I mplementable Failure Detectorsin Asynchronous Systems

Vijay K. Garg, J. Roger Mitchell

TR-PDS-1998-004 M ay 1998

Parallel & Distributed Systems group
Department of Electrical & Computer Engineering
University of Texas at Austin
Austin, Texas 78712

Implementable Failure Detectors in Asynchronous Systems
Vijay K. Garg* J. Roger Mitchell

Parallel and Distributed Systems Laboratory
Electrical and Computer Engineering Department
The University of Texas at Austin,
Austin, TX 78712
email: garg@ece.utexas.edu
Fax: (512) 471-5907
http://maple.ece.utexas.edu

May 18, 1998

Abstract

Failure detection is one of the most fundamental modules of any fault-tolerant distributed
system. The failure detectors discussed in the literature so far are either impossible to implement
in an asynchronous system, or their exact guarantees have not been discussed. We introduce
a failure detector called infinitely often accurate failure detector which can be implemented in
an asynchronous system. We provide one such implementation and show its application to
the fault-tolerant server maintenance problem. We also show that some natural timeout based
failure detectors implemented on Unix are not sufficient to guarantee infinitely often accuracy.

1 Introduction

Failure detection is one of the most fundamental modules of any fault-tolerant distributed system.
Typically, a fault-tolerant distributed system uses one of the two techniques - maintain replicas
of a process (for example in [BE94]), or use primary-backup approach [BMST93]. Both of these
approaches rely on detection of failures. While most commercial fault-tolerant systems use some sort
of failure detection facility typically based on timeouts, we show that many of them are inadequate
in providing accuracy guarantees in failure detection.

The first systematic study of failure detection in asynchronous systems was done by [CHT92,
CT96]. The weakest failure detector they studied, called & W, can be used to solve the consen-
sus problem in asynchronous systems. It follows from [FLP85] that failure detectors in [CT96]
are not implementable in asynchronous systems. The failure detector introduced in this paper,

*supported in part by the NSF Grants ECS-9414780, CCR-9520540, a TRW faculty assistantship award, a General
Motors Fellowship, and an IBM grant
fsupported in part by a Virginia & Ernest Cockrell fellowship

called Infinitely Often Accurate detector (IO detector for short), can be implemented efficiently in
asynchronous systems.

An 10O detector is required to satisfy even weaker accuracy than eventually weak accuracy
proposed by Chandra and Toueg [CT96]. Intuitively, eventually weak accuracy requires that for
all runs the detector eventually never suspects at least one correct process. It is precisely this
requirement which makes it possible to solve the consensus problem by using, for example, the
rotating coordinator technique[CT96]. On the other hand, this is also the requirement which is
impossible to implement in an asynchronous system. An IO detector only requires that a correct
process is not permanently suspected. By assuming that a channel delivers the messages infinitely
often, this requirement can be easily met. In fact, the algorithm is based on an earlier work by
Dwork et al. [DLS88]. However, as mentioned earlier the algorithm does not guarantee properties
of & W. Our contribution lies in formalizing the exact properties guaranteed by that algorithm and
showing its usefulness in asynchronous systems. We also show that some other natural “timeout”
implementation of failure detectors for Unix [HK95] and other systems[Bec91] do not satisfy the
properties of an [0 detector.

Although no algorithm can solve the consensus problem in an asynchronous system for all runs,
it is desirable that the processes reach agreement in finite time for those runs which satisfy partial
synchrony condition. Following [DLS88], a run is defined as partially synchronous if there exists a
non-failed process such that eventually all messages sent by that process reach their destinations
in bounded delay. We show that for these runs our failure detector will provide eventual weak
accuracy and hence processes using the approach in [CT96] will reach agreement in finite time.
Thus, our failure detector provides conditional eventual weak accuracy guarantee. In other words,
whereas <& W insists on eventual weak accuracy for all runs, we require eventual weak accuracy
only in partially synchronous runs and infinitely often accuracy for all runs.

While the IO detector cannot be used to solve the consensus problem, we show that it is useful
for other applications. In particular, we give its application to a fault-tolerant server maintenance
problem. This problem requires presence of at least one server during the computation. Our
solution works in spite of up to N — 1 failures in a system of N processes.

This paper is organized as follows. Section 2 provides our model of an asynchronous system and
failures and describes the properties guaranteed by an 10 detector. Section 3 compares IO detector
with the & W failure detector. Section 4 describes applications of 10 detector. Finally Section 5
describes an 10 detector which can be used when an upper bound on the number of processes that
may fail is known.

2 IO Failure Detectors

We assume the usual model of an asynchronous system. The message delays are unbounded but
finite. A run of any algorithm in an asynchronous system results in a set of local states denoted by
S. We use s,t and u to denote the local states of processes and symbols ¢, j and k to denote process
indices. The notation s.v denotes the value of the variable » in the local state s. The relation s < ¢
means that s and ¢ are states at the same process and s occurred before t. The relation s < ¢
means that s < ¢ or s is equal to t. The relation, —, is used to order states in the same manner as

Lamport’s happened before relation on events [Lam78]. Therefore, s — t is the smallest transitive

relation on S satisfying 1) s < ¢ implies s — ¢, and 2) if s is the state immediately preceding the
send of a message and ¢ is the state immediately following the receive of that message then s — t.

A global state GG is a set of local states, one from each process, such that no two of them are
related by the happened-before relation. We use symbols G and H to denote global states and
(7] to denote the state of the process ¢ in the global state G. We say that G < H (or H » G) iff
Vi: G[i] < H[i].

A processor crashes by ceasing all its activities. We assume that once a process has failed (or
crashed) it stays failed throughout the run. The predicate failed(i) holds if the process 7 has failed
in the given run. A process that has not failed is called a correct process. We denote the set of all
processes and the set of correct processes by II and II. respectively. The set C' C 5 denotes the set
of states on the correct processes and the set C'; denotes the states for any correct process j.

The predicate s.suspects[t] holds if the process ¢ is suspected in the state s (by the process
which contains s).

A failure detector is responsible for maintaining the value of the predicate suspects[i] at all
processes. The value of suspects[i] is true at Py, if Py suspects that P; has failed. We would like
our failure detectors to satisfy certain completeness and accuracy properties of these suspicions.
An 10 failure detector (or 10 detector, for short) is formally defined below.

Definition 1 An IO failure detector is a failure detector that satisfies strong completeness, in-
finitely often accuracy, conditional eventual weak accuracy and perfect local suspicions.

These properties are described next.

2.1 Strong Completeness Property

Let the predicate permsusp(s,i) be defined as
permsusp(s,i) =Vt > s : t.suspects[i]

The strong completeness property requires the failed process to be eventually suspected by all

correct processes. Formally, for all runs,
Vi, j: (failed(i) N = failed(j) = s € C; : permsusp(s,i))

The weak completeness property requires that every failed process is eventually permanently
suspected by some correct process. Thus, a detector is defined to be weak complete if for all runs,

Vi: (failed(i) = ds € C : permsusp(s,i))

Although the strong completeness property requires permanent suspicion by all correct pro-
cesses and not just some correct process, it is easy to implement a detector that provides strong
completeness given a detector that implements weak completeness while preserving accuracy. In-
formally, this can be achieved by requiring processes to periodically broadcast their suspicion lists.
More details of this approach can be found in [CT96]. Since strong completeness is quite useful in
design of distributed algorithms, and is easily achieved by simple timeout mechanisms, we require
that TO detectors satisfy strong completeness.

2.2 Infinite Often Accuracy

In [CT96], four accuracy properties have been presented. The weakest of these properties is eventual
weak accuracy. A detector satisfies eventual weak accuracy if for all runs eventually some correct
process is never suspected by any correct process. Formally, for all runs

Ji e ll.,Vj e ll,,3s € C;,Vt > s : ~t.suspects]i]

However, as shown by [CT96] a failure detector which satisfies weak completeness and eventual
weak accuracy, called eventually weak detector (<> W) can be used to solve the consensus problem
in an asynchronous system. This implies that & W is impossible to implement in an asynchronous
system. We now introduce a weaker accuracy property which we call infinitely often accuracy. A
detector is infinitely often accurate if no correct process permanently suspects an unfailed process.
Formally,

Definition 1 A detector is infinitely often accurate if for all runs
Vi: (= failed(i) = Vs € C' : mpermsusp(s, 1))

Note that infinitely often accuracy is simply the converse of the weak completeness requirement.
By combining the two properties, we get the following pleasant property of an 10 detector.

Vi: failed(v) = 3s € C' : permsusp(s, i)

Intuitively, this says that a failure of a process is equivalent to permanent suspicion by some
correct process.

2.3 Conditional Eventual Weak accuracy

We now introduce another useful property of failure detectors which is also implementable in an
asynchronous environment. The property says that if we happen to be lucky in some asynchronous
run in the sense that eventually all messages sent by at least one process reach under some bound
then the failure detector will eventually be accurate with respect to that process in that run. We
call this property conditional eventual weak accuracy. We first introduce the notion of a partially
synchronous run. This notion is similar to that used in [DLPT86].

Definition 2 A run is partially synchronous if there exists a state s in a correct process P; and a
bound ¢ such that all messages sent by P; after s take at most 6 units of time.

In the above definition we do not require the knowledge of F;, s, or §. This lets us define:

Definition 3 A failure detector satisfies conditional eventual weak accuracy if for all partially
synchronous runs it satisfies eventual weak accuracy.

Observe that the conditional eventual weak accuracy is weaker than the eventual weak accuracy.
The former requires that the failure detector satisfy eventual weak accuracy only when the run is
partially synchronous, while the latter requires it for all runs.

2.4 Perfect local suspicion

We also require that a correct process should never suspect itself. This property is trivial to satisfy.

A process never sets its own suspicion to true.

3 Comparison of IO detector with & W

How does 10 detector compare to & W? First note that if a failure detector satisfies weak accuracy,
then it does not necessarily satisfy infinitely often accuracy. The detector may be accurate with
respect to one process but permanently suspect some other correct process. However, another way
to compare failure detectors is by using the notion of reduction between detectors as introduced by
[CT96]. We show that an IO detector can be implemented using a & W detector.

Our implementation of an 10 detector from a & W detector is in two stages. In the first stage
we build a & § detector from & W. A & S detector [CT96] is a failure detector that satisfies strong
completeness and eventual weak accuracy. A & § detector can be easily built using & W detector
as shown in [CT96]. So, we assume that a & § detector is available to us. Let 10.suspects and
FES.suspects be the set of processes suspected by the 10 detector and & § detector respectively.
The algorithm to implement 10 detector using <& & is given in Figure 1. The detector is based
on two activities. Each process sends a message “alive” to all other processes infinitely often. On
receiving such a message from F;, a process P; queries the & § suspector and removes the suspicion
of P; and P;.

P
var
10.suspects: set of processes initially E.S.suspects — {j};

(11) send “alive” to all processes infinitely often;

(12) On receiving “alive” from P;;
10.suspects := I S.suspects — {i,7};

Figure 1: Implementation of an 10 detector using a & § detector
We now have the following Lemma.
Lemma 2 The algorithm in Fig. 1 implements an 10 detector.

Proof: We first show the strong completeness property. Consider any process P; that has failed.
This implies that eventually P; will be in ES.suspects for P;, by the property of & § detector.
Further, eventually P; will stop receiving “alive” message from P;. This implies that P; will be

permanently in 1O.suspects of P;.

We now show infinitely often accuracy property. Consider any process F; that has not failed.
This implies that any correct process will receive “alive” message from P; infinitely often. Therefore,
P; will be not be in IO.suspects infinitely often.

We show that the algorithm satisfies eventual weak accuracy and therefore conditional eventual
weak accuracy. The detector only removes suspicion from the set FS.suspects. Since & 8 satisfies
eventual weak accuracy it follows that the IO detector built from <& § also satisfies this property.

Finally, it satisfies perfect local suspicion since j is never in the suspicion list of P;.

We now consider the converse question. Is there an asynchronous algorithm that implements
<& W using 10-detector? We answer this question in negative by giving an implementation of an
10-detector. A possible implementation is shown in Fig. 2. This implementation is similar to that
proposed by [DLS88]. The algorithm maintains a timeout period for each process. The variable
watch[i] is the timer for the process P;. When the timer expires, the process is suspected. On the
other hand when a message is received while a process is suspected, the timeout period for that

process is increased.

P

var
10.suspects : set of processes initially 0;
timeout: array[1..N] of integer initially t;
watch: timer initially set to timeout;

(A1) send “alive” to all processes after every ¢ units;

(A2) On receiving “alive” from P;;
if 2 € IO .suspects then
10.suspects := 10.suspects — {i};
timeout|i]++;
endif:

Set watch[i] timer for timeout[i];

(A3) on expiry of watchli]
10.suspects := 10.suspects U {i};

Figure 2: Implementation of an 10 detector

Theorem 1 The algorithm in Fig.2 implements an IO detector.

Proof: First we show the strong completeness property. If a process P; has failed then it will stop

sending messages. All the messages sent by it will eventually be received. After that point, none

of the other processes will hear from this process and therefore will start suspecting F; using rule
(A3). Since they will never hear from it again, it will then be permanently in 1O.suspects.

The property of infinitely often accuracy follows from the proof of Lemma 2.

The algorithm also satisfies conditional eventual weak accuracy. Consider any partially syn-
chronous run. Let P; be the correct process in that run for which messages obey the partial
synchrony condition after some state s. Since messages sent after that state are received in less
than ¢ units of time, there can only be a bounded number of false suspicions of P; by any process
(because the timeout period is increased by 1 after every false suspicion). Thus, eventually there
is a time after which P; is never suspected by any process.

Finally, a process never suspects itself and therefore perfect local suspicion is true.

Observe that one needs to be careful with designing algorithms for failure detectors. Some
natural approaches do not satisfy the 10-property. For example, consider the following approach
taken from [Bec91].

This crash detection manager is responsible to multicast polling messages periodically
to all other processes under surveillance. The other processes are expected to reply to
these polling requests with “I am alive” messages immediately. If the answer is missing
for three times consecutively, the crash manager assumes that this process has crashed.

var
watchd.suspects: set of processes initially (;

(B1) infinitely often broadcast a query message to all processes

(B2) After broadcast wait for timeout[i] time units (timeout period)
watchd.suspects := { P;|P; did not respond to the query in the timeout period }

(B3) On receiving a query from P;
send “l am alive” to P;

Figure 3: A Detector that does not satisfy 10 accuracy

The crash detection manager in [Bec91] does not satisfy infinitely often accuracy since it may
permanently suspect a correct process. As another example, consider the algorithm in Fig. 3 which
is similar to the watchd process implemented on Unix and reported in [HK95]. It is tempting to
implement failure detectors using the algorithm in Fig. 3 since it only requires the failure detector

to listen for incoming messages during the timeout interval. This algorithm, however, does not

satisfy 1O accuracy. It may suspect some process P; at all times even when F; is alive and just
slow.

4 Applications of IO failure detectors

Since 10 detectors are implementable, it is clear that they cannot be used for solving the consensus
problem in an asynchronous system. What good are they then? We now discuss a practical problem
that can be solved using 10 detectors. Consider a service that is required in a distributed system
consisting of N processes. We require that at least one process always act as the provider of that
service. As a simple example, assume that the servers are stateless and any request from the client
is broadcast to all servers. The problem requires that at least one (preferably exactly one) server
respond to the request. We abstract this requirement using the concept of a token. Any process
that has a token considers itself as the provider of the service. Since the process holding a token
may fail, we clearly need a mechanism to regenerate a token to avoid interruption of the service.
To avoid triviality, we only consider those runs in which at most NV —1 out of NV processes fail. The

following predicates and functions are used for specifying the requirements.
o (/[i].token: This predicate is true if process P; has a token in the global state G.

o hastoken(G): This predicate is true if the global state (G has a token. It may have multiple
tokens.

hastoken(G) = 3i : G[i].token

o noduplicate((G): This predicate is true if the global state G has at most one token. It may
have none.
noduplicate(G) =Vi,j 1 i # j : =G[i].token vV =G[j].token

o boundedafter(G,): This predicate is true if there exists a bound ¢ such that all messages sent
by P; after (G take at most é units of time.

Ideally, we would like that all global states to have exactly one token. However, even the
weaker requirement that eventually there exists exactly one token is impossible to implement in an
asynchronous system. Therefore, we consider a weaker set of requirements given below.

1. Awailability: There exists a global state such that all later global states have at least one
token. Formally,
3G,VH » G : hastoken(H)

2. Efficiency: For every global state GG in which two different processes have tokens, there exists

a later global state in which the token from at least one of the processes is removed. Formally,

VG, 4,7 (1 # J) AN Gli].token A G[j].token = 3H = G : = H[i].token V = H[j].token)

3. Eventually exactly one token under partial synchrony: If after any global state G all messages
sent by some correct process P; arrive in less than a pre-determined bounded delay, then

there exists a later global state H such that all global states after H have exactly one token.
Formally,

VG : boundedafter(G,i) = IH,VH' = H : hastoken(H') A noduplicate(H')

In practice, for most cases the partial synchrony condition would be true and therefore eventually
we will have exactly one token. However, when the partial synchrony is not met we would still
have properties of availability and efficiency. This illustrates the methodology that we propose for
asynchronous algorithms. They provide useful guarantees even when the run is not well behaved
and provide more desirable guarantees when the run is well behaved (i.e. partially synchronous).

We will present our solution in stages. The algorithm which satisfies availability and efficiency
is given by the following rule. In a state s, process P; is assumed to have a token if all processes

with smaller indices than 2 are suspected and P; is not suspected. Formally,
s.token(t) =Vj : j < i:s.suspects[j] A ns.suspects[i].

To see that the algorithm satisfies availability, consider in any run the global state G after which
there are no failures. By our assumption, at least one process is alive in the run. Let Py be the
smallest such process. By strong completeness of the 10 failure detector, eventually Py will suspect
all smaller processes. In that global state P, will generate a token.

To see that the algorithm satisfies efficiency, consider the global state G in which two processes
P; and P; (i < j) have tokens. For any continuation of run after 7, in which P; or P; fails we have
a global state H in which = H[i].token V = H[j].token. Otherwise, by the 10 accuracy property of
10 detector, P; will remove the suspicion of P; eventually. In that global state H, —H[j].token
holds.

The algorithm does not satisfy the property of exactly one token under partial synchrony.
For example, in a system with two processes P; and P, in which partial synchrony is true only
for process P,, both processes will have a token infinitely often. Note that in this algorithm if
the partial synchrony condition is satisfied with respect to the smallest correct process, then the
system works in the desirable manner. There is exactly one token eventually. To see this consider
any global state G such that boundedafter(G, i) holds for the smallest correct process. This implies
that IO detector for any process P; that does not fail will eventually never suspect P;. Therefore,
P; will never get the token.

We now present a solution which meets all our requirements. Intuitively, the idea behind the
algorithm is as follows. In addition to the suspicion list maintained by the failure detector, each
process maintains a timestamp for each process called ticket time. The ticket time of a process Py
is the logical time when it was suspected by some process P; such that according to F;, P, had a
token before the suspicion and P; has the token after the suspicion. When P; suspects a process
P, which it thinks has the token, it records the logical time of this event. This is the ticket time of
process Py. F; will then send out a message to all processes informing them of the suspicion along
with this ticket time.

Process P; has a token if all processes that are currently not suspected by P; have ticket times
that are greater than that of P;. If a process with a token is suspected its ticket time will become

greater than all other ticket times. This way the token is moved from a slow process to the next

process which is alive. The formal description of the algorithm is given in Fig. 4. The algorithm
agssumes that all channels are FIFO.

P;:
var
ticket:array[1..N] of (integer,integer) initially Vi : ticket[i] = (0,1)
suspected: array[l..N] of boolean; /* set by the failure detector */
token(k) = (Vj # k : suspected[j] V (ticket[j] > ticket[k])) N ~suspected[k]
(R1) Upon change from unsuspicion to suspicion of Py with token(k)
if token(7) then
ticket[k] := Lamport's_logical clock;
send “slow”, k, ticket[k] to all processes
(R2) Upon receiving “slow” k.t
ticket[k] := max(ticket[k],1);
Figure 4: Algorithm for Alive Token Problem
Lemma 3

VG, i35 Glil.token(y)

Proof: Since a process never suspects itself, the set of unsuspected processes at G[i] is non-empty.
The unsuspected process with the smallest ticket number will then have the token according to P;.

Note than in the context of implementing fault-tolerant server, a server P; will respond to the
client in the global state GG if
G'li].token(t)

holds. We say that P; has a token if this condition is true. Note that Lemma 3 only says that
each process always thinks that there is at least one process which has the token. However, this
condition does not imply that there exists a process which thinks that it has the token. In a faulty
algorithm, it is quite possible that each process thinks that somebody else has the token.

Theorem 2 The algorithm in Fig. | satisfies all three required properties.

Proof:

o Availability: First consider the global state GG after which no failures occur. We show that if

there is a process with a token in G, then some process will always have a token. Since there

10

is perfect local suspicion, a process with a token can lose it only if its own ticket time increases
or somebody else’s ticket time decreases. Since the ticket time for any component can only
increase, it follows that a process can lose the token only if its own ticket time increases.
However, this can happen only when a process with a token (after the suspicion) sends it a
“slow” message. Thus, in this case some other process has a token.

Now, consider the scenario when failures occur. If a process that does not have a token fails
then no harm is done. Our obligation is to show that if a process with a token fails and there
are no more tokens in the system then a token is regenerated. Of all the processes that are
correct consider the process with the smallest ticket. By strong completeness, this process
will eventually suspect all the failed processes. At that point, it will have a token.

o Lfficiency: Consider the global state (¢ in which two processes P; and P; have tokens. Since
there is a total order on all tickets, and due to Lemma 3, this can only happen when the
process with the smaller ticket number, say F; is suspected by the other process, P;. For any
continuation of run after &, in which P; or P; fails we have a global state state H in which
- H[t].token V = H[j].token. Otherwise, by the 10 accuracy property of 10 detector, P; will
eventually remove the suspicion of P;. In that global state H, —=H[j].token holds.

o Pwentually exactly one token under partial synchrony: Consider any global state G such that
boundedafter(G, i) holds. This implies that IO detector for any process P; will eventually
never suspect P;. If there are multiple values of 7 such that boundedafter(G,t) holds, then
we choose the process with the smallest ticket number in . This process is never suspected
by anybody else after G and therefore no other process will ever have a token. Further, this
process will never lose the token since no process which is unsuspected can have a smaller
ticket number.

Remark: If suspicions are perfect, that is, a process is suspected only when it is failed, the
algorithm ensures that there is at most one token. Thus, the algorithm can also be seen as a

fault-tolerant mutual exclusion algorithm with perfect failure detectors.

5 Failure detectors with small suspicion list

So far we had assumed that up to N — 1 out of N processes may fail. If we assume that at most
f processes may fail, then we can build a failure detector which will never suspect more than f
processes and yet provide strong completeness, infinitely often accuracy, and conditional eventual
weak accuracy. An implementation of this detector, called f-IOQ detector, is shown in Fig. 5. The
f-10 detector assumes an implementation of an 10 detector. Note that when f equals N — 1, it is
equivalent to 10 detector (because a process never suspects itself).

The algorithm for f-10 detector maintains a queue of slow processes in addition to the list of
suspected processes. When a process is suspected it is added to the list only if the size of the list is
less than f; otherwise, it is inserted in the queue of slow processes. When a process is unsuspected
if the slow queue was non-empty, the process at the head is removed from the queue and inserted

in the suspect list.

11

var
f-10.suspects : set of processes initially (J;
slow : FIFO queue of processes initially empty;

(A1) On change of 10.suspects[k] from false to true and not inqueue(slow,k)
if | f-10.suspects | < f then
f-10.suspects[k]:= true;
else
insert(slow,k);

(A2) On change of 10.suspects[k] from true to false
if f-10.suspects[k] then
f-10.suspects[k] := false;
if not empty(slow)
J := deletehead(slow);
f-10.suspects[j] := true;
else
delete(slow,k);

Figure 5: An IO Detector with small suspicion list

Theorem 4 The algorithm provides all properties of 10 detector assuming there are no more than

f failures. Further, it does not suspect more than f processes at any time.

Proof:
Strong completeness: If a process has failed it will eventually be permanently suspected by 10.suspects.
If it is put in the suspicion list, it will never be removed. If it is kept in the slow queue, then we
show that the number of processes ahead in the slow queue will decrease by 1. By our assumption
that at most f processes fail, and there are f suspected processes, there is at least one process
which is suspected incorrectly. This is because one of the failed process is in the slow queue. By
10 accuracy the process that is incorrectly suspected will eventually be unsuspected. At that point
the head of the slow queue will be removed.
10-accuracy of f-10 detector: Follows from 10-accuracy of IO detector.
Conditional eventual weak accuracy: Again follows from conditional eventual weak accuracy of 10

detector.

Remark: When fis 1, the f-10 detector gives us the following property which is stronger than

infinitely often accuracy

12

(GIO) Infinitely often there exists a correct process which is not suspected by any correct

process.

The property GIO can be shown as follows. Since each process is allowed to suspect at most one

process, the only configuration in which there is no common unsuspected process is when suspicion

of all processes are different. This configuration cannot hold permanently because of infinitely often

accuracy.

References

[BE94] Kenneth Birman and Robbert Van Renesse (Editors). Reliable Distributed Computing
with the Isis Toolkit. IEEE Computer Society Press, 1994.

[Bec91] Thomas Becker. Keeping processes under surveillance. In Symposium on Reilable Dis-
tributed Systems, pages 198 — 205. IEEE, 1991.

[BMST93] Navin Budhiraja, Keith Marzullo, Fred Scneider, and Sam Toueg. The Primary-Backup
Approach, chapter 8. ACM Press, Frontier Series. (S.J. Mullender Ed.), 1993.

[CHT92] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure de-
tector for solving consensus. In Proc. of the 11th ACM Symposium on Principles of
Distributed Computing, pages 147-158, August 1992.

[CT96] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable dis-
tributed systems. Journal of the ACM, 43(2):225-267, March 1996.

[DLP*86] Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark, and William E.
Weihl. Reaching approximate agreement in the presence of faults. Journal of the ACM,
33(3):499-516, July 1986.

[DLS88] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of
partial synchrony. Journal of the ACM, 35(2):288-323, April 1988.

[FLP85] M. J. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed consensus with
one faulty process. Journal of the ACM, 32(2), April 1985.

[HK95] Y. Huang and C. Kintala. Software fault tolerance in the application layer. In Michael
Lyu, editor, Software Fault Tolerance, pages 249-278. Wiley, Trends in Software, 1995.

[Lam78] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Commu-

nications of the ACM, 21(7):558-565, July 1978.

13

