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Abstract. Runtime Verification (RV) allows monitoring the behaviors
of a system while checking them against a formal specification. The ex-
ecutions of distributed systems are often modeled using interleaving se-
mantics, where events of different processes are interleaved into a to-
tal order. However, certain behavioral properties are difficult to express
using interleaving semantics, whereas they can be naturally expressed
in terms of partial order semantics. We study the problem of runtime
verification for distributed systems based on the global states structure
associated with a partial order execution. We present two algorithms for
RV with branching temporal specifications and study the complexity of
this problem. The first algorithm is for a global temporal logic with past
operators we term PaCTL (for Past CTL). It involves constructing the
branching structure of global states. We then show a second, more effi-
cient, algorithm, for a subset of this logic that we term PaBTL. This algo-
rithm does not require constructing the branching structure. We present
implementations for both algorithms with experimental results.

1 Introduction

Runtime verification (RV) [5, 6, 20] monitors an execution trace consisting of
events emitted by the observed system and verifies it against a given formal
specification. RV for distributed systems poses a non-trivial challenge, since it
depends on combining information related to events that are executed on differ-
ent processes. In system verification (e.g. RV and model checking), concurrent
systems are typically modeled using interleaving semantics, imposing a total or-
der between the executed events; occurrences of independently executed events
from different processes are interleaved in either order in different execution se-
quences. In contrast, a model that assumes a partial order [28, 48] among the
events sometimes offers a more direct and intuitive view of executions that can
be distributed among different processes. There, events executed independently
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by different processes, which can also overlap in time with each other, are un-
ordered; dependencies between events in different processes can result from mes-
sage passing or the access of variables shared between multiple processes.

The interleaving model is rather simple and enjoys the benefit of using com-
mon mathematical tools for verification, e.g., based on finite automata over in-
finite words [45]. Specification over this model is often given using Linear Tem-
poral Logic (LTL) [25]. Practice shows that for most purposes, the interleaving
model is sufficient for modeling concurrent systems as a basis for temporal spec-
ification; the fact that concurrently executed events are interleaved is often not
restrictive, in particular if the specification is not sensitive to the relative order
of such interleavings [37]. On the other hand, there are cases where properties
of a distributed system are lost when interleaving their executed events and it
is beneficial to use the partial order execution model.

In this paper, we study runtime verification of distributed systems, based on
the partial order semantics. The verification is with respect to a temporal logic
specification that asserts about the branching structure over global states related
to a partial order execution of the monitored system. The global states in the
partial order model correspond to cuts, where a cut is a history closed subset of
events of the partial order. The RV monitoring in our case is centralized, which
is in accordance with the global state based specification.

An example of a property that calls for the use of the partial order model
is related to the detection of global snapshots [9] of a distributed system, i.e. a
consistent collection of local states of the system. Such a snapshot corresponds
to a cut of the partial order execution, while in the interleaving model such a
snapshot may not appear directly as a global state of the modeled interleaving
sequence1. Another example is from distributed databases, where transactions,
i.e., pieces of the execution that involve multiple events, are designed to behave
as if executed one after another in some linearizations [8, 13, 21, 33], while in
other linearizations of these events the transactions may (partially) overlap; this
allows achieving some concurrency between the events of the transactions, and,
on the other hand, simplifying the design, based on the sequential-like behavior.
A similar idea can be used for describing properties of concurrent data objects or
systems implemented without a centralized control (e.g., based on blockchains).
Contributions. We present a runtime verification algorithm for distributed
systems, based on the global states construction over the partial order execution
model. The specification formalism that we use is a past time version of the
temporal logic we call PaCTL, applied to the branching time structure of global
states. This logic contains past operators such as EPφ (φ holds sometimes in the
past) and E(φSψ) (φ holds along some linearization since ψ held). We provide
an algorithm for the complete logic, whose worst case complexity is exponential
in the number of processes, with the base of the exponent being the number of
events, and a corresponding tool called PoET [50]. We provide a related hardness
result. We then present a second algorithm, for a subset of this logic, which we

1 If one groups together all the interleaving sequences that are consistent with the par-
tial order execution as in Mazurkiewicz traces [28], there is at least one interleaving
on which this global state appears
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call PaBTL, confined to the past operators EP (and its dual AH) together with
the Boolean operators. We present a corresponding tool called Kairos [51]. The
complexity of this algorithm is linear in the number of events and quadratic in
the number of processes, but is exponential in the size of the property. We show
experimental results comparing the two tools.
Related Work. Several logics are interpreted over partial order executions,
see, e.g., the survey [34]. The branching time temporal logic POTL [38] includes
both future and past branching operators, in the style of the logic CTL [11].
The interpretation is over local states and events; all the possible partial order
executions are combined into a single structure, as in event structures [48]. Some
other temporal logics that are interpreted over partial order executions are de-
fined over the global states (cuts) rather than directly over the local states of
the partial order between events; for each partial order execution, a branching
structure between the global states is separately constructed. In that category
of logics, the temporal logic ISTL [23, 36] uses the operators of CTL, applied to
each such branching structure. The logic LTrL [43] uses the syntax of linear tem-
poral operators but applies them to branching structures of global states that
are constructed from partial order executions. Model checking various subsets
of ISTL [36] is studied in [1, 3, 35, 44] and of LTrL in [44]. A logic that uses the
LTL constructs over Mazurkiewicz traces and a translation from specifications
to automata are presented in [7].

An RV verification algorithm, where the a past time CTL specification is
interpreted directly over the local states associated with the events of the par-
tial order execution, rather than over the related structure of global states as
in our work, was described in [4]; thus, the same formula has a completely dif-
ferent interpretation in [4] than in our work. Another past time logic defined
over the partial order between events is MtTL [41]; a distributed algorithm
(and implementation) was given based on the ability to pass information be-
tween processes when accessing shared variables. In [10, 40, 42], procedures are
presented for deciding whether a partial order execution satisfies properties that
can be written as a restricted version of the logic ISTL [1]. These works identify
also cases of specifications with lower complexity. Ogale and Garg [32] have pro-
posed a logic called Basic Temporal Logic (BTL), which is also a subset of ISTL;
they presented a decision procedure for checking whether a partial order execu-
tion satisfies a BTL property based on predicate slicing, with time complexity
exponential in the size of the formula but polynomial in the size of the compu-
tation. Another line of works on verification, related to the partial order model,
is aimed at proving that a property holds for a representative interleaving of a
partial order execution assuming synchronous clocks with a small bounded max-
imal drift. This limits the number of possible interleavings. This is done for LTL
specification based on SMT solving [15] and for a stream-based specification [12].

2 Preliminaries

The Partial Order Model (Local View). In the partial order execution
model [26, 39, 48], events of disjoint processes may be unordered with respect
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to each other, while the events that involve the same process must be totally
ordered. Interactions between processes, e.g., events mutual to a pair of pro-
cesses, which can model synchronous message passing, can induce order between
events of different processes. This results in a partial order, i.e., a transitive,
antisymmetric and irreflexive relation) between the events, rather than a total
order (linearization of the events) as in the more commonly used interleaving
model. A partial order execution E = ⟨P, E, Pr,≺, ι, A, L⟩, has the following
components:

– P is a finite set of processes.
– E is a (finite or infinite) set of events.
– Pr : E 7→ 2P maps each event to a set of processes that are involved in its

execution.
– ≺ ⊂ E×E is a partial order relation over E. In addition, ≺ is well-founded,

i.e., E does not have an infinite decreasing chain of events e1 ≻ e2 ≻ . . ..
The relation ≺ is the minimal partial order such that for each p ∈ P, the
events that involve a process p, i.e., {e ∈ E|p ∈ Pr(e)} are totally ordered;
the transitivity of ≺ and the fact that events can involve multiple processes
induce further order between events from different processes.

– ι ∈ E is the initial event of E. It is minimal w.r.t. ≺ and Pr(ι) = P.
– A =

⊎
p∈P Ap is a finite set of propositions. The set A is partitioned into

subsets Ap, one for each process p ∈ P. Thus, each proposition can represent
some property (predicate) local to some process.

– L(e, p) ∈ 2Ap for p ∈ Pr(e). L maps each event and process that participates
in it to a subset of propositions from Ap. This represents the propositions
that hold (i.e., are set to true) in process p immediately after e is executed.

We can denote the labeling L(e, p) also as a minterm, i.e., a conjunction of
literals, over the propositions Ap; the propositions in L(e, p) appear non-negated,
while the propositions of Ap\L(e, p) appear negated. In a short form for denoting
minterms, conjunctions are removed and negated propositions are marked with
an overbar, hence t1 ∧ ¬t2 is denoted as t1t2. If Pr(e) ∩ Pr(f) = ∅, we say
that e and f are independent. If both e ̸≺ f and e ̸≻ f , we say that e and f
are concurrent; in this case, e and f are also independent. We say that f is an
immediate successor of e if e ≺ f and there is no g such that e ≺ g ≺ f .

Typically, events involve either only a single process, i.e., local to a single
process, or a pair of processes, representing synchronous or handshake communi-
cation. The described model can represent handshake communication as in the
programming language CSP [19]. The model and subsequently the RV algorithm
can be adapted to deal with asynchronous message passing.

Figure 1 shows an execution that contains three processes, p1, p2 and p3, with
seven events: {ι, α1, α2, α3, β1, β2, β3}. The event α2 involves both processes p1
and p2, while β2 involves p2 and p3. The rest of the events involve only a single
process each. We have Ap1

= {t1, t2}, Ap2
= {r1, r2} and Ap3

= {q1, q2}. Then,
L(α1, p1) = {t2}, L(α2, p1) = {t1} and L(α2, p2) = {r1}, which are represented,
correspondingly, by the minterms t1t2, t1t2 and r1r2.
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Fig. 1: A partial order execution

The Global View. Based on the local view, we further define the global view,
which contains cuts (and frontiers) that correspond to global states [26]. These
global states form a branching structure.

A cut C of a partial order execution E is a nonempty (as it always includes
the initial event ι) history-closed finite subset of its events E. That is, if f ∈ C
and e ≺ f then e ∈ C. Intuitively, a cut represents a potential global state of the
modeled or inspected system, where the events in the cut appeared in its past
and the other events have not happened yet. The set of cuts of a partial order
is closed under unions and intersections.

Denote by max (C, p) the maximal event in C of the process p w.r.t. the order
≺ (such a maximum exists, since ι ∈ C). A frontier FC of a cut C is2 the set
of maximal events from C for the different processes in P i.e.,

⋃
p∈P max (C, p).

A single event can play the role of a maximal event for multiple processes that
it involves. We assign to a cut C, or, equivalently to the frontier FC , a global
interpretation of the propositions A that agrees with the local maximal inter-
pretations of each process in the cut, formally, L(C) =

⊎
p∈P L(max (C, p), p) and

L(FC) = L(C). In Figure 1, the marked cut C, whose events are enclosed within
an inner dotted box, contains the events {ι, α1, α2, β1}. The corresponding fron-
tier FC is {α2, β1}, where α2 is maximal for both processes p1 and p2 and β1 is
maximal for p3. The global interpretation (state) of the cut C (and frontier FC)
is t1t2r1r2q1q2.

Note that a pair of events that are not independent of each other may be
maximal w.r.t. different processes, hence can belong to the same frontier. For
example, in the cut C′, which appears within the outer dashed box in Figure 1, the
frontier FC′ includes both α2, which is maximal for p1, and β2, which is maximal
for p2 and p3, where α2 ≺ β2. The interpretation of frontiers depends for each
process on the event maximal for that process, hence, L(FC′) = t1t̄2r1r2q̄1q2.

We can now define, based on the (local) partial order execution, a correspond-
ing global partial order between the cuts and, correspondingly, between the corre-
sponding frontiers of E . Let C1 < C2 if C1 ⊂ C2 and, correspondingly, FC1

< FC2
.

We also denote C1 ↠ C2, or, more informatively, C1
e
↠ C2 if C2 = C1 ∪ {e} for

2 Denoting the corresponding cut C as a subscript in FC is optional, and we may
simply write F .
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some e ∈ E. We say that C2 is an immediate successor of C1. Accordingly, the
corresponding frontier FC2

of C2 is the immediate successor of the frontier FC1
of

C1, and we also denote that FC1 ↠ FC2 (or FC1

e
↠ FC2). Hence, the relation < is

the transitive closure of the relation ↠. In the example in Figure 1, FC
β2

↠ FC′ .

The relation ↠ forms a branching structure, over which our specification can
be interpreted. The maximal paths in the constructed graph are the equivalent
linearizations of the (local) partial order execution (see also Mazurkiewicz trace
semantics [28]). The diagram in Figure 2 represents the global partial order
execution obtained from the local partial order execution in Figure 1. Each circle
represents a global state, and the filled circle corresponds to the frontier FC . This
is a Hasse diagram of the global view, where the depicted edges represent the
“immediate successor” relation ↠.

In the branching structure formed from a partial order, if C
e
↠ C1 and C

f
↠

C2, where e ̸= f , then e and f are independent; furthermore, we also have

FC
e
↠ FC1

f
↠ FC′ and FC

f
↠ FC2

e
↠ FC′ . Vice versa, if FC

e
↠ FC1

f
↠ FC′ and

Pr(e) ∩ Pr(f), then we also have FC
f
↠ FC2

e
↠ FC′ ; we then say that e and f

commute with each other from FC . Similarly, if FC1

e
↠ FC and FC2

f
↠ FC , then

e and f are independent.

α1

β1

α1

β1

α2

α2

β1

α3

α3

β1

β2 β2

α3
β3 β3

α3

Fig. 2: A Hasse diagram of the global states view of the partial order execution

Collecting Events from the Monitored Processes. During the runtime of
a distributed system by a centralized monitor, events from the different processes
need to be collected and processed by the monitor. An immediate difficulty is
that these events may be reported out of order. For example, in Figure 1, the
event α2 may be reported to the monitor process by process p1, while the event β2
may be reported to the monitor by p3; it can happen that the information about
β2 will be received by the monitor after the information about α2, although α2 ≺
β2. A reported event cannot be processed by the monitor until all events that
happened before it according to ≺ were also reported; otherwise, the situation
will be similar to trying to analyze a linear execution while there are holes in
the sequence observed so far.

We assume the absence of a global physical clock, which synchronizes between
the events of the monitored system. Instead, we use logical clocks [26].

As done in [22], we adopt the use of Fidge and Mattern [14, 27] vector clocks,
where each event keeps a vector of values, one per each involved process. Com-
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paring the order between vector clocks of a pair of events e and f allows to
check whether e ≺ f ; furthermore, they also allow one to check if, for a reported
event f , there is some e ≺ f that is not yet reported to the monitor process. Re-
ported events can be kept in a queue before all their predecessors are reported.
Then, they can be processed by the RV algorithm. This also guarantees that
when a new event e is processed, the set of events processed so far forms a cut
that is an immediate successor of the cut that was formed by the set of events

processed before, according to the order
e
↠. Consequently, these cuts (and their

corresponding frontiers) are formed in an order that is a linearization of the mon-
itored partial order. The RV can calculate each time a verdict for the current
cut/frontier, which will be reported according to the order of this linearization.
This applies to both our algorithms in Section 3 and Section 4.

The Logic and the Interpretation Over the Global View. We use a past
time branching temporal logic, in the style of CTL [11], to specify properties
of the global view of a partial order execution. The restriction to past time
allows interpreting the formulas on finite structures. As in CTL, each temporal
operator consists of a pair of operators: the first is a path quantifier, either A
(forall paths) or E (there exists a path). The second operator is temporal; the
temporal operators used here are the past mirror images of the corresponding
CTL operators: S (since) instead of U (until) and Y (yesterday) instead of X
(next time). We call this logic PaCTL (for past CTL). The syntax is as follows,
where q is a proposition:

φ ::= q | (φ ∧ φ) | ¬φ |EY φ |A(φSφ) |E(φSφ)

The semantics is as follows, where S, S′ represent cuts (or frontiers):

– S |= q if q ∈ L(S).
– S |= (φ1 ∧ φ2) if S |= φ1 and S |= φ2.
– S |= ¬φ if not S |= φ.
– S |= EY φ if there exists S′ ↠ S such that S′ |= φ.
– S |= E(φSψ) if either S |= ψ or both S |= φ and there exists S′ ↠ S such

that S′ |= E(φSψ).
– S |= A(φSψ) if either S |= ψ or both S |= φ and for each S′ ↠ S it holds

that S′ |= A(φSψ), where at least one such predecessor S′ exists.

We can also define additional Boolean and temporal operators: true = (q∨¬q)
for some proposition q, false = ¬true, (φ∨ψ) = ¬(¬φ∧¬ψ), EPφ = E(trueSφ),
AY φ = ¬EY ¬φ, APφ = A(trueSφ), EHφ = ¬AP¬φ and AHφ = ¬EP¬φ,
where P reads as previously and H reads as historically.
Remark. We show that some properties expressed over the global view cannot
be expressed using local properties. The branching logic Tlc in [4] is defined
directly over the local view. It contains both past and future operators (and in
addition to the CTL modalities, an operator || for concurrently). It was shown
in [4] that the logic Tlc can be translated into an automaton, hence represents
a regular language. On the other hand, PaCTL can express properties that can-
not be expressed as regular languages by comparing (essentially, counting the
length of) subsequences of events along independently (concurrently) executing
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processes. This can be done by a zigzagging argument, as will be presented in
the lower bound proof in Section 3.

3 An RV Algorithm for Global Partial Order Executions

Our RV algorithm is based on a centralized monitor, which checks a partial
order execution against a branching logic PaCTL specification. Upon processing
a new event3, the algorithm calculates a new verdict, comparing the specification
against the set of events collected so far. The sequence of issued verdicts follows
a linearization of the collected events. For each processed event α, the monitor
obtains the involved processes, i.e., Pr(α), the assignment to their propositions
immediately after the execution of α, i.e.,

⋃
p∈Pr(α) L(α, p) and the vector clock.

For example, the event α2 in Figure 1 involves the processes p1 or p2 and its
associated minterm is t1t2r1r2.

The RV algorithm constructs a subgraph of the global view; the nodes rep-
resent frontiers and the edges correspond to the relation ↠ between the corre-
sponding adjacent frontiers (hence we use the same notation ↠ for edges as we
used between frontiers). Each edge is labeled with an event that forms the tran-
sition between the corresponding frontiers. With each newly processed event,
the graph is updated, adding new nodes and edges. Some old nodes may become
redundant, in which case they can be removed. We can consider the constructed
graph, obtained after a sequence of processed events, as a sliding window into
the global view graph, which slides with each new event.

Updating the Sliding Window Graph. During runtime verification, the
monitor performs updates, based on the reported events, to the sliding window
graph whose nodes are frontiers of the partial order execution.

As part of the algorithm, we use the following procedure to construct for a

given frontier F its f successor F ′, i.e., F
f
↠ F ′. This successor exists provided

that all the immediate predecessors of f according to ≺ are in F . This is done
as follows: after adding f to the events of F , events of F that are not any
more maximal for at least one process, are removed. The order ≺ between events
can be checked based on the vector clocks attached to the events. For example,
in Figure 1, the frontier FC = {α2, β1}, which corresponds to the cut C, is
created after the sequence ια1β1α2 was observed. Then if an event β2 occurs, the

successor frontier FC′ , which corresponds to the cut C′, such that FC
β2

↠ FC′ , is
constructed as follows: first we add β2 to FC and then we remove from it β1 since
β1 is not any more maximal for process p3, as β1 ≺ β2. Thus, FC′ = {α2, β2}.
The event α2 is not removed from FC′ , since it is still maximal w.r.t. the process
p1 even after adding β2.

We now describe how to update the sliding window graph G. At each point, a
node sm represents the maximal frontier Fm of G according to the global order
<. This is the frontier that corresponds to the cut containing all the events

3 As described in Section 2, we can process a new event only after all the events
preceding according to the order ≺ were reported to the monitor.
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processed so far by the algorithm. Initially, the graph consists of a single node,
representing the frontier {ι}, where ι is the initial event. With each new observed
event, the graph G is transformed, where new nodes are added, and some nodes
may also be removed.

When a new event e is added, we first add to G an edge sm
e
↠ sn, where

sn represents the new maximal frontier Fn and Fm
e
↠ Fn. Further, new nodes

and edges are added to G as follows. For edges s
α
↠ s′

β
↠ s′′, where α and β

are independent (Pr(α) ∩ Pr(β) = ∅), β can propagate backwards over the edge

s
α
↠ s′ in the following manner: new edges s

β
↠ r

α
↠ s′′ are added where r is

a new node (unless such edges and node already exist from previous updates).
Both the β successor of the frontier corresponding to s and the α successor of
the frontier corresponding to r exist due to the commutativity between α and β,
as described in Section 2. The addition of the node r may induce, through com-
mutativity, further backward propagations. This chain of propagations repeats
until no further edges can be added.

After finishing a phase of extending the graph G with new nodes and edges
due to observing a new event e, a phase of removing redundant nodes (and all
of their connected edges) from G starts. A node s becomes redundant when the
occurrence of future events cannot generate further successors to s, hence it can
no longer affect the RV verdict. A sufficient condition for this is that for each
process p ∈ P, the algorithm has already processed an event α involving p (i.e.,
p ∈ Pr(α)), that generates a successor to s. To implement this, for each state
s in G, we accumulate the processes involved in generating its successors in the
set Rs, which is initialized to the empty set when the node s is generated. We

remove s when Rs = P. Furthermore, if there is an edge s
α
↠ s′ and the node

s′ has become redundant and was removed, then s can also be removed. The

reason for this is that no new edge s
β
↠ s′′ can be further added to the graph.

To see this, recall that if there is a β successor to the frontier corresponding to
s, then α and β are independent. Hence there is a β successor to the frontier
associated with s′, thus an edge labeled with β emanates from s′. Since s′ was
redundant, the β successor of s′ was already constructed before s′ was removed,
by induction on the order of removing redundant nodes and edges. Moreover, by
the construction of the sliding window, the edge labeled β from s′ has already

been propagated backwards over s
α
↠ s′. Thus, an edge s

β
↠ s′′ has already been

constructed before s′ was removed.

We demonstrate the first few steps of the construction windows for the ob-
servation σ = ια1α2β1, which is a prefix of the linearization σ = ια1α2β1α3β2β3
of the partial order execution in Figure 1. The steps are denoted as A-G. In ev-
ery step, the node corresponding to the maximal frontier is shaded. New edges,
added due to backward propagation (in steps E and F) appear dashed. The
backward propagation in Step E causes another backward propagation that ap-
pears in Step F. The two nodes in Step F with dotted border become redundant
and are removed, with their corresponding edges, resulting in Step G.
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Fig. 3: Graphs constructed for the trace σ = α1α2β1α3.

Calculating the Values of Subformulas on the Nodes. The following
procedure calculates the truth value for each subformula for each new frontier
(global state) constructed by the sliding window graph-updating algorithm. This
can be compared to updating the summary vector used in the case of past time
LTL [20]. For each subformula η of the specification φ and each node representing
a frontier F we keep a bit val(F , η) that is true if η holds in F . Calculating the
truth value for a subformula η may depend on the values calculated subformulas
within η; hence the calculation of the truth values progresses bottom up according
to the syntax tree of φ. Further, the calculations also use the values of truth
values previously calculated for the predecessor frontiers according to the sliding
window graph. The calculation of the truth values is performed as follows.

val(F , q) = true for a proposition q, iff q ∈ L(F).
val(F ,¬η) = true iff val(F , η) = false.
val(F , (η1 ∧ η2)) = true iff val(F , η1) = true and val(F , η2) = true.
val(F , EY η) = true iff there exists a predecessor frontier F ′ of F such that

val(F ′, η) = true.
val(F , E(η1Sη2)) = true iff either val(F , η2) = true or both val(F , η1) = true

and there exists a predecessor frontier F ′ of F in the graph such that
val(F ′, E(η1Sη2)) = true.

val(F , A(η1Sη2)) = true iff either val(F , η2) = true or both val(F , η1) = true
and for each predecessor frontier F ′ of F , (where there must be at least one
such predecessor) in the graph it holds that val(F ′, A(η1Sη2)) = true.

The RV verdict for the specification φ over the processed events is val(Fm, φ).

Complexity. The overall number of constructed global states is O((|E|/k)k),
where |E| is the overall number of events and k = |P| (i.e., the number of
processes). This worst case bound occurs when the events are distributed evenly
(|E|/k per process) and all the events of different processes are independent,
maximizing the number of global state combinations. Constructing a new frontier
from its predecessor is done in time O(k). Calculating the vector of Boolean
values for subformulas related to a frontier is done in time O(k |φ|). This gives a
complexity of O(k |φ| (|E|/k)k), which is exponential in the number of processes
with a base proportional to the number of events, and linear in the size of the
property.
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Runtime verification can be performed online or offline. For online verifi-
cation, an important complexity measure is the incremental time complexity,
which measures the computation performed after each new event that is moni-
tored. This is a critical measure if a verdict needs to be given as soon as possible,
based on the prefix seen so far. Unfortunately, the incremental complexity of the
RV algorithm presented here is still very hard. In particular, after each newly ob-
served event, the number of nodes (frontiers) added to G can be O((|E|/k)k−1),
where the local state of the new event can be combined with all the local states
of the other (independent) events.

It should be noted that such a centralized setting makes the speed of the
monitor process a bottleneck for the RV process, as it needs to process the
events from all the participating processes. The global nature of the specification
formalism does not easily lend itself to an efficient distributed RV algorithm that
may be implemented on the monitored processes themselves (which can be the
subject of further research). This, and the complexity results described, may in
fact limit the online application of runtime verification in some cases.

Hardness of RV Problem. We present a hardness result for the RV problem
of making a verdict for the logic PaCTL over a partial order execution. The
overall complexity of the described RV algorithm is O((|E|/k)k), when ignoring
the linear factors involving updating each frontier. We employ a reduction from a
fine-grained complexity problem that does not belong to the standard complexity
hierarchy, such as P, NP, or PSPACE. Fine-grained complexity [46] is a rapidly
growing area of research that seeks to establish tight computational bounds for
specific problems by exploring their precise relationships. This field examines a
variety of foundational problems that are considered computationally hard. This
approach allows us to capture the complexity in terms of two parameters: the
number of processes and the total number of events. We show that, under some
known complexity assumption, when the length of the formula is linear in the
number of processes, this is also the lower bound up to a poly-logarithmic factor
in the base, i.e. in the number of events. Specifically, we establish a lower bound
that shows that the complexity is not only exponential in k, but that the base

of the exponent grows with Ω( |E|
k log2 |E|

k

), rather than remaining a fixed constant

such as 2 or 3.

We will describe a fine-grained reduction from the k-OV framework [47],
which connects the complexity of our target problem to this hypothesis. The
Boolean vectors a1, a2, . . . , ak are orthogonal if no bit position contains a 1 in
all vectors simultaneously. Formally, this condition holds if

∨d
i=1

∧k
j=1 aj [i] = 0,

where aj [i] denotes the i-th bit of vector aj , ∧ represents bitwise conjunction
(logical and), and ∨ represents disjunction (logical or) over the bit positions. In
the k-OV problem, there are k sets E1, E2, . . . , Ek, each contains n d-bit vectors,
where d = O(log2 n). One needs to decide whether there exists a selection of
vectors a1 ∈ E1, a2 ∈ E2, . . . , ak ∈ Ek such that the chosen vectors are orthogo-
nal. A widely believed conjecture in complexity theory [47] states that the k-OV
problem requires time at least Ω

(
nk−ϵ

)
for any constant ϵ > 0.
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We describe an encoding of the sets of vector as processes and a temporal logic
formula that implements the orthogonality constraint using local propositions.
Each set Ei of vectors is encoded as a sequence of |Ei| = O(n log2 n) events,

which is 1/k of the total number of events |E| =
∑k

i=1 |Ei| = O(k n log2 n).
The vectors are encoded one after the other, separated by a delimiter as will

be explained below. Therefore in our case n = Ω( |E|
k log2 |E|

k

) and we get a lower

bound of Ω

ÇÅ
|E|

k log2 |E|
k

ãk−ϵ
å
. As stated above, the base of the exponent is

within a polylogarithmic factor of the upper bound O((|E|/k)k).

– Vector encoding: Each bit vector is encoded as a sequence of events within
its corresponding process. For example, to represent a bit vector 101 in pro-
cess pi, we generate three consecutive events where proposition vi holds true,
false, and true, respectively. This proposition vi reflects the current bit value
represented at each sequence position. All bit vectors are assumed to have
uniform length d across all processes, though this is a global convention not
explicitly enforced by our formula.

– Vector separation:We introduce a delimiter proposition δi for each process
pi to mark boundaries between consecutive vector encodings. When δi = 1,
the current event represents a transition between vectors.

– Synchronization mechanism: A trinary counter li is associated with each
process.4 This counter cycles through the values 0, 1, and 2 across successive
non-delimiter events within the same process and can be implemented using
two bits. To align delimiters with li = 0, we pad each vector with vi = 0
until its length is a multiple of 3.

The formulas is encoded as follows. The structural constraints described above
are enforced when constructing each single process pi from a given set of vectors
Ei. We express the orthogonality condition in PaCTL using a formula of the form
EP (ψ ∧ EY E(φS ψ)) of size O(k), where:

1. ψ identifies global states where all processes are at delimiter events, expressed
as

∧
1≤i≤k δi.

2. The formula φ constrains the path satisfying (φS ψ) to follow a specific
zigzagging pattern: either all processes hold the same value, or there exists
an index i such that 1 ≤ i < k, where processes 1 through i hold some value
v ∈ {0, 1, 2}, and processes i+ 1 through k hold the value (v + 1) mod 3.
To encode this, we proceed in two steps. First, we restrict the state so that
all processes use up to two of the three possible values. Second, we enforce
that for each adjacent pair of processes, the value of li+1 is either equal to
li or to (li + 1) mod 3. Both conditions can be encoded using a formula of
size O(k).

3. Further, φ asserts that when all δi = 0 and all the counters li have identical
values, at least one process must satisfy vi = 0. This enforces the core or-
thogonality condition by ensuring the bitwise conjunction across all processes
equals zero.

4 The use of bit patterns to compare events across different processes appears in [44].
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4 An Efficient Algorithm for a Subset of the Logic

The logic PaBTL (for Past Basic Temporal Logic) is obtained by restricting
PaCTL to the operators EP and AH (where AHφ = ¬EP¬φ) and the Boolean
operators (∧, ∨, ¬). This restriction enables a more efficient algorithm while
still capturing many practical properties. Several works suggested RV algorithms
for logics that use future versions of the temporal operators [10, 32, 40, 42]; so,
instead of the EP operator in PaCTL one has its future mirror EF (“sometimes
in the future for some path”) and instead of the AH operator, one has AG (“for
every state in all paths in the future”). A model checking algorithm for a logic
with the future versions of the temporal operators is described in [1], based on
translating conditions on linearizations of the partial order into an automaton.

Converting to normal form. A disjunctionless normal form or DLNF formula
is defined as follows:

– Atomic propositions.
– EP (φ1 ∧ . . . ∧ φn), if φ1 . . . φn are in DLNF.
– If φ is in normal form, then so is ¬φ.

Our algorithm starts by translating the PaBTL specification into a DNF (Dis-
junctive Normal Form) combination of DLNF subformulas; while DLNF formulas
have no disjunctions internally, we convert the entire PaBTL specification into
a DNF of DLNF formulas, hence allowing disjunction at the top level only. The
translation follows [1], where a similar translation is applied to the logic BTL.
The translation is based on the equivalence EP (φ ∨ ψ) = (EPφ ∨ EPψ). To
increase efficiency of the algorithm, the translation can rewrite the formulas into
a DAG rather than in linear form (as in text) . Each node of the DAG con-
tains an operator (Boolean or EP ), open or close parenthesis or a proposition.
Traversing each subgraph in depth-first-search order, left to right, corresponds
to a subformula. Subformulas that are repeated under the translation can be
represented once (hence the DAG structure, rather than an abstract syntax tree
representation). The translation can result in an exponential explosion in the
size of the specification [1].

Detecting a frontier that satisfies a conjunction of minterms. Our al-
gorithm for RV of PaBTL properties first employs a procedure for detecting a
frontier F that satisfies a conjunction of minterms η =

∧
1≤i≤n γi, where each

minterm γi contains only propositions from Api
. Further, F is the minimum such

frontier that satisfies P ≤ F for some given frontier P . This procedure modifies a
procedure presented in [30] for finding a frontier satisfying a minterm: on top of
which we added the condition P ≤ F and on-the-fly processing, which performs
updates based on the arrival of new events.

We now show that if such a frontier F exists, there is a minimum one with
respect to the order <. It is sufficient to show that if two frontiers F and F ′

satisfy the above conditions, then the frontier that is obtained by taking the
intersection of their corresponding cuts CF and CF ′ has a frontier Q (hence
Q ≤ F and Q ≤ F ′) satisfying η. We denote the maximal event involving pi in
F by Fi. For each process pi, let Qi = min≺(Fi, F

′
i). Then Qi must be in the

cut CF ∩CF ′ . In addition, Qi must be maximal with respect to ≺ among events
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CF ∩ CF ′ that involve pi; this is because by the selection of Qi, it is impossible
that both CF and CF ′ have a mutual event (thus, in their intersection) involving
pi that is bigger than Qi. Hence Q forms the frontier of CF ∩ CF ′ . Since Qi is
either Fi or F

′
i, it satisfies γi. Consequently, Q satisfies η.

Our procedure uses a vector M to store events, such that M [i] is an event
of pi. Since events may involve multiple processes, it is possible that different
components ofM may represent the same event. We initializeM to the events in
P . When a new event α is processed, the procedure is called to perform updates
to M as detailed below. When no more updates are available, the value of the
vector M is kept for the next call of the procedure. When for each i, M [i] |= γi
then M forms a frontier satisfying η and it is not updated further.

With a new event α, we check if M [i] |= γi for each process pi ∈ Pr(α). If
this is the case, there is no need to update M until the next event is processed.
Otherwise, we perform component correction: for each pi ∈ Pr(α) we set M [i]
to α. As a consequence, M may not form a frontier anymore. In this case, some
components of M need to be updated in order to advance M to the frontier of
the minimum cut that contains the current events in M . We call this frontier
update: each time some element M [i] is updated, we may need to progress an
event in other components M [j], for some j ̸= i. This happens when there is
an immediate successor β of M [j] such that β ⪯ M [i] (because in this case,
M [j] cannot be the maximal element involving pj in a frontier that contains
also M [i]). In this case we advance M [j] to β. This update may cause a chain
of similar updates to other elements of M . When no further such an update is
possible, M has become a frontier again.

In the process of frontier update ofM , we may have changed some component
M [l] such that previously M [l] |= γl but not anymore. In this case, we need to
check if we can perform further component corrections, progressingM [l] to some
successor ν. We can pick as ν either the minimal observed event involving pl
that satisfies γl and is bigger than M [l], or, if no such event exists, the maximal
observed event involving pl. If such progress is possible, then frontier update
may become necessary again. An induction on the order of the updates to M
shows that whenever M forms a frontier, there is no frontier F that satisfies
P ≤ F < M such that F |= η.

The process of alternately performing component corrections and frontier
updates repeats until one of the following two cases occur: (1) for each i, M [i]
satisfies γi; then M |= η and we are done, or (2) all the components of M [l]
such that M [l] ̸|= γl are maximal among the events involving pl w.r.t. ≺. In the
latter case, a further call to the procedure, upon processing the next event, will
advance M further towards achieving a frontier satisfying η.

An RV algorithm for DLNF formulas. The following algorithm is applied to
each subformula of the form EPφ in DLNF, including those nested within other
EPφ subformulas. The algorithm for different such subformulas is not applied
consecutively, but is first initiated for all such subformulas and then updates are
performed each time a new event is added for processing to the partial order. The
updates for EPφ must follow the updates for all the subformulas in φ. For each
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Step Types M Initialization / fixing Success Condition

(1) P only Fix M ≜ P after (a) holds. (a)

(2) P+M Init M = P after (a) holds. (a) and (b)

(3) P+M+ N Init M = P after (a) holds. (a) and (b) and (c)

(4) P+ N Fix M ≜ P . (a) and (c)

(5) M+ N Init M as initial event ι. (b) and (c)

(6) N only Fix M as the initial event ι. (d)

(7) M only Init M as initial event ι. (b)

(a) All EPφi (1 ≤ i < k) already hold.
(b) The minterm ηk is satisfied for detected frontier M .
(c) For each EPψl (k ≤ l ≤ n) that already holds, not Nl ≤ M for detected

frontier M .
(d) ι is not yet satisfying EPψl for each k < l ≤ n.

Table 1: Monitoring Algorithm Steps and Conditions

such subformula EPφ, where, according to the DLNF form, φ = η1 ∧ . . . ∧ ηn,
we rearrange the conjuncts ηi in the formula according to the following order:

P For 1 ≤ j < k, ηj = EPφj . These are the positive conjuncts. We denote the
minimum frontier satisfying ηj by Pj .

M Let ηk be a conjunction of literals, i.e., a minterm, collected together (i.e.,
we do not consider each literal in the conjunction separately).

N For k < l ≤ n, ηl = ¬EPφl. These are the negative conjuncts. We denote
the minimum frontier satisfying EPφl by Nl.

Not all the above three types of components have to exist in EPφ. For each
such EPφ subformula, we keep a separate vector M that is used to calculate the
minimum frontier that satisfies EPφ. (To simplify the presentation, we denoted
M and P rather than Mφ and Pφ per each DLNF subformula.) The vector M is
updated by calls to the procedure described above, synchronized the calls with
the processing of new events. We also keep an indication of whether EPφ was
found to already hold (“success condition”). Otherwise, the truth value of EPφ
is false. Note that EPφ is stable, i.e., when it holds, it will continue to hold when
new events are added to the partial order. The evaluation of EPφ depends on
the components P, M and N that are included in φ. At least one such component
must exist; hence there are seven cases, detailed in Table 1, where the included
types of components are listed in the second column.

The third column for each row of the table specifies the initialization of the
corresponding vector M . We distinguish in the table between the case where M
is fixed upon initialization, or may be achieved later than the time it is initialized,
after the occurrence of further events. Let Pj refer to the minimum frontier that
satisfies the subformula EPφj , for 1 ≤ j < l, that appears positively (i.e., of
the form P within EPφ). For initializations, we need to calculate the minimum
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frontier P such that Pj ≤ P . In lattice theory, P is the least upper bound with
respect to ≤ among the set of frontiers Pi, denoted P =

⊔
1≤j<k Pj . The frontier

P can be calculated as follows: for each process pi, P [i] is the maximal event
involving the process pi among the different frontiers Pj . (This follows from the
fact that taking the set of cuts Cj for which Pj is a frontier, we have that P
is the frontier of C =

⋃
1≤j<k Cj). The initialization (including fixing) of M to

the frontier P =
⊔

1≤j<k Pj takes place when all components of the form Pj

required to calculate P were detected. The fourth column specifies conditions
under which the subformula EPφ (stably) holds, based on conditions (a), (b),
(c) and (d), which are defined at the bottom of the table.

After a vector of the form M for a subformula of type EPφ was initialized
(but not fixed), if it does not already satisfy the subformula ηk of φ, then M
is updated upon processing a new event added to the partial order. This is
done according to the procedure described at the beginning of this section for
detecting a frontier satisfying ηk; each γi in that procedure corresponds to the
part of the minterm ηk that consists of variables of the process pi. Updating
M can affect conditions (a)–(d). One can optimize the algorithm by removing
events that cannot contribute further to the verdict: an event α can be removed
if for each frontier M calculated according to Table 1 for some subformula of
the form EFφ, either M is already detected, or it contains an event β such that
α ≺ β.

We now explain in some detail the case (3) in the table, which is the most
involved. The subformula EPφ requires that (a) for each of its immediate subfor-
mulas of the form EPφi of φ (i.e., of type P), we have already found a minimum
frontier Pi satisfying it. In addition, it requires in (b) that we have found a fron-
tierM that satisfies ηk (type M) satisfying Pi ≤M . Condition (b) is enforced by
initializingM to P , calculated as explained above. Finally, it requires in (c) that
if for some EPψl subformula of φ (i.e., of type N) we have already found a
satisfying frontier Nl, then this frontier must not satisfy Nl ≤M . Condition (c)
refers only to the frontiers Nl that were detected when M that satisfies ηk was
already detected; a frontier Nl that will be detected after M is detected will not
satisfy Nl ≤M .

To complete the verdict of the verified specification, recall that it was trans-
lated into a DNF combination of DLNF subformulas. We apply the Boolean
operators as appearing in the DNF to the external level subformulas of the form
EPφ (i.e., those that are not proper subformulas of EPφ subformulas).

The overall complexity of the algorithm is O(|E| k2 2|φ|). where |E| is the
number of events, k is the number of processes, and |φ| is the size of the speci-
fication. The problem of detecting a frontier that satisfies a Boolean formula φ
was shown in [32] to be NP-Complete using a reduction from SAT. The reduction
constructs a set of processes, one per each variable of φ. Each process consists
of two events, independent of the events of all other processes. The truth value
assigned to the propositional variable associated with a process is set to true for
one of these events and to false for the other. This reduction can be trivially
adapted to PaBTL by setting the verified property to EPφ.
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Extending The Algorithm with EY is hard

We saw an efficient algorithm for RV of properties that include only the EP
operators (and by using Boolean operators, its dual AH). It is natural to try
and extend the RV procedure to include the operator EY . Unfortunately, there
is no efficient way to do this unless P=NP. We show that by a reduction from the
NP-complete problem 3SAT to RV of a DLNF formula. The DLNF formula used
is linear in the original formula, and does not contain disjuncts, hence is already
in normal form. Recall that the complexity of our procedure was polynomial in
all parameters for a DLNF formula, although a general PaBTL formula can be
equivalent to an exponentially longer CNF of DLNFs (hence, the complexity is
in general exponential in the size of the property for BTL properties).

Fig. 4: An execution constructed for the reduction

Given a 3SAT formula φ, e.g., (x1∨¬x2∨x3)∧(¬x1∨¬x2∨x3), we construct
a formula β(φ) as follows. Each conjunct of the form (γjxj ∨ γkxk ∨ γlxl) where
the γ’s are either empty or ¬ and x’s are variables, i.e., γjxk is a literal, is
translated into conjunct of the form EY EY (γjxj ∧ γkxk ∧ γlxl). Then, all of
the formed conjuncts are surrounded by the EP operator. The example formula
becomes EP (EY EY (x1∧¬x2∧x3)∧EY EY (¬x1∧¬x2∧x3)). We also construct
a partial order execution, with a process pi for each variable xi. Each process
has three local events, labeled consecutively xi, ¬xi and xi. See Figure 4.

We show that the original formula φ is satisfiable iff β(φ) is satisfied at the
end of the partial order execution. If φ is satisfied, then select the maximum cut
in the execution that corresponds to this assignment. Each conjunct in φ has at
least one disjunct literal satisfied by the assignment. In β(φ) the disjunction was
converted into a conjunction. So, we have one literal guaranteed to be satisfied
in the corresponding conjunction and we need to make sure that the two other
literals are satisfied. In our example, suppose that ¬x3 is satisfied from the first
conjunct of φ, which is (x1 ∨ ¬x2 ∨ x3) and was converted into EY EY (x1 ∧
¬x2 ∧x3), Then we have to take care that x1 and ¬x2 are also satisfied. We can
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guarantee this by backing up 0-2 events, depending how many literals are not
satisfied, using EY EY . Since we do not necessarily need to use the two backward
steps, we can perform them on a variable not participating in the corresponding
conjunct of φ; if n ̸> 3, we can add for this purpose a process p0.

Conversely, suppose β(φ) is satisfied at the end of the execution. Let C be
the cut that satisfies the conjunction within the EP operator (over the EY EY
subformulas). Since β(φ) is satisfied, each subformula η of the form EY EY η is
satisfied. But becase with EY EY we deviated at most two events back from C,
at least one of the variables in η shares the assignment with the cut C. This
guarantees that each conjunct in φ is satisfied by the assignment to C.

5 Implementations and Experiments

We developed two runtime verification tools implementing the monitoring al-
gorithm presented in this paper. PoET [50] implements the complete PaCTL
algorithm described in Section 3, supporting the full branching temporal logic
with past operators including complex nesting and arbitrary formula structures.
Kairos [51] (from the ancient Greek concept of opportune time) implements
the PaBTL algorithm from Section 4, supporting the restricted subset of PaCTL
limited to EP operators and Boolean connectives. This tool achieves complex-
ity that is linear in the size of the partial order execution and quadratic in the
number of processes, but exponential in the size of the formula due to DLNF
transformation.

We conducted comparative performance evaluation to assess the efficiency
and scalability of both monitoring approaches across diverse temporal logic pat-
terns, using an Apple MacBook Pro (M1, 16 GB RAM, macOS Sequoia). We
evaluated four representative PaBTL properties (Figure 5), covering different
cases, with results shown in Table 2. For each property evaluation, we gener-
ated four distinct trace files (1K–500K events per trace) with 3–6 concurrent
processes. The generated traces used in our experiments are available as part of
the PoET and Kairos GitHub repositories [50, 51].

1. EP (status ok ∧ load lt 100 ∧ ¬critical alarm)
2. EP (EP (a) ∧ EP (b) ∧ EP (c) ∧ ¬EP (d))
3. EP ((aX ∧ EP (pX)) ∨ (aY ∧ EP (pY )))
4. EP ((EP (s1) ∧ ¬EP (j1)) ∨ (EP (j2) ∧ ms ∧ ¬EP (s2)))

Fig. 5: Properties in the PaBTL formalism.

We now present further experiments that demonstrate the full expressiveness
of the PoET tool beyond the PaBTL-compatible.

The following four properties in Figure 6 require operators beyond the PaBTL
subset (e.g., AY , AS, ES) and showcase scenarios where complete PaCTL expres-
siveness is useful. Table 3 presents results for properties 5-8 across trace sizes
from 50 to 1000 events. Due to the exponential complexity of the algorithm,
traces were limited to 1K events maximum.
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Property Tool Parameters Trace 1K Trace 10K Trace 100K Trace 500K

1
Kairos

Time 0.12s 0.29s 2.64s 13.23s
Memory 18MB 27MB 126MB 557MB

PoET
Time 0.59s 5.55s 1032.77s ∗

Memory 40MB 85MB 652MB

2
Kairos

Time 0.12s 0.37s 3.55s 19.39s
Memory 19MB 33MB 177MB 803MB

PoET
Time 5.90s ∗ ∗ ∗

Memory 190MB

3
Kairos

Time 0.09s 0.33s 3.22s 13.93s
Memory 19MB 29MB 143MB 650MB

PoET
Time 20.03s 1941.84s ∗ ∗

Memory 237MB 1.52GB

4
Kairos

Time 0.10s 0.47s 4.62s 25.45s
Memory 19MB 33MB 190MB 882MB

PoET
Time ∗ ∗ ∗ ∗

Memory

Table 2: Experimental Results: Performance Comparison (∗ means > 1 hour)

5. EH((sp1 → AY (A(¬sp2 S ep2 ))) ∨ (sp2 → AY (A(¬sp1Sep1 ))))
6. E((EH((((a ↔ a

′
) ∧ (b ↔ b

′
)) ∧ ((t1 ↔ t

′
1) ∧ (t2 ↔ t

′
2))) ∨

((t2 ↔ ¬t′2) ∧ ((t1 ↔ ¬t2) ↔ ¬t′1)))) S init)
7. EH(COM → (AH(cp3 → (EP ((cp1 ∨ cp2 ) ∧ EY (COM))))))
8. EH(sp1 → AH(sp1 → EP (ep1 ∧ EY srp1 ))) ∨

EH(sp2 → AH(sp2 → EP (ep2 ∧ EY srp2 )))

Fig. 6: PaCTL Properties demonstrating full temporal logic expressiveness

Property Metric Trace 50 Trace 100 Trace 500 Trace 1000

5
Time 0.44s 0.41s 18.91s 204.02s

Memory 34MB 37MB 126MB 328MB

6
Time 0.38s 0.57s 23.64s 230.27s

Memory 34MB 38MB 134MB 430MB

7
Time 0.35s 0.51s 21.78s 233.33s

Memory 34MB 39MB 138MB 474MB

8
Time 0.34s 0.23s 0.48s 0.80s

Memory 34MB 35MB 38MB 49MB

Table 3: PoET Experimental Results for PaCTL Properties

6 Conclusions

We studied RV for partial order executions. Specifically, we used as a specifi-
cation formalism a past time branching time temporal logic PaCTL, interpreted
over the partial order structure between frontiers/cuts obtained from a partial
order execution. We presented a runtime verification algorithm with complexity
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that grows exponentially in the number of processes with a base proportional to
the number of events. We implemented this algorithm in a tool named PoET.

We also presented an algorithm for PaBTL, a subset of PaCTL restricted to
temporal operator EP and Boolean operators (including AHφ = ¬EP¬φ). This
algorithm has linear complexity in events, quadratic in processes, and exponen-
tial in specification size. We implemented this in a tool named Kairos.

Experimental comparison shows that Kairos significantly outperforms PoET
in both time and memory. While PoET becomes infeasible for larger traces, Kairos
maintains reasonable performance up to 500K events. This conforms well with
the complexity results of the two algorithms. On the other hand, the PoET allows
more expressive specifications, including the ES, AS and EY operators.
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Appendix

A The Fidge-Mattern Vector Clocks Construction

The new algorithms presented in this paper use the Fidge and Mattern vec-
tor clock algorithm [14, 27]. This algorithm was originally presented in terms of
asynchronous message passing, and we describe a simple translation into syn-
chronized message passing. For simplicity and without loss of generality, we will
restrict such synchronization to involve pairs of processes (which is by far the
prevailing case).

Each vector clock VC of process pi consists of k values, VC [1] . . .VC [k], for
the k processes. In the current vector clock VC of process i, VC [j] represents
the number of events of process pj that are known by process Pi to have already
happened. Due to the distributed nature of the system, this knowledge does not
include the actual number of events executed up to the current time, but only the
information gathered through interactions between processes. However, the value
of VC [i], i.e., the number of events of pi itself known to pi is always accurate.
For implementing vector clocks, we need to be able to include (piggyback) the
vector clocks of the participating processes with each inter-process interaction,
sharing this information between the involved processes.

The update of the vector clocks is performed as follows: For a local event e,
belonging to process pi, we perform VC [i] := VC [i] + 1. For an interaction e
between processes pi and pj , the processes obtain the vector clocks VC i and VC j

of the processes pi and pj respectively, piggybacked as part of the interaction.
Then, a new vector clock VC is calculated as follows. First, for each m ∈ [1..k]
let V C[m] := max (VC i[m],VC j [m]), i.e., VC maximizes the value pairwise
between the components of VC i and VC j . Further, set VC [i] := VC [i] + 1
and VC [j] := VC [j] + 1, corresponding to the fact that both processes have
performed an additional (joint) event. Then VC becomes the new vector clock
of both pi and pj .

Now, each event e reported to the monitor also includes the most recent
vector clock associated with the participating process(s), denoted VC (e). The
order e ≺ f , can be recovered from the vector clocks as follows:

e ≺ f ↔ ∀i ∈ [1..k]VC (e)[i] ≤ VC (f)[i] ∧ ∃i ∈ [1..k]VC (e)[i] < VC (f)[i]

The RV monitor can use the vector clock order to process events in an order
that is a linearization of the partial order ≺ by processing an event f only after
it already processed all the events e satisfying e ≺ f . This is enforced as follows.
The monitor process keeps a counter Ei that counts the number of events of
process pi that it has already processed. Processing a new event f , the monitor
increments Ei for each pi ∈ Pr(f). Now, all the events that appear before a
reported event f were already reported if the following two conditions hold:

– for each pi ∈ Pr(f), Ei = VC (f)[i]− 1, and
– for each pi ̸∈ Pr(f), Ei = VC (f)[i].
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Otherwise, there is at least one event e in the execution that was not reported
yet such that e ≺ f . In this case, f is kept in a queue of unprocessed events,
and waits to be processed by the RV algorithm when the above conditions will
be satisfies.

B Ilustration of the computation RV for PaBTL

Figure 7 illustrates the evaluation of a compound formula ψ = EP (EP (φ1) ∧
EP (φ2) ∧ minterm ∧ ¬EP (ψ1) ∧ ¬EP (ψ2) ∧ ¬EP (ψ3)). The diagram shows a
partial-order execution where the frontiers P1 and P2 mark the minimal points
where the positive subformulas hold. The minterm is satisfied at the frontier
labeled M , initialized based on P1 ∪ P2. The dashed lines corresponding to the
frontiers N1, N2, and N3 represent the points where each negative EP (ψj) be-
comes true. For ψ to hold, requires also that all Nj do not occur strictly before
M , which is the case here.

time

P1

P2

M

N1

N2

N3

Minterm (M)

positive EP (P)

Negative EP (N)

Fig. 7: Evaluation of EP (EP (φ1)∧EP (φ2)∧minterm∧¬EP (ψ1)∧¬EP (ψ2)∧
¬EP (ψ3))

C Proof of Size Complexity of the Translation to DNF of
DLNFs

We prove that a PaBTL formula can be translated into a DNF of DLNFs, which
can be up to exponentially longer. We consider a formula of the form EPφ,
where φ is itself in PaBTL. If the outermost formula is not in this form, we can
prefix it by EP and later, after the transformation, deleting the outermost EP
occurrences from the obtained disjuncts.

The proof is by induction on the depth of EP subformulas. Take a subformula
EPφ where φ has immediate subformulas φ1, . . . , φk. Rewrite φ in disjunctive
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normal form with disjuncts ψ1 ∨ . . . ∨ ψn, where each ψj is a conjunction, with
k < m conjuncts, and n ≤ 2k. Then, the formula EPφ can be written as
EP (ψ1 ∨ . . . ψn) and we can use the distribution of the disjunction over the EP
operator and rewrite it as EPψ1∨. . . EPψn. For the base of the induction, where
each φi does not include further EP subformulas, this is just a conversion of φ
to DNF followed by distribution of EP with disjunction, and we are done with
the size of the obtained formula being O(2|φ|).

In case that (some of) the subformulas φi contain further nested EP sub-
formulas, we need to get rid of nested disjunctions. Each ψj , obtained in the
transformation described above by converting φ to a DNF is a conjunction of
components that can be either a literal (negated or non-negated proposition), a
formula of the form EPφi or ¬EPφi.

By induction, we can translate each component φi into DNF formulas over
DLNF formulas, in the same way that was described above with at most 2|φi|

disjuncts, each one with up to |φ| disjuncts of components of DLNF formulas.
In each EPφi subformula, we can, as before, commute the disjunction over the
EP , obtaining up to 2|φi| disjunctions of DLNF components, each with up to
|φi| top level components.

Returning to the fomrula ψj , literals are already in normal form, and remain
as they are. Non-negated subformulas of the form EPφi are replaced, by in-
duction, with at most 2|φi| EP disjuncts, each of at most |φi| DLNF formulas.
For the negated elements ¬EPφi we first distribute the disjuncts obtained by
translated φi to the normal form as for the non-negated case. Then we use De
Morgan law to push negation over the disjunction. We obtain at most 2|φ| con-
junctions negated EP (each one with up to |φ| top level conjuncts. Now we can
distribute the disjunctions from the rewritten ψj over the EP .

To do that, we rewrite the formula inside the EP . For each rewritten sub-
formula EPφi we have a disjunction of at most 2|φj | components, taking the
conjunction on these components, we need to take all the combination of of
disjuncts, one per each φi. This makes 2|φi| × . . . × 2|φk| elements, which is
2|φ1|+...+|φk|. The rest of the conjuncts in EPψj are the literals and the negated
EP ; the latter contribute the sum of 2|φi| per each ¬EPφi.
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