26] In 2016 Farooq and Sazonov demonstrated that eyeglasses that leverages piezoelectric
sensor and an accelerometer for dietary monitoring resulted in the F1 score of 99.85% [19] for sedantary eatig,
and 94.16% for eating while walking. [19]

3.7 Multimodal Sensing
In the last two years, the utilization of multiple sensing modalities to infer eating activity has gained momentum.
Recently, Rahman et al. and Merck et al. have merged multiple sensing modalities in eating recognition and
prediction with promising results. Rahman et al. built a wearable sensing framework consisting of an array of
sensors that captured physical activity, location, heart rate, electrodermal activity, skin temperature and caloric
expenditure [37]. Merck et al. combined head and wrist motion (Google Glass, smartwatches on each wrist), with
audio (custom earbud microphone) totaling 72 hours of data from 6 participants [32].

3.8 Challenges and Opportunities
As these examples of prior work make evident, acoustic and inertial sensing have been extensively used in dietary
monitoring with promising results. However, adoption of these approaches has been hampered by shortcomings.
A major reason why inertial sensing is appealing is that accelerometers and gyroscopes have been widely
incorporated into commodity devices such as smartwatches and activity tracking bands, making it easy to collect
data without specialized and custom-built systems. Unfortunately, the rate of food intake gesture misclassification
(i.e., false positives) from inertial measurements has remained high in naturalistic settings despite many years of
research in the field.

A similar functional tradeoff also affects acoustic sensing. Although audio is a very rich signal reflecting dietary
markers such as chewing and swallowing, audio processing is computationally intensive. This is a particular
problem for wearable devices powered by small batteries and even more so when real-time activity classification
is required. Another issue of audio sensing, which also applies to inertial and muscle activity sensing, is that the
sensors must be in direct contact with the body so that the acoustic signatures of eating can be properly captured.
Due to this requirement, researchers have developed instrumented neckbands to keep sensors compressed against
the skin [3, 12, 26]; some of these neckbands are shown in Figure 1. While effective for data capture, neckbands
are largely impractical for everyday use; its design form factor and aesthetic are considered unappealing, limiting
mainstream adoption of these devices.

4 APPROACH: MASTICATION AS EATING PROXY
A distinctive behavioral marker of eating is mastication, the process by which food is cut and crushed by teeth so
that it can be more easily broken down by enzymes. During mastication, the jaw moves up and down by four
muscles in the mouth (i.e., masseter, temporalis, medial and lateral pterygoids) in a mostly deterministic pattern
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that varies depending on what is being consumed (i.e., food type). The hypothesis behind the proposed work is
that it is possible to infer the presence of dietary activity by continuously measuring the distance between the jaw
and the base of the neck, as shown in Figure 4. In principle, this distance signal should be indicative of whether
an individual is eating, be predictive of what is being eaten, and capable of discriminating dietary behaviors
from other activities such as talking. In contrast to previous efforts that measured markers of mastication with
devices in contact with the skin (e.g., acoustic, inertial, electromyography), the jawbone-neckbase distance can be
captured with a small, inexpensive and non-contact proximity sensor mounted either on a specialized necklace
or adapted to be outfitted into existing clothing or jewelry.

In order to use mastication as a proxy for detecting eating episodes, we take a bottom-up hierarchical approach.
The first step involves detecting chewing. Once chewing has been identified, we group periods of semi-continuous
chewing as a chewing bout. Finally, multiple chewing bouts comprise an eating episode. We utilize the following
operational definitions for these terms:

• Chewing: We define chewing as an non-interrupted sequence of chews lasting 5 seconds or longer. It is
considered the smallest detectable unit in the context of this study. The rationale for choosing 5 seconds as
the minimum duration of chewing stems from the desire to reduce the rate of false positives. In preliminary
experiments, we found that a temporal window shorter than 5 seconds resulted in yawning or nodding
being incorrectly detected as chewing, for instance. On the other hand, if longer windows are used, the
system might miss actual chews. A 5-second chewing window proved to be a good compromise between
these edge cases.

• Chewing Bout: While chewing is a marker and proxy for eating, individuals do not typically chew
continuously throughout an entire meal. Small breaks are common while reaching out for food, during
intake gestures, or even if just for breathing. These pauses represent gaps in-between chewing, and as they
do not mark the beginning or end of eating episodes, they should be ignored. To abstract these pauses
away, we introduce the notion of chewing bout, a group of consecutive chewing periods that are within 30
seconds of each other. In effect, a chewing bout can be conceptualized as an entity that chains chewing
periods together as a single-unit.

• Eating Episode: Recognizing chewing bouts is critical but not sufficient to identify eating episodes. This
is because an eating episode such as breakfast, lunch, dinner is often characterized by chewing bouts
interspersed with other activities and interruptions, such as chatting with friends, assisting children with
their meals, and going to the restroom. When eating alone, it is also common to take pauses during eating,
especially when multi-tasking, e.g., eating while browsing the web on a mobile device, reading a magazine,
or watching TV. Having the flexibility to consider longer breaks as part of eating episodes is important
because it accounts for naturalistic behaviors and enhances the practicality of the approach. Within our
inferential framework, we define an eating episode as a sequence of one of more chewing bouts that are no
more than 5 minutes apart from each other. More than 5 minutes without chewing and there is a good
chance that the eating episode has ended. While we experimented with different durations, we found that
5 minutes led to a good balance in terms of performance. We also feel that this parameter can be fine-tuned
depending on individual characteristics.

5 SYSTEM DESIGN
To realize our approach, we designed and implemented a wearable necklace system consisting of a proximity
sensor, a 3D printed sensor mount, a microcontroller, and a bluetooth module. The components are compactly
packaged as shown in Figure 3. The system was powered by a 400 mAh LiPo battery, and we were able to reliably
use the device for more than 18 hours. For data collection, annotation and visualization, an Android phone was
also used.
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Fig. 2. The figure shows a hypothetical data set for demonstrating the hierarchical classification levels employed in our
detection algorithm. False positives are indicated in red color. In the first and the second talk sessions, there are some false
positives detected at chewing level. However, they fail to be grouped at chewing bout level. During the restroom visit, there
was one false positive eating episode. However, it is discarded in our algorithm since the duration of detected eating episode
(red diagonal block) is too short to be considered an eating episode.

Fig. 3. The three sensor mounts at different angles (0, 30, and 45) were prepared to account for the differences in neck
postures among individuals. The second and third image show the front and the side view of the sensor on a subject. In our
application, the distance d between the proximity sensor and jaw is measured as shown in the third image.

5.1 Hardware
5.1.1 Proximity Sensor. The keystone of the proposed wearable platform is the VL6180X sensor by STMicro-

electronics. It is a proximity sensor that measures absolute distance between itself and a target. The distance
is calculated by measuring the time emitted light takes to travel to the nearest object and reflect back to the
sensor (i.e., time-of-flight). In the system, the sensor sits on a board attached to a necklace and the measurement
corresponds to the distance between the sensor and the wearer’s jawbone. As the jawbone moves up and down
due to mastication, these rhythmic patterns are captured as a distance measure (see Figure 4). In principle, eating
patterns should have a distinctive pattern signature if compared to non-eating patterns. The proximity sensor
draws 1.7 on average, making this component suitable for low-power applications. The maximum distance the
sensor can measure is 25. The distance between the sensor and the jaw was maintained below 20 across the
entire study. The sensor was placed at the center of the necklace such that it was possible to measure the vertical
movement of the jaw.

5.1.2 3D Printed Sensor Mount. The sensor mount was designed to provide a consistent positioning of the
sensor. To account for the variations of neck shapes and posture, three sensor mount with different angles (0, 30,
and 45) were designed (see Figure 3). The mount contains two larger holes through which a rubber band can pass
and two smaller holes for fixing the sensor. The sensor mount is used to hold a proximity sensor in place as well
as to connect it to the rubber band that goes around the neck. On one side of the rubber band goes the wires that
carry signal collected from the sensor to the micro-controller. The necklace is shown in the right-most image of
the Figure 3.
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Fig. 4. Six plots featuring different activities a participant was involved in during lab study are shown. The eating signal
features the participant chewing celery given as an appetizer. The sitting signal was captured while the participant was
watching a movie clip. For note-taking task, the participant copied a short paragraph written on the board. During the
note-taking, the participants had to look up on the board periodically, and this is reflected in the periodic rise in amplitude
in the second plot from the bottom. In the eating signal, visually distinctive periodic changes in amplitude are observed
whereas for the other non-eating activities, no such characteristic is noticeable.

5.1.3 Bluetooth LE Module. In wearable computing, size, weight and heat are critical design factors. To
minimize the hardware footprint of the device, only the minimum components necessary for data collection
were instrumented in the necklace itself. The sensor data was collected and transmitted to a smartphone in
real-time using the Bluetooth LE (i.e., Low Energy) communication protocol. This module relies on the nRF51822
system-on-a-chip (SoC) by Nordic Semiconductor. It is built around the 32-bit ARM Cortex M0 CPU and supports
the Bluetooth LE protocol stacks. Unlike other Bluetooth modules which consume approximately 50 during data
transmission, BLE consumes approximately 8.5.

5.1.4 Microcontroller. The Arduino Pro Mini was chosen to control the proximity sensor and the Bluetooth
module. To reduce the amount of energy consumed by the microcontroller, the 3.3V/8MHz version was used.
With its default settings, the Arduino alone consumes approximately 13 when in regular operation. To reduce
battery consumption (we used a 400h battery), the Arduino was programmed to remain in sleep-mode for 15
prior to sampling data. Through this modification, we were able to reduce the microcontroller’s current draw
down to approximately 200.

5.2 Software
5.2.1 Android Application. One of the components of the wearable system is an Android smartphone running

an application with Bluetooth LE support. This application serves three important roles. Firstly, it receives and
stores the sensor data collected by the wearable necklace. Secondly, its interface is designed to assist with the
annotation of the sensor data. And thirdly, the application leverages the smartphone’s accelerometer and a
simple heuristic to determine whether the individual carrying the phone is walking. This measure is used to
help discriminate walking from eating. The Android application receives the acceleration with respect to x, y,
and z axis in real time. The magnitude of the acceleration vector is calculated using the euclidean norm, and if
the magnitude is greater than 1m/s2, it is assumed that the individual is in motion. In that case, the distance
measure obtained with the proximity sensor is discarded (i.e., no eating is taking place).
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5.3 Data Analysis and Modeling
At the heart of the method is a proposed four-phase pipeline for analyzing the data collected by the VL6180X sensor.
To reiterate, the goal of the wearable device is to identify episodes of eating from a distance signal measured
between the jawbone and the base of the neck. In the first phase of the pipeline, the signal is pre-processed and
conditioned. In the second and third phases, chewing and chewing bouts are identified. Lastly, in the fourth
phase, eating episodes are inferred from chewing bouts using a clustering algorithm.

5.3.1 Preprocessing. : The VL6180X sensor produces a time series signal with distance measures at a rate of
20Hz. The signal is first pre-processed using a median filter for smoothing. Next, frames are extracted using a
5-second, point-by-point sliding window across the time series (See Figure 5). The window size was determined
empirically with the goal of optimizing the balance between inference resolution and rate of false positives.
In preliminary experiments, we found that a temporal window shorter than 5 seconds resulted in yawning or
nodding being incorrectly detected as chewing, for instance. On the other hand, if longer windows were used, the
system could miss actual chews. A 5-second chewing window proved to be a good compromise between these
edge cases. Each extracted frame was baseline shifted to eliminate patterns and trends that are not intrinsic to
the data. The baseline shift was achieved by subtracting the root-mean-square (RMS) of each frame. Next, each
frame was bandpass-filtered to remove artifacts that do not represent dietary activity. The majority of chewing
happens in frequencies between 0.94 Hz and 2.17 Hz [36]; therefore a pass band around this frequency range was
used (See Figure 5).

5.3.2 Chewing Detection. : Chewing is a distinctive mechanical movement that distinguishes eating from
other activities such as talking, yawning, singing or drinking. When captured with a sensor such as the one
we propose, this distinction becomes clear in terms of the regularity, frequency and amplitude of the signal. In
the chewing detection step, non-eating signals are filtered out using a method called level-crossing. With this
technique, we define an amplitude and count the number of crossing over the threshold, as shown in figure 5. If
the number of amplitude thresholds crossings are aligned with the chewing frequency reported by Po et al., the
frame is labeled as chewing [36]. Otherwise, it is labeled as non-chewing. Based on our analysis, we found that
the best results are obtained with amplitude thresholds between 1 and 2, as shown in figure 8.

5.3.3 Chewing Bouts. : To eliminate small pauses in-between chewing, we group chewing periods over time
into clusters using the DBSCAN clustering algorithm [16], and call these clusters chewing bouts. In prior work,
DBSCAN has been identified as appropriate for this task since it does not require the specification of a pre-defined
number of clusters prior to analysis; this is not possible with other clustering techniques such as K-Means).
Furthermore, this algorithm allows for the parametrization of important settings such as the minimum number
of chewing periods per cluster [46]. Parametrization also makes DBSCAN amenable to fine-tuning for detecting
snacking behavior, when shorter chewing windows might be needed.

5.3.4 Eating Episode Detection. : To identify eating episodes, the beginning and end of each chewing bout are
obtained. Then, the duration between each consecutive pair of chewing bouts is calculated. If this duration does
not exceed a certain amount (we experimented with duration values between 1 and 10 minutes), the chewing
bouts are combined to represent an eating episode.

5.3.5 EvaluationMetric. : To evaluate the eating episode detector, we perform a comparison between the output
of the detector and our acquired ground truth on a segment-by-segment basis, where a segment corresponds to a
specified time period (e.g., 5 minutes). We assign true positives, true negatives, false positives and false negatives
accordingly. Given a particular segment, it is common for a partial match between inference and ground truth;
for example, the detector might output that an eating episode took place for only half of a 5-minute segment
(i.e., for 50% of the segment), whereas study participants ate during the entire 5-minute period. To avoid missing

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 2, No. 1, Article 4. Publication date: March 2018.



4:10 • K. Chun et al.

Fig. 5. The first plot shows the median filtered signal. In the first plot, y-axis shows the distance in millimeter and x-axis
shows time in second. The second plot shows signals in each frame with baseline adjusted. And the third plot shows the
signal after band pass filter (BPF). In the second and third plot, x-axis represents data points and y-axis represents amplitude
of filtered signal. Then, the number of crossing about the amplitude thresholds indicated by dotted lines is used to classify if
the given frame represents eating or not (fourth plot). DBSCAN clusters the classification output to form clusters as shown
in the fifth plot. Finally, eating episode is detected by segmenting the DBSCAN result into non-overlapping time frames and
evaluating if each frame contains more than the minimum required proportion of eating (shown in the last plot).

eating episodes (but at a risk of more false positives), we marked segments as "eating" under these partial match
cases and tested for different amounts of overlap (i.e., 10%, 20% and 30%). We found that the system performs best
with overlaps between 10% and 20%.

6 EXPERIMENTS
Our system and approach were evaluated in three experiments. The first experiment was run in controlled
laboratory settings; the second experiment was conducted in controlled field settings, a hybrid experimental
format that combines the benefits of a free living study with the controlled characteristics of a lab study. Finally,
the third experiment was an in-the-wild study in completely naturalistic settings. For each study, precision and
recall measures were calculated at the eating episode level to assess the performance of the system.

The food types offered in the studies were chosen to reflect the diverse selection of foods available in the real
world (see Figure 7). In particular, food groups were picked to include foods with crunchy textures (e.g. nuts,
tacos), soft textures (e.g. ice cream, yogurt), and wet crisp textures (e.g. celery, fruits). A wide array of food types
allowed us to examine the performance of the system under different conditions (e.g., soft vs. crunchy foods) and
eating styles (e.g., eating with utensils vs. grabbing and holding food with hands).
At the start of each study, it was made sure that the sensor was pointing at the jaw of the participant. In

laboratory study, the sensor position was adjusted based on visual examination by the lab staff. In controlled field
study and wild study, the distance measure was visualized on Android phone in real-time. Thus, participants
were asked to move their jaws for a few seconds as if they would when chewing food, and if the signal captured
the vertical movement of the jaw, the study began.

6.1 Laboratory Study
The goal of the lab study was to validate the feasibility of the proposed approach by obtaining examples of
dietary and non-dietary behaviors in a controlled setting where participants could be closely monitored. Twenty
participants were asked to come to our laboratory and were offered lunch. After check-in, the study staff helped
participants put on the necklace device, and adjust the sensor such that it was pointing in the direction of the
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Table 2. The study design of lab study, controlled field study and wild study. The average time for each activity is indicated
below the corresponding activity.

2*Lab Check-in Video Video/Snack Talk Walk/Talk Walk Meal Note-taking Dessert Brushing Teeth Total Time
5 min 3 min 4.6 min 3.8 min 2 min 2 min 9.4 min 1 min 6 min 1 min 37.8 min

2Controlled
Field

Check-in Appetizer Drawing Browsing Walk Talk Meal Walk Dessert Total Time

5 min 3.4 min 4.2 min 2.9 min 7 min 2.5 min 15.1 min 11.5 min 7.8 min 59.6 min
2*Wild Various activities with at least one eating episode Average Time

2 - 8 hours 4.6 hours

participant’s jawbone and chin. Over the course of each session, which lasted for approximately 40 minutes on
average, participants were offered a variety of foods with different characteristics, such as celery, nuts, soup,
lasagna, fried rice, burrito, yogurt and chocolate stick. Each participant was provided with a three-course meal
that consisted of an appetizer, a main dish and a dessert (see Figure 7). For each food served, participants were
provided with proper utensils (e.g. fork and knife for lasagna, spoon for soup and fried rice). While they were
encouraged to use the provided utensils, they were not required to use them. A common challenge with current
eating detection systems is their high rate of false positives. Therefore, participants were also asked to perform
common, non-dietary everyday tasks, such as walking, note-taking, talking and brushing teeth. Eating and
non-eating activities were inter-weaved (see Table 2). To obtain ground truth labels, participants were observed
by study staff and captured by video cameras throughout the study. The study sessions were then annotated for
chewing, eating episodes, and non-eating activities.

6.2 Controlled Field Study
While useful, controlled laboratory studies rarely replicate truly naturalistic experiences and settings. Conse-
quently, results obtained in the lab often lack external validity, and thus do not generalize well to real-world
conditions. On the other hand, free living studies place participants in their natural everyday environments,
but collecting data, and ground truth data in particular, is a significant hurdle. Other than experience sampling
techniques using paper diaries or mobile phones, an increasingly popular method for recording ground truth
in-the-wild include collecting photos or videos using wearable cameras. However, annotating thousands of photos
and hours of videos is a time-consuming and burdensome process. Moreover, continuously capturing media in
real-world settings results in a wide range of privacy challenges that cannot be easily overcome.
As an attempt to benefit from the advantages of both laboratory and in-the-wild studies while sidestepping

their shortcomings, we explored a hybrid study design that we call controlled field study. In our controlled field
study, participants met the experimenter in a public place or commercial establishment instead of in the laboratory.
All the experimental tasks took place in real-world environments such as cafes, ice-cream shops and restaurants.
The experimenter followed and monitored each and every participant throughout the study, and participants
were allowed to interact with the experimenter as if he or she were a friend. The advantage of this approach is
that all activities take place in the wild, and since the experimenter is together with the participants, ground
truth can be reliably recorded.
Fifteen participants were recruited in our controlled field study, which began at a university library. After

putting on and having the necklace device adjusted for comfort and fit, participants were asked to perform an
initial baseline of activities that included drawing on a tablet device and performing a simple web search on
a computer. Immediately afterwards, they were offered a small snack of either nuts or fruits and were asked
where they wanted to go for lunch. Lunch options were determined by the availability of restaurants around
our university campus and included Chipotle, Panda Express, Shake Shack, Wendy’s, Chick-Fil-A and Taco Bell.
After lunch at one of these establishments, participants were offered to walk to an ice-cream or frozen yogurt
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Fig. 6. The average duration of lab study was 37.8 minutes, and 20 minutes (52.9% of total duration) were spent on eating.
For the lab study, the average time spent on appetizer, main dish, and dessert were 4.6 minutes (12.2%), 9.4 minutes (24.9%),
and 6 minutes (15.9%), respectively. In controlled field study, the duration information for P5 was failed to be saved, and for
P4 the duration information for walk-2 and dessert was missing. P3 refused to get dessert. For the controlled field study,
the average duration of total activities was 59.5 minutes, and 26.4 minutes (44.5% of total duration) were spent on eating.
The average time spent on appetizer, main dish, and dessert were 3.4 minutes (5.8%), 15.1 minutes (25.4%), and 7.9 minutes
(13.3%), respectively.

place and have dessert. Throughout the study, the experimenter accompanied participants and made annotations
of all activities in real-time.
The controlled field study was a pseudo-wild study in the sense that every activity took place in the wild.

However, due to the natural context provided in the controlled field study, some participants (e.g. P7) initiated and
engaged in a long conversation with the researcher after having only a few bites of food (see Figure 6). Whenever
participants attempted to get involved in a long conversation longer than 5 minutes without eating, they were
reminded of the study and asked to focus on eating.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 2, No. 1, Article 4. Publication date: March 2018.



Detecting Eating Episodes by Tracking Jawbone Movements with a Non-Contact Wearable Sensor • 4:13

Fig. 7. The composition of foods served for lab study and controlled field study is shown in the figure. The number of servings
is shown in the y-axis of the bar chart. The served food is written in each segment of bar along with the number of servings
for each food. The bar height for dessert from controlled field study is shorter since two participants (P3 and P4) refused to
have desserts. In controlled field study, the menus for appetizer and main dish were prepared such that eating would require
significant amount of chewing while the menus for desserts were prepared with those that require minimal chewing.

Table 3. A variety of foods were consumed in the wild. P1 and P11 failed to have a meal session in the wild, and thus, were
excluded from the table.

Participant P2 P3 P4 P5 P6 P7 P8 P9 P10 P12 P13 P14 P15
2Food Pasta Burger Sandwich Bread Fried Rice Pasta Chicken Salad Salad Rice Rice Bowl Rice Pasta Salad

Cookies Stir Fried Tofu Cookies Apple Curry Soup Apple

6.3 In-the-Wild Study
To evaluate our system and approach in real-world settings, we conducted a 1-day in-the-wild study with 19
participants. While wearing the eating detection device, which was given to them in the morning, participants
were free to perform their normal everyday activities for the rest of the day. Each participant was given an
Android phone and asked to annotate the beginning and end of any eating activities. Additionally, they were
instructed to make a note of what they ate. Two participants (P1 and P11) reported that they failed to eat a meal
during the study and thus their data was excluded from the analysis. The remaining seventeen participants
reported that they had at least one meal. The average duration of the in-wild study was 4 hours and 38 minutes
per participant; the shortest duration was 2 hours and the longest was 8 hours and 48 minutes. The types of food
consumed in this study can be seen in Table 3.
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Fig. 8. The difference in plots for the lab study and the controlled field study is due to the difference in necklace design,
which resulted the necklace for the lab study being placed consistently closer to the chin. The figure on the right shows
the average F1 score as evaluation segment duration varied from 1 to 10 minutes. The amplitude threshold used for this
analysis was 1.5 for controlled field and wild study, and 1.0 for lab study. For each evaluation segment duration, the minimum
proportion of eating required within each evaluation segment duration for eating detection was 10%.

7 RESULTS

7.1 Laboratory Study Results
Of the twenty participants recruited in the lab study, three participants were excluded from the analysis due
to sensor misalignment. A 10-minute evaluation segment with 10% overlap and an amplitude threshold of 1.0
resulted in precision of 91.2% and recall of 92.6%.

7.2 Controlled Field Study Results
For the controlled field study, fifteen participants were recruited. The best result was obtained with precision
of 95.2% and recall of 81.9% when the evaluation segment was 10 minutes long with overlap set to 10% and
amplitude threshold set to 1.5.

7.3 In-the-Wild Study Results
The fifteen participants from the controlled field study participated in the in-the-wild study. In this study, eating
episode detection was achieved with a precision of 78.2% and a recall of 72.5% with the evaluation segment set to
10 minutes. The amplitude threshold of 1.5 and 10% overlap were used for the analysis.

8 DISCUSSION
As expected, the results demonstrated that eating episode detection performance drops as the duration of the
evaluation segment decreases. This is because there are fewer instances of chewing behavior in shorter segments,
which reduces the ability of the classifier to discriminate eating from non-eating activities. Figure 8 illustrates the
effect of evaluation segment on eating episode detection performance and also the amplitude threshold setting.

For the lab study, the average F1 score was consistently greater than 0.8 for amplitude thresholds 0.1, 0.5 and 1.0
and started to decrease after 1.0. We set the amplitude threshold of 1.0 for the lab study analysis. The amplitude
threshold was varied from 0.1 to 4.0 for the fifteen participants from the controlled field study and wild study, and
for the seventeen participants from the lab study. For the controlled field study, the average F1 score increased
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Fig. 9. F1 scores for all participants from the controlled field study and the wild study. The evaluation segment was 5 minutes,
the amplitude threshold was 1.5, and the minimum required proportion of eating in each evaluation segment duration was
20%. P1 and P11 failed to have meal in the wild and their wild F1 score was calculated as 1. For P10 and P15, the system
failed to capture the eating event in the wild. The average F1 score of controlled field study was 0.83 (0.88 precision and 0.79
recall) and the average F1 score of wild study was 0.76 (0.83 precision and 0.70 recall). The average F1 score of wild study
without P1 and P11 was 0.72 (0.80 precision and 0.65 recall).

as the amplitude threshold was increased from 0.1 to 1.5. However, as the amplitude threshold was increased
beyond 1.5, the average F1 score began to drop. Based on this result, we set the amplitude threshold at 1.5 for the
analysis of data for the controlled field study and the wild study. This difference in optimal amplitude thresholds
between lab study and controlled field study is due to the different mechanical designs of the necklaces employed
in the studies; after the lab study, sensor mount and rubber band were introduced to the design for ease of use
and consistent positioning of the necklace. In the earlier version of the necklace where the proximity sensor was
solely suspended by the tension of electrical wires without any support of rubber band and sensor mount, the
proximity sensor was consistently placed closer to the chin than that of the second version of the necklace. This
resulted in smaller amplitudes in signals, which led to smaller optimal amplitude threshold value in laboratory
study than that of the controlled field study.

8.1 Food Type and Drinking Episodes
Our approach to eating episode detection hinges on the identification of chewing, first and foremost. However,
some legitimate food types such as ice cream, soup, and yogurt are perceived to require very little chewing. To
understand how our system performed with these so-called soft-textured foods, we compared the recognition
performance of eating episodes of the controlled field study where participants ate soft-textured foods against
the one that involved all the other foods.

For the analysis, the evaluation segment was set to 1 minute to account for the short duration of dessert eating
episodes, whose average length was 7.9 minutes. The same setting was applied for the non-soft textured food
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episodes. Additionally, an amplitude threshold of 1.5 and 70% overlap in eating segment were applied. To restate,
this overlap meant that for every non-overlapping sequence of 1-minute evaluation segments, if each segment
contained more than 42 seconds of eating (i.e., 70% of 1 minute), the system inferred that eating occurred in the
segment.

The average F1 score for soft textured food was 67% (sd=34%), and the average F1 score for non-soft textured
food was 73% (sd=28%). As expected, the lower F1 score for soft textured food suggests that it is indeed harder to
identify eating when less chewing occurs. But the difference of only 6% in F1 score between these two conditions
is encouraging. Another measure of interest is the standard deviation of the F1 scores across participants. Its high
values shine light on the amount of intra-class variability in eating episode detection when data from multiple
individuals is considered.

When it comes to understanding the extent to which our wearable system performs across a variety of dietary
intake scenarios, it is also natural to question whether our approach is effective for drinking detection. This is
important because there has been growing interest in the health research community over the last few years in
passively monitoring hydration patterns. While not a focus of this study, we were able to observe characteristic
signals that may be used to identify drinking moments. Drinking gave rise to a significant increase in the sensor
distance reading as the head is tilted backward and the jawbone is moved further away from the sensor. This
increased distance was observed for a short period of time before it rapidly fell back to the baseline. However, we
also notice that the duration of this effect was different from occasion to occasion as drinking patterns varied.
Furthermore, the degree of tilting was different from person to person. We are currently developing a study
design and methodology so that we can investigate the problem of drinking episode detection systematically and
rigorously in the future.

8.2 Effect of Light Intensity on Sensor Data
A core component of our wearable necklace system is the VL6180X sensor. To reiterate, this device is a proximity
sensor that calculates distance by measuring the time-of-flight of emitted light. Therefore, when used for eating
episode detection, a reasonable question to ask is how much the sensor data is affected by the lighting conditions
where the device is likely to be used. To answer this question, we conducted a focused study where we tested
our system while varying the light intensity the proximity sensor was exposed to and measuring the intensity
of light, as seen in Figure 10. For this study, we used a stand-alone digital lux meter to accurately measure the
ambient light intensity. The signal at 2.2 lux was collected in our lab with all the lights turned off. The signal at
23.8 lux was obtained at a different location in the lab where it was slightly brighter due to the light from the
outside. The signal at 256 lux was measured with one light switch on, and the signal at 530 lux was measured
with two light switches on. The brightness measurement rapidly increased when the measurement was made
outside the building where our laboratory is located, under sunny and cloudy conditions: 27300 lux and 37000
lux. In the signals collected outside, it is possible to see that the sensor saturates at times; the flat lines represent
that the sensor value reached its maximum. Nonetheless, the sensor was still capable of detecting eating activity,
as evidenced by the rhythmic patterns that are also captured. This was due to the fact that during eating, even
under high light intensity overhead, the sensor is often shaded from light by the head.

8.3 Mechanical Challenges
Our intention with the wearable system was to make it practical for everyday use and highly wearable. By and
large we succeeded at this goal; the device we built is lightweight, requires only a small proximity sensor, and
does not require contact with the skin. It is attached to a necklace but otherwise it can move freely around the
neck. However, these design requirements resulted in unanticipated challenges when it came to sensing. An
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Fig. 10. The bottom four plots were collected inside a building. The two plots from the top were collected outside.

important finding from the studies was that the performance of the device is dependent on the orientation of
the sensor, since there is only one and it is so small. As expected, if the sensor was not pointing straight at the
jawbone, it was not able to collect any data corresponding to jaw movement. This was relatively common in the
studies as the sensor moved slightly as participants performed various activities. This was the case with P11 in
the controlled field study; chewing was not captured because the sensor was pointing towards the neck more
often than the jawbone. In addition, three participants from the wild study who reported to have engaged in
sport activities (i.e., badminton and skateboarding) mentioned that the sensor was rotated around the neck after
these activities, and they had to re-position the necklace. We plan to address these issues in a future iteration
of the device in two ways. First, we will incorporate additional proximity sensors to the system in an array
configuration such that a wider sensing area can be explored and the device is not so sensitive to misalignment
due to motion. Secondly, we will explore methods and materials to prevent excessive movement of the sensor and
facilitate custom fitting even as individuals are performing highly active physical activities. Ultimately, our goal
is to reduce the size of the device further so that it can be integrated into existing jewelry and other wearables.

8.4 Mobility Confounds
A limitation we identified in our preliminary studies is that walking can be confused with chewing. This is
highlighted further if a person walks in a straight line without turning their head. In other words, walking can
give rise to a signal that has the similar characteristic frequency and amplitude as eating, which can result in
a high false-positive rate. To circumvent this problem, the accelerometer from the accompanying smartphone
was used. Given a certain amount of energy in the acceleration vector, it is assumed the individual is walking
and not eating. In this case, the sensor data is discarded before it reaches the processing pipeline for efficiency
reasons. This approach is simple and performed well in our studies, reducing the rate false positives, but its
limitations are clear. For one, it does not account for scenarios where eating takes place while walking. And
more importantly, it also fails to consider when a person is eating inside of a moving vehicle, which is a common
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Table 4. The survey questions asked at the end of the wild study.

User Survey Questions
Q1. How comfortable was the device in scale from 1-5 with 5 being the most comfortable?
Q2.Were you aware of the device?
Q3.Will you attend a social event with the device on?

Fig. 11. One individual responded that the device was uncomfortable and two individuals responded that the device was
very comfortable. The average score for comfort was 3.6 and it was considered moderately comfortable.

occurrence. Thankfully, there is significant prior work focused on the identification of transportation modes with
smart phones sensors [22, 50]. In the future, we plan to incorporate these approaches into the system so that it
can detect eating episodes even when acceleration is observed; the individual might be inside of a car or public
transportation and having a snack.

8.5 Wearability and Comfort
The fifteen participants from the controlled field study and wild study were asked about their experience with
the device at the conclusion of the experiments. The questions asked are shown in the Table 4. The comfort of
the device was asked in scale from 1 to 5 with 5 being the most comfortable. The average comfort score from the
fifteen participants was 3.6 and the standard deviation was 0.91 (See Figure 11). The maximum comfort value
was 5 and the minimum comfort score was 2. The second question about whether the participants were aware
of the device during the study. 86.7% of the fifteen participants responded that they were aware of the device
throughout the study. The third question was about whether the participants were willing to attend a social
event with the device on. 73.3% of the fifteen participants responded that they would not mind attending a social
event with the device on.
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9 CONCLUSION
We introduce a wearable device for eating episode detection that operates by capturing jawbone movements
through a distance measure obtained with a proximity sensor. Compared to previous neck-based dietary monitor-
ing techniques, a highlight of the proposed approach is that the sensor does not need to be in direct contact with
skin. To test our system, we conducted an evaluation with a total of 32 participants comprised of three phases, a
controlled laboratory study, a controlled field study, and an in-the-wild study. We were able to capture eating
episodes with a precision of 91.2 % and recall of 92.6 % in the lab study and with the a precision of 95.2% and
recall of 81.9% in the controlled field study. For the in-the-wild study, we obtained 78.2% and 72.5% for precision
and recall, respectively. Although the system we developed has limitations, our studies have informed us about
ways in which the identified shortcomings can be addressed in the future. Finally, to enable and encourage this
research direction to be extended by the research community, we will be releasing the sensor data compiled in
the studies upon the public availability of this work.
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