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ARTICLE INFO ABSTRACT
Keywords: Loneliness is a widely affecting mental health symptom and can be mediated by and co-vary with
Loneliness patterns of social exposure. Using momentary survey and smartphone sensing data collected from

Social context 129 Android-using college student participants over three weeks, we (1) investigate and uncover

SBEZ::)%]:EM the relations between momentary loneliness experience and companionship type and (2) propose
GPS and validate novel geosocial features of smartphone-based Bluetooth and GPS data for predicting
Predictive modeling loneliness and companionship type in real time. We base our features on intuitions characterizing
2000MSC: the quantity and spatiotemporal predictability of an individual’s Bluetooth encounters and GPS
68U01 location clusters to capture personal significance of social exposure scenarios conditional on their
92G50 temporal distribution and geographic patterns. We examine our features’ statistical correlation
62P15 with momentary loneliness through regression analyses and evaluate their predictive power using

a sliding window prediction procedure. Our features achieved significant performance
improvement compared to baseline for predicting both momentary loneliness and companionship
type, with the effect stronger for the loneliness prediction task. As such we recommend incor-
poration and further evaluation of our geosocial features proposed in this study in future mental
health sensing and context-aware computing applications.

1. Introduction

Loneliness is a significant mental health problem and a direct threat to physical and psychological well-being Mushtaq et al. (2014).
In a 2018 study of over 20,000 American adults, 46% of them reported sometimes or always feeling alone Nemecek (2018). Chronic
loneliness can also lead to negative behavioral traits such as distrust and social withdrawal Ernst and Cacioppo (1999). To assess and
mitigate loneliness, psychiatrists have developed survey-based tools such as the UCLA scale to measure loneliness Russell et al. (1978),
and have developed interventions such as virtual online community and group activity sessions to reduce loneliness Masi et al. (2011).
The survey-based tools offer a helpful one-shot global self-assessment of loneliness but provide little insight into the
moment-to-moment fluctuations of loneliness or the local conditions associated with it, making it difficult for timely treatment that
takes into account ever-changing daily life circumstances.
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Recent improvements in mobile technology and mental health sensing research suggest possibilities of using smartphones to help
assess and passively infer mental health status (Mohr et al. (2017)), such as loneliness, and deliver in-situ personalized mobile in-
terventions (Aung et al. (2017)). A review of existing work on loneliness diagnosis using smartphone data indicates preliminary success
in detecting trait loneliness, or distinguishing lonely and non-lonely individuals based on observations of longer periods of time (e.g., a
few months) (Doryab et al. (2019)); however, there has been a lack of research on real-time loneliness, or state loneliness estimation,
which aims at detecting transient experiences of loneliness in daily life. Such real-time detection could provide a crucial basis for
developing, delivering, and evaluating opportune and effective mobile interventions. One example of the existing mental health
mobile interventions is the smartphone-based training modules offered by Deprexis®.

Research in psychology has shown that loneliness is strongly related to an individual’s in-person social context. Specifically,
spending leisure time with companions helps mitigate loneliness (Rook (1987)) and the frequency of interactions with family members
is negatively related to loneliness (Drageset (2004)). Some studies suggest it is more the quality of contact than the quantity that
determines its effect on loneliness (Jones (1981)). These findings, combined with promising recent progress on inferring behavior
using smartphone data (Pei et al. (2013)), motivate efforts into predicting the type of companions an individual spends time with in
their daily life using smartphone data. Real-time prediction of companionship type may not only be further incorporated into auto-
matic mental health prediction, but also provide important insights into an individual’s daily behavior, enabling other context-aware
applications.

We define companionship as the people with whom an individual shares near physical spaces in a given moment and categorizes it
into three types: solitary (i.e., absence of a companion), with people of close relationship (e.g., friends and family), and with people of
non-close relationship (e.g., strangers). As both loneliness and companionship type belong in social aspects of human behavior, we pay
special attention to smartphone-based Bluetooth radio as a key sensing modality because it has proven especially useful for under-
standing social behavior (Harari et al. (2017)) and improving mental health prediction performance (Wu et al. (2018)). We jointly
utilize Bluetooth and GPS data from smartphones to create features that represent an individual’s geosocial patterns. Drawing upon
both the quantity and the spatiotemporal distribution of an individual’s encountered Bluetooth devices and GPS location clusters,
these geosocial features characterize an individual’s social exposure scenarios based on their social familiarity and spatiotemporal
predictability. We hypothesize that particular geosocial patterns observed for a given interval of time are correlated with and pre-
dictive of an individual’s concurrent level of loneliness and type of companionship. We compute these features using smartphone
sensing data collected in 2018 in a large-scale mobile sensing study of college student participants.

The contributions of this paper are that we further examine the relations between loneliness and companionship type on a fine
temporal resolution, propose novel features with smartphone sensing data, and assess their correlation with and predictive power for
real-time loneliness and companionship type. Our findings show significant utility of our proposed geosocial features for both
momentary loneliness and momentary companionship type prediction tasks, with the advantage most noticeable in the loneliness
prediction task. Our geosocial models achieved an average area under ROC of 0.74 for loneliness, 0.71 for detecting solitary moments,
and 0.67 for detecting moments of close-relationship companionship under a sliding window evaluation setup, all of which signifi-
cantly outperformed baseline models. To the best of our knowledge, this study is the first to jointly investigate real-time loneliness and
companionship type through novel feature engineering with smartphone Bluetooth and GPS data to capture the interplay between
social exposure and location in an individual’s daily life.

The remainder of this paper is arranged as follows. In Section 2 we review existing work on loneliness and social context detection
and identify limitations that motivate our research questions in Section 3. Then we introduce our data collection in Section 4 and
propose and describe geosocial features in Section 5. Our experiments consist of two main steps namely correlation analyses and
predictive modeling, for which we discuss the procedures and results in Section 6 and 7 respectively. Finally we discuss methodological
lessons in Section 8 and draw conclusions in Section 9.

2. Related work

A subset of the broader mental health sensing literature has focused on predicting loneliness using human-centric sensing data
(Mohr et al. (2017)). Phone call and SMS patterns proved important in distinguishing lonely from non-lonely individuals (Pulekar and
Agu (2016); Li et al. (2016)). Doryab et al. (Doryab et al. (2019)) used comprehensive daily mobile sensing features from both
smartphone and Fitbit to predict pre-/post-semester loneliness scores. Other studies used indoor, smart home solutions to predict
loneliness (Petersen et al. (2013); Austin et al. (2016)) in senior citizens, who more likely than other demographic groups to stay at
home. A major limitation in the existing literature on loneliness sensing is the emphasis it places on trait loneliness, such that the
prediction task is aimed at diagnosing lonely individuals, thus using individual participants as the unit of analysis. However, state
loneliness, on which we focus in this paper, has largely been overlooked. We target state loneliness by building models to detect lonely
moments or episodes in daily life.

A separate group of work has focused on using mobile sensing data to infer social context, for which Bluetooth data from
smartphones and wearable devices have proved especially useful (Harari et al. (2017)). Do et al. (Do and Gatica-Perez (2013)) pro-
posed a generative probabilistic model to extract latent human interaction types based on Bluetooth encounters. Yan et al. (Yan et al.
(2013)) focused on classifying the context (e.g., in a meeting or at lunch) of Bluetooth encounters and clustered users based on their
encounter patterns. Chen et al. (Chen et al. (2014)) used Bluetooth features to predict five representative social-behavioral contexts,
namely meeting in the hall, working indoors, taking the subway, shopping in the mall, and watching a movie in the cinema. Limitations
of these studies are that the definition of social context labels may be considered arbitrary and idiosyncratic, and applicable only to
individuals with certain types of jobs: for example, “in a meeting” may only be applicable to office workers. We also find that the social
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context labels are confounded by locations or activities and fail to reflect the actual type of companionship in the moment; for example,
for the context label “watching a movie in the cinema”, does it matter if the subject is by herself or with friends or family? Arguably
watching a movie alone and together with familiar people should constitute different social contexts, but this difference is not reflected
(Chen et al. (2014)). To remedy these issues, we choose to focus on companionship type, a key component of social context that reflects
the social significance of the persons one is with in a moment, and answer questions about its inference and effects on loneliness.

3. Research questions

Fig. 1 illustrates the conceptual structure of the research questions we answer in this paper. Through answering the following four
research questions we explore the relationship between momentary (state) loneliness and companionship type, identify important
geosocial features that are associated with momentary loneliness, and evaluate the predictive power of our geosocial features targeting
both loneliness and companionship type in real-time. Following descriptions of our collected data (Section 4) and feature engineering
process (Section 5), we will present the methods and experiments we use to answer RQ1 and RQ2 and their results in Section 6
dedicated to correlation analysis and the same for RQ3 and RQ4 in Section 7 dedicated to predictive modeling.

RQ1: In what ways is momentary companionship type correlated with momentary (state) loneliness?

RQ2: In what ways are our geosocial features correlated with momentary loneliness?

RQ3: How much can our geosocial features improve predictive power for momentary loneliness?

e RQ4: How much can our geosocial features improve predictive power for momentary companionship type?

4. Data

Data were collected as a part of the UT1000 project at the University of Texas at Austin. During the Fall semester of 2018, 1058
undergraduate students were recruited in a 3-week-long mobile sensing study, of which 929 were iPhone users and the remaining 129
used Android phones. The Beiwe mobile application (https://www.beiwe.org/) was installed and run on their smartphones to record
multiple types of sensor data including GPS, accelerometer, and screen status. Bluetooth encounters, Wifi access points, SMS and phone
call logs data were also collected but only from the Android users. The app deployed ecological momentary assessment (EMA) surveys
at random multiple times (up to four) per day to gather self-reported information on participants’ real-time location, activity,
companionship type, social interaction, and mental health status. In this study we use data collected from the 129 Android-using
participants due to the availability of both GPS and Bluetooth data. Age and gender makeup of these participants are shown in
Fig. 2. The vast majority (96%) of these participants are between 17 and 21 years of age and around two thirds are male.

Two types of smartphone sensing data — GPS and Bluetooth — were used to extract features. Both sensors were scheduled by the

Loneliness

Companionship
Type

RQ2: Correlate
RQ3: Predict

Geosocial
Features

Fig. 1. Conceptual structure of our Research Questions. “Correlate” refers to finding statistical relations and “predict” refers to evaluating pre-
dictive power.
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Beiwe app to be woken up and stay active to collect data for 1 min every 10 min being dormant. The GPS data contain the timestamp,
latitude, and longitude of a participant’s locations throughout the days of the study period. The Bluetooth data contain the MAC
address of Bluetooth devices a participant’s smartphone detects within its proximity and the timestamp of each detection. A sample of
GPS and Bluetooth data collected is shown in Fig. 3.

Two types of EMA data were used to serve as ground truth for momentary loneliness and companionship type. The loneliness EMA
question reads “I am feeling lonely:” with four answer options “0 not at all”, “1 a little bit”, “2 quite a bit”, and “3 very much”. The
companionship type EMA question reads “please describe your behavior during the PAST FIFTEEN MINUTES ... I spent MOST of my
time with the following people:“, to which participants can choose one or more from the following options: classmates, co-workers,
family, friends, no one alone, roommates, significant other, strangers, other. We recorded 7309 momentary self-reports with both
the companionship type question and the loneliness question answered. The median participant submitted 61 self-reports of real-time
loneliness and companionship type over a course of 20.4 days. Proportions of different answers provided to both EMA questions are
shown in Tables 1 and 2 respectively. Note that the sum of percentages in Table 2 is greater than 100% because some responses contain
multiple categories (e.g., friends and classmates).

For each momentary self-report, we consider as input the GPS and Bluetooth data within the 15 min leading up to the time of the
self-report from the corresponding participant. The rationale for using a 15-min extraction window is that the EMA questions were so
phrased that the solicited answers were associated with the previous 15 min prior to submission, so it seems to be a reasonable duration
of time to observe real-time social exposure. Note that both Bluetooth and GPS data were not available for all 15-min windows. In some
cases no Bluetooth and/or GPS data was recorded due to reasons such as power-off and low reception. Due to device technical lim-
itations, 4057 out of the 7309 momentary self-reports have concurrent Bluetooth and GPS data available. We will be using these
observations as training data for our further analyses.

5. Feature engineering

We extract features to predict momentary loneliness and companionship type using participants’ Bluetooth data (traces of time-
stamped IDs of detected surrounding devices) and GPS data (traces of timestamped coordinates) that coincide with the 15-min window
described in the previous section. Our geosocial features fall in three categories: Bluetooth features, computed using only Bluetooth
data; GPS features, computed using only GPS data, and; Bluetooth+GPS features, computed using Bluetooth and GPS data jointly to
characterize their inter-dependency. We calculate the number of unique devices, the total number of encounters, and the entropy of
encounters over unique devices for each 15-min window for each subject as baseline features, which are based on raw Bluetooth signals
and require minimal design and processing. We discuss the building process in detail below by category.

Bluetooth features For each encounter with a Bluetooth device, there exist (1) social familiarity, which is computed as the number of
times a participant detects a certain device divided by the total number of possible times for detection during an observation period: a
higher familiarity score simply means that the subject is in the company of the device or the device carrier for a larger proportion of the
subject’s time, and thus more “familiar”; (2) social temporal regularity, characterizing the predictability of the time of day an encounter
takes place, defined by the proportion of encountering a particular device at a particular time of day out of all different times the same
device is encountered over an observation period: thus, a higher temporal regularity indicates a dedicated “meeting” schedule where
fewer, more specific time slots were assigned to an encounter (a weekly dinner at not necessarily the same restaurant with a friend
would result in this); whereas a lower temporal regularity of a Bluetooth device suggests that there are more possible points in time for
such encounters to happen. To calculate the social temporal regularity of a Bluetooth encounter, we count the number of times the
participant detected the device within the same 15-min time window over the study period and divide it by the total number of times
the participant detected the device at any time. Both these measures are associated with a distinct Bluetooth device, and multiple
devices are usually detected within a 15-min window, so we calculate four statistics, namely mean, standard deviation, maximum, and
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Fig. 2. Demographic makeup of the Android-using participants whose mobile sensing and self-report data are used in this study.
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Fig. 3. A sample of the collected GPS and Bluetooth data.

Table 1
Breakdown of momentary loneliness answers among collected EMA self-reports (total
7309).
Answer Count Percentage
0-Not at all 5152 70.5%
1-A little bit 1799 24.6%
2-Quite a bit 273 3.7%
3-Very much 85 1.2%
Table 2
Breakdown of momentary companionship type answers among collected EMA self-
reports.
Answer Count Percentage
Alone 2597 35.5%
Classmates 1445 19.8%
Co-workers 223 3.1%
Family 509 7.0%
Friends 1613 22.1%
Roommates 1102 15.1%
Significant other 468 6.4%
Strangers 517 7.1%

minimum, to serve as features.

GPS features For each place a participant visited, similar to our discussion of social features based on Bluetooth encounters, we
extract (1) geographic familiarity, defined as the proportion of time a participant spent at the place, and (2) geographic temporal regu-
larity, which quantifies the exclusivity of the participant spending time at a given place at a given time: a higher geographic temporal
regularity indicates a more dedicated period of time spent at a place (a class held only at a certain hour in an academic building a
participant visits only for the purpose of the class), whereas places like home are expected to have a low geographic temporal regularity
because the hours a participant spends at home are more spread out. To calculate geographic familiarity associated with an EMA self-
report, we consider as its place the area within a 30-m radius (a typical threshold for GPS data in mobile sensing studies (Chow et al.
(2017)) of the mean coordinate within the preceding 15-min window, calculate the duration of time a participant is within such radius
throughout the study, and divide it by the duration of the entire study period. To calculate the geographic temporal regularity of the
place associated with an EMA submission, we list all episodes of within-radius time of the participant throughout the study period,
round their beginning and ending times to the nearest 30-min marks, tally up the distinct daily 30-min marks covered by the episodes,
and calculate the proportion of the daily 30-min mark nearest the time of the EMA submission. The rationale that we round timestamps
to 30-min marks as opposed to a finer resolution is to not have relatively close timestamps placed in different bins thus making the
calculation more prone to noise. Unlike Bluetooth encounters, only one familiarity and one temporal regularity score are associated
with one 15-min feature extraction window, therefore they themselves are used as features and aggregated statistics are not computed.

Bluetooth+GPS features Combining Bluetooth and GPS data and addressing their interaction effects, we extract one more metric
— social geographic regularity — to characterize the exclusivity of the location a Bluetooth encounter takes place. It is defined by the
proportion of encountering a particular device at a particular location out of all different locations the same device is encountered over
an observation period. Thus, a higher geographic regularity indicates a more “designated” venue for an encounter to take place
(counseling sessions at a therapist’s office would result in this, not necessarily during the same time in the day) whereas a lower
geographic regularity indicates encounters with a certain device is seen at various venues. To calculate the social geographic regularity
of a Bluetooth encounter with a device, we join (in the sense of the SQL command) Bluetooth data with GPS data together by time, find
the mean coordinate where the participant detected the device within the 15-min window, count the number of times the participant
detected the device within 30 m of the coordinate over the entire study period, and divide it by the total number of times the
participant detected the device. Like social features, we also calculate four statistics for social geographic regularity, namely mean,
standard deviation, maximum, and minimum, to serve as geosocial features.

We list the name, category, brief definition, and summary statistics of the features discussed above in Table 3. Four summary
statistics are listed: the mean and standard deviation over all observations (across all participants), the standard deviation of all within-
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participant means, and the mean of all within-participant standard deviations. The values of the latter two statistics show high levels of
between-participants and within-participants variances within the proposed features.

6. Correlation analysis

The relationship between momentary loneliness and companionship type is an intriguing one. To answer RQ1, we break down the
numbers of lonely moments and alone moments based on EMA self-reports in Table 4 and observe that loneliness and solitude overlap
only moderately and a majority of lonely moments were experienced while not alone. In Fig. 4-(a) we plotted the average momentary
loneliness score from self-report entries associated with each different companionship type reported, together with the count of self-
report entries for each reported type and the 95% bootstrapped confidence interval of the loneliness score. Significant differences are
found: among all collected self-reports, loneliness appears the highest when a participant also reported being alone in the moment and
the lowest when a participant also reported being with a significant other, which is not surprising.

To simplify the companionship type categories for further experiments, we created three bins — alone, close relationship, and non-
close relationship — to construct a response variable from the companionship type self-reports. The response variable gets assigned (1)
alone when a participant checked the option “no one alone” in response to the companionship type EMA question; (2) close when
options “friends”, “family”, or “significant other” were checked, which are types of individuals with whom a participant shares
relatively intimate relationships, or “strong ties” in social network analysis terminology, and; (3) non-close when a subject selected
options “stranger”, “classmates”, “roommates”, and “co-workers” without also simultaneously checking the categories that are
considered as close relationships. In Fig. 4-(b), we repeated Fig. 4-(a) and find that loneliness level is the highest when alone and the
lowest when a participant reported being accompanied by people with whom they share close relationships, with being with non-close
companion in the middle.

Wondering whether the participants who reported more frequently being with company of close relationships also reported being
less lonely overall, we compared the average self-reported momentary loneliness over the study period between three pairs of
participant groups, which are: (1) participants who reported at least once being with family versus those who never did, (2) partic-
ipants who reported at least once being with friends versus those who never did, and (3) participants who reported at least once being
with a significant other versus those who never did. We did not find significant difference between any of the three pairs. Among
participants who reported at least once being with family, friends, and a significant other, the correlation between the frequency of
each of such self-reports and the individual average loneliness is also not significant. This result indicates that the correlation between
momentary loneliness and companionship type may not generalize to distinguish between participants’ overall loneliness level.

Next, we aim to answer RQ2 using regression models to uncover the importance of our proposed features in accounting for variance
in momentary loneliness. Intending to distinguish lonely moments from non-lonely ones, we construct a binary response variable for
momentary loneliness based on participants’ response to the loneliness EMA question: if the option Not at all was checked for the
survey, the response gets assigned value 0 (not lonely) and otherwise 1 (lonely). We first examine the individual feature correlations
and their significance through univariate logistic regression models and then we conduct multiple logistic regression with LASSO
regularization on all features to obtain a subset of salient features based on optimal AIC value. Seeing there is a great amount of within-
subject variance in the feature values (Table 3), thus within-subject comparison, we use generalized linear mixed-effect models to

Table 3
A summary of all features extracted.
Name Sensor Definition Mean SD SD of means**  Mean of
SD’S;'VJ«#:
num.uniq Bluetooth* number of distinct devices encountered 67.266  92.757  3.5581 7.7152
socio.count Bluetooth* number of encounters detected in total 236.43  341.29 143.76 254.38
socio.ent Bluetooth* entropy of encounters over distinct devices 3.2190 1.3537  0.6682 1.1566
socio.fam.mean Bluetooth mean value of the social familiarity scores 0.0030 0.0065 0.0039 0.0028
socio.fam.sd Bluetooth standard deviation of the social familiarity scores 0.0055  0.0097  0.0060 0.0041
socio.fam.max Bluetooth maximum of the social familiarity scores 0.0182  0.0256  0.0181 0.0120
socio.fam.min Bluetooth minimum value of the social familiarity scores 0.0002  0.0035  0.0009 0.0007
socio.temReg. Bluetooth mean value of the social temporal regularity scores 0.4560 0.1944  0.0809 0.1831
mean
socio.temReg.sd Bluetooth standard deviation of the social temporal regularity scores  0.3095  0.1016  0.0568 0.0878
socio.temReg.max Bluetooth maximum of the social temporal regularity scores 0.9053 0.2209 0.1128 0.1685
socio.temReg.min Bluetooth minimum of the social temporal regularity scores 0.0475 0.1144  0.0637 0.0858
geo.fam GPS geographic familiarity 0.3471  0.3109 0.1682 0.2493
geo.temReg GPS geographic temporal regularity 0.1002  0.2043  0.0987 0.1914
socio.geoReg. Bluetooth+GPS  mean value of the social geographic regularity scores 0.8536  0.1817  0.0730 0.1717
mean
socio.geoReg.sd Bluetooth+GPS  standard deviation of the social geographic regularity 0.1512  0.1260  0.0585 0.1158
scores
socio.geoReg.max Bluetooth+GPS  maximum of the social geographic regularity scores 0.9861  0.0849  0.0312 0.0610
socio.geoReg.min Bluetooth+GPS ~ minimum of the social geographic regularity scores 0.4844  0.3710 0.1770 0.3327

*baseline features; **the standard deviation of within-participant means; ***the mean of within-participant standard deviations.
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Table 4
Breakdown of lonely moments and alone moments among collected EMA self-reports.
Scenario/Quantity Alone Not alone
Lonely 918 (12.6%) 1239 (17.0%)
Not lonely 1679 (23.0%) 3473 (45.5%)
0.50 count 0.50
2500
2000
0.45 1500 0.45
1000
500
040 040 count = 2597
0.35: 0.35:
® ® count = 2355
8 0.30 8 0.30
3 S
» »
2 2
£ £
o025 o025
s s
% %
020 © 020 count = 2357
2 2
< <
0.15: 0.15.
0.10 0.10:
0.05 0.05
0.00 0.00
alone  classmales  strangers roommates  family friends  co-workers significant other alone non-close companionship close companionship
(a) EMA companionship types (b) Binned companionship types

Fig. 4. Self-reported real-time loneliness (a) by the self-reported type of companion in the moment and (b) by the aggregated type of companion
(alone vs. non-close vs. close) in the moment.

correct for potential dependency between observations from the same participants as suggested in literature (Moen et al. (2016)).
Specifically, we added a participant-wise random effect (with observations from each distinct participant having a distinct realization
of the random effect) to the intercept of the univariate logistic regression models described above. Then we construct a multiple logistic
mixed-effect model with the same participant-wise random effect and LASSO regularization using the procedure specified in the
glmmLasso algorithm (Schelldorfer et al. (2014)) and obtain a salient feature subset, again, based on optimal AIC value. The results

Table 5

Feature coefficients and significance for momentary loneliness evaluated by (a) univariate logistic regression and (b) multiple logistic LASSO
regression, when (a) pooling over all participants (vanilla) and (b) controlling for participant effect (mixed). For univariate models, features sig-
nificant at p = 0.05 are shown in bold and significance levels are denoted as follows: ***, p < 0.001; **,0.001 < p < 0.01; *,0.01 < p < 0.05;.,0.05 <
p < 0.1. Feature values are normalized.

Name Pooling over all participants Controlling for participant effect
Univariate LASSO Univariate LASSO

num.uniq 0.9341%** 0.4656 0.8828* 0.1134

socio.count 1.3994%** 0.4032 1.2759* 0.0498

socio.ent 0.4853** 0.5508*

socio.fam.mean —0.6584 2.8870*

socio.fam.sd —0.8067 —0.1417 1.2681

socio.fam.max —0.3600 1.2394*

socio.fam.min 1.7493 1.1678 2.6657

socio.temReg.mean 0.4641%* 0.0450 0.6572%* 0.1950

socio.temReg.sd 0.4176. 1.0590**

socio.temReg.max 0.4397** 0.1288 0.8416*** 0.1150

socio.temReg.min —0.0719 —0.2741

socio.geoReg.mean 0.4401* 0.2772 0.2978 0.1427

socio.geoReg.sd —0.0173 —0.0076

socio.geoReg.max 1.4193** 0.4500 1.3394* 0.2061

socio.geoReg.min —0.0378 0.0011 —0.0113

geo.fam —0.1226 0.2712

geo.temReg —0.1603 —0.6162*
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from our four sets of statistical models described above are shown in Table 5.

There was major agreement in individual feature significance between the pooled models and the mixed-effect models (comparing
the second and the fourth column of Table 5). We find a surprising, positive correlation between loneliness and features num.unig,
socio.count, and socio.ent, indicating that a moment is significantly more likely to be a lonely one when a higher number of distinct
surrounding Bluetooth devices have been detected. This phenomenon may reflect scenarios where an individual feels lonely while
spending time in public spaces where many Bluetooth device holders are nearby. Another important observation is that real-time
loneliness is positively correlated with the mean and/or maximum values of both socio.temReg and socio.geoReg, whose higher
values reflect social exposure that results from being more fixed or scheduled in time and location, such as doctor appointments and
classes. This observation suggests that a participant’s momentary loneliness level tends to be lower when they are not on fixed or
scheduled time. These features — num.uniq, socio.count, socio.ent, and the mean and max values of socio.temReg and socio.geoReg — are
also retained in the selected LASSO models (the third and the fifth column of Table 5) under both the pooled and the mixed-effect
settings, indicating their importance.

Some discrepancies can also be identified. The mean and max values of socio.fam are not significant in the individual pooled models
but show a significant positive effect on momentary loneliness in the mixed-effect models; however, they are retained in neither the
selected pooled nor mixed-effect LASSO models. The same pattern of contrast applies to geo.temReg with a significant negative effect on
momentary loneliness in the mixed-effect model. This result suggests an interaction effect between participant identity and the value of
these features; however, we are unable to provide a decisive interpretation and will need to defer to further evidence.

7. Predictive modeling

Our primary prediction task (RQ3) is to classify whether a participant experienced loneliness at a particular moment using the 4057
observations of Bluetooth and GPS features as discussed in Section 5. As in the statistical models discussed in Section 6, we set the
response variable for each observation to 0 when the corresponding response to the loneliness EMA question is “0-Not at all” and 1
otherwise. Our secondary prediction task (RQ4) is to detect the momentary companionship type using the same observations of feature
values. Of the three categories discussed in Section 6 we are interested in detecting solitude (whether alone) and close-relationship
companionship (whether a moment was spent with companions of close relationships). For each of the three response variables,
namely loneliness, solitude, and close-relationship companionship, we experiment with four groupings of features: baseline, (base-
line)+Bluetooth, (baseline)+GPS, and (baseline)-+Geosocial features as categorized in Table 3 to reveal their differential predictive
power: the +Bluetooth features are all features extracted solely from Bluetooth data, including the baseline features; the +GPS group
include the GPS only features as well as the baseline (Bluetooth) features; whereas the +Geosocial features represent our full model,
encompassing features extracted solely or jointly from GPS data as well. We use the random forest algorithm to build predictive models
(with 1000 trees and 5 leaf nodes, an appropriate setup in related studies with data of comparable dimensions (Wu et al. (2018)).

We evaluate predictive performance using a daily sliding window train-test scheme to mimic a setup in real practice where at the
beginning we have a small amount of data collected from the few participants who join the study early on, and have increasing
amounts of training data becoming available day by day from both existing participants who stay in the study and new participants
who start participating in the study. We begin by situating ourselves on a particular day and use the data collected up to before the
present day as training data to predict for the present day. Then we incorporate the actual realizations of the present day observations
to retrain models and make predictions for the next day. We repeat this sliding window process from October 11-30th, 2018, during
which the bulk of our collected data is situated. Observations made on a particular day constitute the test data and all data collected up
to the previous day serve as training data. This setup allows us to both take advantage of all available data up to a certain point in time
and to train with self data, which has proved important in a number of mental health sensing studies (Constantinides et al. (2018);

Feature group — Baseline — +Bluetooth — +GPS — +Geosocial Feature group — Baseline — +Bluetooth — +GPS — +Geosocial Feature group — Baseline — +Bluetooth — +GPS — +Geosocial

(a) Loneliness (b) Solitude (c) Close companionship

Fig. 5. Predictive power of different feature groups targeting different momentary outcomes evaluated on observations of each date in the study
period. Area under ROC (AUC) is plotted. Dotted lines indicate mean values of the corresponding performance series.
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LiKamWa et al. (2013)) and especially suggested for social-natured features (Rohani et al. (2018)).

Results are shown in Fig. 5, with panels (a), (b), and (c) showing our predictive performance for momentary, solitude, and close-
relationship respectively. For momentary loneliness, the average AUC for the baseline, +Bluetooth, +GPS, and +Geosocial feature
groups over the 20-day period are 0.54, 0.72, 0.66, 0.74, respectively. This shows a decisive superiority of our geosocial features over
baseline, although the improvement in performance that can be attributed to incorporating GPS data is limited (comparing +Geosocial
with +Bluetooth). We also observe a significant trend of improving performance (p = 0.001) as training data increases and brings in the
latest data. Performance for loneliness starts out low for all three feature groups at an AUC of around 0.55 but within 5 days the
performance of both social and geosocial feature groups manage to climb to the average level.

The advantage in predictive power of geosocial features over Bluetooth only features, GPS only features, and furthermore over the
baseline is preserved in the two companionship type tasks (red dashed lines appear above blue then above grey). However, while
Bluetooth features (+Bluetooth) outperform GPS features (+GPS) for predicting loneliness, the comparison is reversed for predicting
solitude and close companionship, suggesting that our Bluetooth features may be better suited to capture subjective social experience
than objective social context. Moreover, comparing panels (b) and (c) with (a), we find that our performance for detecting momentary
solitude is overall poorer than that for loneliness, with that for close companion even lower (0.67 < 0.71 < 0.74). This pattern suggests
our features provide a better representation of the underlying process that induces loneliness than of the scenarios where different
types of companions are present. Last but not least, the performance gain over time observed in Fig. 5-(a) does not manifest in the two
companionship type predictive tasks as it does for loneliness, suggesting that loneliness prediction is less inter-personally generalizable
compared to companionship type and may, therefore, benefit from a more personalized modeling design.

We further look into the predictive power of our models among different participant subsets. We find a gender difference in
prediction performance targeting loneliness: our geosocial model of loneliness achieved an overall AUC of 0.74 but within male
students its value is 0.76 whereas within female students the value is lower at 0.70, suggesting that women’s loneliness experience may
be poorly captured in the extracted features. Such a difference, however, does not exist in the companionship type prediction results.

Finally, we examine how loneliness prediction performance using our proposed geosocial features responds to different ways of
separating the loneliness outcome labels. In addition to classifying a moment of non-loneliness from those with loneliness of any
severity, we experiment with three more class separations for classification. First, we remove those moments when participants re-
ported being a little bit lonely to achieve a more contrasted sample of observations, resulting in a data set intended for training
predictive models to distinguish non-loneliness and high loneliness. Second, we remove observations of quite a bit and very much
lonely such that the remaining data set has moderate loneliness (a little bit) considered as positive labels and non-loneliness as negative
ones. The third setting is obtained by removing the non-lonely moments and treating at least quite a bit lonely observations as positive
and a little bit lonely as negative, thus being suitable for evaluating whether a predictive model can differentiate high and low severity
of momentary loneliness. We denote the three data sets described above as 0vs23, Ovs1, and 1vs23, respectively; with numbers 0, 1, 2, 3
corresponding to the four loneliness classes not at all, a little bit, quite a bit, and very much listed in Table 1 and “vs” indicating sepa-
ration. For each of the three data sets, we undertake the same predictive modeling process used to generate results shown in Fig. 5 and
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Loneliness class separation = 0vs123 — Ovs23 — Ovs1 — 1vs23

Fig. 6. Momontary loneliness prediction performance using geosocial features under different class separation. As listed in Table 1, the numbers 0,
1, 2, 3 in the legend key represent not at all, a little bit, quite a bit, and very much lonely. Therefore the four separations compared and visualized are
(1) Ovs123: not lonely at all vs. any severity of loneliness, which is the separation used for the results shown in Fig. 5-(a); (2) Ovs23, not lonely at all
vs. at least quite a bit lonely, with observations that belong to the a little bit class removed; (c) Ovsl, not at all vs. a little bit, with more severe
loneliness observations removed, and; (d) 1vs23, a little bit vs. at least quite a bit lonely, with the not at all lonely class removed.
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show the performance results in Fig. 6 together with the performance of the original class separation (i.e., 0vs123). We find minimal
differences between the average AUC values of the Ovs123, Ovs1, and Ovs23 settings, which all fall in the 0.73-0.74 range; whereas the
prediction performance for differentiating high and low loneliness (1vs23) is poorer by a large margin at a level of 0.61. This result
indicates that our proposed geosocial features are better-suited to distinguish non-loneliness from loneliness of various levels of
severity than to distinguish existing loneliness of different levels of severity.

8. Discussion

In this section we reflect on our outcome variables and approach in the grander context of understanding human behavior and
enhancing human well-being through mobile sensing and data analytics.

Temporal resolution The two related outcomes examined in this paper, loneliness and companionship type, fall in two overlapping
yet distinguishable areas in ubiquitous computing research, namely mental health sensing and context-aware computing, respectively.
Context-aware computing emphasizes a computer’s inference of its user’s activity and surroundings in real-time, thus naturally having
a moment-to-moment granularity. However, mental health sensing tasks span a wider range of temporal resolutions. On the low end,
we see condition diagnosis tasks observe participants for as long as two months consecutively and then offer a judgment about whether
a participant is with a clinical condition such as depression. On the high end reside real-time tracking tasks like the one presented in
this paper, which do not aim at a medical diagnosis but focus on raising timely warnings. In the middle of the scale, a number of studies
have adopted temporal resolutions ranging from daily and every few days to weekly and bi-weekly. The differences in temporal
resolution points to different types, formats, and content of intervention: following a diagnosis, traditional intervention programs may
be applied as treatment, whereas predictions of higher temporal resolutions will enable just-in-time adaptive intervention via mobile
platforms. Question as to what sensing-intervention scheme will be most efficacious for what cohorts and conditions remains open,
challenging, and critical for successful future applications of smart mental health.

Social context Companionship type is a key aspect of an individual’s social context, but far from the entire picture. The extent to
which companionship type was captured in this paper covers the existence of a companion and (if true) the nature of a companion but
does not consider the number of people surrounding a participant, differences in distance, and the interaction behavior, which
altogether constitute a holistic social context in which one is situated. To combat the arbitrariness in defining social context seen in
extant literature and to systematically delineate the various aspects of social context sensing, we argue that a formalized response
variable definition for future social context inference tasks is needed. We propose that four components, quantity, quality, distance, and
interaction, be specified in a definition of social context in future context-aware computing work. Quantity refers to the number of
individuals and quality refers to their social significance. The distance element, can be categorized into groups such as “within personal
space”, “within social space”, and “beyond social space” based on Edward Hall’s proxemics theory (Hall (1963)). The interaction
element defines the type of in-person verbal interaction taking place, which may include absence of interaction, interaction among
others only, interaction involving self. Such a 4-pronged taxonomy will also help phrasing EMA questions to acquire ground truth in
future sensing studies: as opposed to only asking “who are you with”, more detailed and rigorous questions may be administered.

Sensing hardware In this paper our core approach is feature engineering, utilizing Bluetooth and GPS data from Android smart-
phones. The capability of feature engineering in human-centric sensing and inference is inevitably bounded by both (a) the availability
and degree of integration of a sensor and (b) the absolute content a sensor captures. In our large participant cohort, 88% were iPhone
users, from whom Bluetooth data were unavailable; therefore to further utilize the predictive power of Bluetooth data in mental health
sensing and context-aware computing practice, other wearable devices such as smart watches may provide a better habitat for relevant
data processing and analytics. In existing literature on social behavior inference, Bluetooth data is the most utilized smartphone sensor
but it is not nearly sufficient to distinguish finer grained scenarios such as the social contexts defined with the four components
proposed in the previous paragraph. Introduction and fusion of novel or previously overlooked mobile sensors may offer new and more
effective solutions to social context detection. Magnetometer and audio sensing are candidate options, as we are observing recent
studies using phone-embedded magnetometer to detect coexistence for epidemiology applications (Kuk et al. (2018)) as well as
ongoing work on wearable voice sensors (Lee et al. (2019)), which have the potential to support emotional state prediction in daily life.

9. Conclusion

In this paper we studied momentary loneliness and companionship type with self-report and smartphone sensing data collected
from 129 Android-carrying student participants over three weeks. We examined the relations between the two social-oriented out-
comes and proposed novel geosocial features extracted from smartphone Bluetooth and GPS data that exhibited value in improving
prediction of momentary loneliness and companionship type in correlation analysis and predictive modeling. We found that the
companionship type is significantly related to loneliness experienced in a moment. Of all the companionship type self-reports, mo-
ments being with a significant other were in average the least lonely ones and those being alone were the loneliest. Moments spent with
close-relationship companions are expected to be less lonely than those spent with non-close-relationship companions, in which
participants experienced even lower loneliness than moments alone; however, being alone and feeling lonely have only a very limited
correlation.

We resorted to proximity-triggered Bluetooth data as evidence for social exposure in participants’ daily lives and developed fea-
tures that capture the familiarity and the temporal and spatial predictability of a participant’s encountered Bluetooth devices observed
over a short period of time, which we hypothesized to be correlated with and predictive of the participant’s concurrent loneliness and
companionship type. We supported this hypothesis in our regression analyses, where features such as the number and entropy of
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unique devices detected and the mean or maximum value of social spatial/temporal regularity showed significance consistently.
Participants tend to have experienced greater loneliness in moments where a larger number of unique devices are detected and
moments that belong in sessions of a highly scheduled nature. We further validated our features in predictive models targeting
loneliness and companionship type, where they provided a performance boost compared to baseline. For loneliness prediction, we
observed an average AUC of 0.74 from our full model (0.2 greater than baseline) over the three-week period and the benefit of
incorporating daily updated training data. These patterns are less pronounced in predicting solitude and close-relationship
companionship, suggesting our features’ better suitability with mental health outcomes than social context outcomes.

Data used in this study come entirely from college student participants in our mobile sensing study and the number of qualified
participants is on a magnitude of 100, so the generalizability of our methods and findings to other demographic and occupational
groups as well as larger cohorts awaits future research to validate. Moreover, due to the limited temporal span of our data, we utilized
the entire study period to compute features and evaluate models whereas for a new sensing study a warm-up period of data collection is
required before testing. We call for future work to incorporate and evaluate the geosocial features proposed in this study in mental
health sensing and context-aware computing applications using greater numbers of participants and longer durations of data collection
to provide additional improvements in performance.
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