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Abstract—The paper describes a technique to correct faults
in large data structures hosted on distributed servers, based
on the concept of fused backups. The prevalent solution to
this problem is replication. Given n distinct data structures,
replication requires nf additional replicas to correct f crash
faults or ⌊f/2⌋ Byzantine faults among the data structures. If
each of the primaries containsO(m) nodes of O(s) size each,
this translates to O(nmsf) total backup space. Our technique
uses a combination of error/erasure correcting codes and selec-
tive replication to correct f crash faults (or ⌊f/2⌋ Byzantine
faults) using just f additional backups consumingO(msf) total
backup space, while incurring minimal overhead during normal
operation. Since the data is maintained in the coded form,
recovery is costly as compared to replication. However, in a
system with infrequent faults, the savings in space outweighs
the cost of recovery. We explore the theory and algorithms for
these fused backups and provide a Java implementation of fused
backups for all the data structures in the Java 6 Collection
Framework. Our experimental evaluation confirms that fused
backups are space-efficient as compared to replication (almost n
times), while they cause very little overhead for updates. Many
real world distributed systems such as Google’s map reduce
framework or Amazon’s distributed data store use replication to
achieve reliability. An alternate, fusion-based design can result
in significant savings in space as well as resources.

I. I NTRODUCTION

Distributed systems are often modeled as a set of inde-
pendent servers interacting with clients through the use of
messages. To efficiently store and manipulate data, these
servers typically maintain large instances of data structures
such as linked lists, queues and hash tables. Faults that
occur in these servers are classified into two categories: crash
faults [24] and Byzantine faults [12]. In the case of crash
faults, the servers crash, leading to a loss in state of the
data structures. In the case of Byzantine faults, the servers
can reflect any arbitrary state of the data structures.Active
replication[10], [18], [25], [27] is the prevalent solution to this
problem. To correctf crash faults amongn data structures,
replication-based solutions maintainf backup copies of each
primary, resulting in a total ofnf backups. These copies can
correct⌊f/2⌋ Byzantine faults, since greater than⌊f/2⌋ data
structures are truthful. A common example is a set of lock
servers that maintain and coordinate the use of locks. Such
a server maintains a list of pending requests in the form of
a queue. To correct three crash faults among, say five such

queues, replication requires three backup copies of each queue,
resulting in a total of fifteen backup queues. Though recovery
is cheap and simple, for large values ofn, this is expensive
in terms of the space consumed by the backups.

Coding theory[2], [13], [19] is used as a space-efficient
alternative to replication, both in the fields of communication
and data storage. Data that needs to be transmitted across a
channel is encoded using redundancy bits that can correct
errors introduced by a noisy channel [26]. Applications of
coding theory in the storage domain include RAID disks
[16], [5] for persistent storage, network coding approaches for
reducing losses in multi-cast [14], [3] or information dispersal
algorithms (IDA) for fault tolerance in a set of data blocks
[22], [4]. These solutions are oblivious to the structure of
the underlying data and are rarely applied to backup active
structures in main memory. In the example of the lock servers,
in order to correct faults among the queues, a simple coding-
theoretic solution will encode the memory block occupied by
the lock server. Since the lock server is never maintained
contiguously in main memory, a structure-oblivious solution
will have to encode all memory blocks that are associated with
the implementation of this lock server in main memory. This
is not space efficient, since there could be a huge number of
such blocks in the form of free lists, memory book keeping
information etc. Also, every small change to the memory
map associated with this lock has to be communicated to the
backup, rendering it expensive in terms of communication and
computation.
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Fig. 1. Fault Tolerant Stacks

In this paper, we present a technique referred to asfusion
which combines the best of both these worlds to achieve the
space efficiency of coding and the minimal update overhead of
replication. Given a set of primary data structures, we maintain
a set offusedbackup data structures that can correctf crash



faults (or⌊f/2⌋ Byzantine faults) among the primaries. These
fused backups maintain the primary elements in the coded
form to save space, while they replicate the index structure
of each primary to enable efficient updates. Unlike coding-
theoretic solutions, since the backups are designed at the
abstraction of the data structure rather than the raw data
behind them, we need not track the way data is maintained in
memory. In figure 1, we show the fused backup corresponding
to two primary array-based stacksX1 andX2. The backup is
implemented as a stack whose nodes contain the sum of the
values of the nodes in the primaries. We replicate the index
structure of the primaries (just the top of stack pointers) at
the fused stack. When an elementa3 is added toX1, this
element is sent to the fused stack and the value of the third
node is updated toa3 + b3. In case of a delete, sayb3, the
third node is updated toa3. These set of data structures can
correct one crash fault. For example, ifX1 crashes, the values
of its nodes can be computed by subtracting the values of the
nodes inX2 from the appropriate nodes ofF1. We make the
observation that in large practical systems, the size of data far
exceeds the size of the index structure. Hence replicating the
index structure at the fused backups is of insignificant size
overhead. The real savings in space is achieved by fusing the
values in the data nodes. Henceforth, for convenience, we just
focus on crash faults. The extension to detection and correction
of Byzantine faults is presented in section III-C.

Fusion is extremely space efficient while recovery is very
cheap in replication. In figure 1, to correct one crash fault
amongX1 andX2, replication requires a backup copy for both
X1 andX2, resulting in two backups containing five nodes in
total as compared to the fusion-based solution that requires just
one back containing three nodes. However, in case of a crash
fault, recovery in replication just involves obtaining thevalue
from the corresponding replica. Fusion needs a centralised
recovery algorithm that obtains all available data structures
and decodes the data nodes of the backups. In general,
this is the key trade-off between replication and fusion. In
systems with infrequent faults, the cost of recovery is an
acceptable compromise for the savings in space achieved by
fusion. Previous work on this topic [9] provides the algorithms
to generate a single fused backup for array or list-based
primaries, that can correct one crash fault. In Table I, we
present the main differences among three backup solutions:
replication, the older version of fusion, and the newer version
of fusion presented in this paper. The following are the main
contributions of this paper:

1) Generic Design: We extend the array and list-based
fused backups of [9] to present a generic design for
most commonly used data structures such as stacks,
vectors, binary search trees, hash maps, hash tables etc.
While [9] supports only add and remove operations on
the primaries, we support both these operations and all
other operations whose updates at the backups does
not require decoding the values. For example, when a
primary binary search tree is balanced, the update can be

performed at the fused backups without any information
from the primary.

2) f -Fault Tolerance: Using error/erasure correcting codes,
we extend the xor/addition based 1-fault tolerant design
of [9] to presentf -fault tolerant data structures. In
example 1, we can maintain another fused stackF2 that
has identical structure toF1, but with nodes that contain
the difference in values of the primary elements rather
than the sum. The algorithms for updates are identical at
the backups and each primary update is applied on both
of them. These set of data structures can correct two
crash faults. We extend this using Reed Solomon (RS)
erasure codes [23], which are widely used to generate the
optimal number of parity blocks in RAID-like systems.
Using RS codes, we correctf crash faults among the
primaries using justf additional fused backups.

3) Space Optimality: Given n primaries, each containing
O(m) nodes of sizeO(s) each, the space complexity
of a single backup for list-based primaries in [9] is
O(nms). This is as bad as the space required to maintain
n replicas to correct one crash fault. For the design in
this paper, the space occupied by a fused backup is
O(ms). To correctf faults, we require justO(msf)
backup space, achievingO(n) times savings as com-
pared to replication. We show that this is the minimum
amount of space required to correctf crash faults.

4) Update Efficiency: In [9], the time taken to update
the fused backup for linked lists is proportional to the
number of nodes in the fused backup i.e.O(nm). We
show that the time complexity to update our fused
backups is identical to that at the corresponding primary.
In the case of linked lists, this isO(m). Further, we
show that by locking just a constant number of nodes,
multiple primary threads can update the fused backups
concurrently. Since the primaries are independent of
each other, this could achieve significant speed-up.

5) Order Independence: The state of the fused backup in [9]
is dependent on the order in which updates are received
from the primaries. Hence, if we simply extend their
algorithms forf -fault tolerance, then we need to ensure
that all the backups receive updates from the primary
in the same order. This implies the need for synchrony,
which will cause considerable overhead during normal
operation. In this paper, we show that as long as the
updates from a single primary are received in FIFO
order, the state of the fused backup is independent of
the order of updates. FIFO order among primary updates
is a strict requirement even for replication and can be
easily implemented using TCP channels.

6) Extension to Limited Backup Servers: In practical sys-
tems, sufficient servers may not be available to host all
the backup structures and hence, some of the backups
have to be distributed among the servers hosting the
primaries. These servers can crash, resulting in the
loss of all data structures residing on them. Given a
set of n data structures, each residing on a distinct



server, we prove that⌈n/(n + a − f)⌉ · f backups are
necessary and sufficient to correctf crash faults among
the host servers, when there are onlya additional servers
available to host the backup structures.

7) Real World Example, Amazon’s Dynamo: We apply the
design of fused backups to a real world system and
illustrate its practical usefulness. We consider Amazon’s
highly available key-value store:Dynamo[6], which is
the data-store underlying many of the services exposed
by Amazon to the end-user. Examples include the ser-
vice that maintains shopping cart information or the
one that maintains user state. Dynamo achieves its twin
goals of fault tolerance (durability) and fast response
time for writes (availability) using a simple replication-
based approach. We propose an alternate design using a
combination of both fused backups and replicas, which
consumes far less space, while providing almost the
same levels of durability, and availability for writes. We
show that for a typical host cluster, where there are 100
dynamo hosts, the original approach requires300 backup
hosts, while our approach requires only120 backup
hosts. This translates to significant savings in both the
space occupied by the hosts as well as the infrastructure
costs such as power and resources consumed by them.

8) Implementation and Results: We provide a Java imple-
mentation of fused backups [1] using RS codes for all
the data structures in the Java 6 Collection Framework.
This covers most commonly used data structures such
as sorted lists, stacks, vectors, hash maps, hash tables,
tree map etc. We evaluate the performance of the fused
backups presented in this paper with the one in [9] and
replication. We consider three main parameters: backup
space, update time at the backups and recovery time.
The current version of fusion is very space efficient
as compared to both replication (almostn times) and
the older version (almostn/2 times). The time taken
to update the backups is almost as much as replication
(around 1.25 times slower) while it is much better than
the older version (3 times faster). Recovery is much
cheaper in replication (order of hundred times) but the
current version of fusion performs almostn/2 times
better than the older version. These results confirm
the fact that the fused backups presented in this paper
are space efficient while incurring very little overhead
during normal operation.

TABLE I
FUSION VS. REPLICATION (n PRIMARIES CONTAININGO(m) NODES OF

SIZE O(s), f FAULTS )

Replication Old Fusion New Fusion
Types of Primaries All Arrays, Lists All
Faults Corrected f ≥ 1 f = 1 f ≥ 1

Number of Backups nf f f

Backup Space O(nmsf) O(nmsf) O(msf)
Update Optimality Yes No Yes

Order Independence Yes No Yes
Concurrent Updates Yes No Yes

Recovery Time O(msf) O(msf2n2) O(msf2n)

II. M ODEL AND NOTATION

Our system consists of independent distributed servers host-
ing data structures. We denote then primary data structures,
each residing on a distinct host,X1 . . . Xn. The backup data
structures that are generated based on the idea of combining
primary data are referred to asfused backupsor fused data
structures. The t fused backups, each residing on a distinct
host are denotedF1 . . . Ft. The operator used to combine
primary data is called thefusion operator. In figure 1, X1,
X2 are the primaries,F1 is the fused backup and the fusion
operator is addition. We assume that the size of data far
exceeds the overhead of maintaining the index structure at
the backup. This is a reasonable assumption to make, since in
most real world systems, the data is in the order of megabytes
while the auxiliary structure is in the order of bytes (like next
pointers in linked lists).

The updates to the servers in our system originate from
a set of clients. When an update is sent to a primary, the
data structure hosted on it is modified and the primary sends
sufficient information to update the backups. We assume FIFO
channels with reliable message delivery between the primaries
and the backups. The updates to the backups are asynchronous
and can be received in any order. The only requirement is that
when there are faults, all the data structures in the system have
acted on all the updates before the failed data structures are
recovered.

The data structures in the system, both primaries and
backups, may undergo crash or Byzantine faults. When a fault
occurs, no updates are sent by the clients until the state of all
the failed data structures have been recovered. Crash faults
result in the loss of the current state of the data structure.We
assume that the system in consideration can detect such faults.
In the case of Byzantine faults, the data structures can be in
any arbitrary state. We provide algorithms for the detection
and correction of such faults. For recovery, we assume the
presence of a trusted, recovery agent that can obtain all the
available data structures, detect and correct faults.

III. F USION-BASED FAULT TOLERANT DATA STRUCTURES

In [9], the authors present fusible data structures for array
and list-based primaries. In this section, we present a generic
design of fused backups for most commonly used data struc-
tures such as lists, stacks, vectors, trees, hash tables, maps
etc.
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Fig. 2. Old Fusion [9]

Design Motivation: In [9], the authors present a design to
fuse primary linked lists to correct one crash fault. The fused



structure is a linked list whose nodes contain thexor of the
primary values. Each node contains a bit array of sizen
with each bit indicating the presence of a primary element
in that node. A primary is element inserted in the correct
position at the backup by iterating through the fused nodes
using the bit array and a similar operation is performed for
deletes. An example is shown in figure 2 with two primaries
and one backup. After the delete of primary elementsa1 and
b3 (shown in dotted lines), the first and third nodes of the
fused backup are updated tob1 and a3 respectively (deleted
elements in grey scale). After the deletes, while the primaries
each contain only two nodes, the fused backup contains three
nodes. If there are a series of inserts to the head ofX1 and to
the tail ofX2 following this, the number of nodes in the fused
backup will be very high. This brings us to the main design
motivation of this section: Can we come up with a generic
design for fused backups, for all types of data structures such
that the fused backup contains only as many nodes as the
largest primary (in this e.g. two nodes), while guaranteeing
that updates are efficient? We present a solution for linked
lists and then generalize it for complex data structures.

A. Fused Backups for Linked Lists

We use a combination of replication and erasure codes
to implement fused backups each of which are identical in
structure and differ only in the values of the data nodes. In
our design of the fused backup, we maintain a stack of nodes,
referred to asfused nodesthat contains the data elements of
the primaries in the coded form. The fused nodes at the same
position across the backups contain the same primary elements
and correspond to the code words of those elements. Figure
3 shows two primary linked listsX1 and X2 and two fused
backupsF1 and F2 that can correct two faults among the
primaries. The fused node in the0th position at the backups
contain the elementsa1 and b1 with F1 holding their sum
and F2 their difference. Along with the stack, at each fused
backup, we also maintain auxiliary structures that replicate
the index information of the primaries. The auxiliary structure
corresponding to primaryXi at the fused backup is identical in
structure toXi, but whileXi consists data nodes, the auxiliary
structure only contains pointers to the fused nodes. In the
case of linked list based primaries, the auxiliary structures
are simply linked lists. The savings in space are achieved
because primary nodes are being fused, while updates are
efficient since we maintain the ”structure” of each primary
at the backup.

Overview: We begin with a high-level description on how
we restrict the number of nodes in the backup stack. Elements
belonging to primaryXi are simply inserted one following
the other in the backup stack with a corresponding update to
the index structure ofXi at the backup to preserve the actual
ordering information. The case of deletes is more complex.
If we just delete the element at the backup, then like in the
case of figure 2, a hole will be created and the fused backups
can grow very large. In our solution, we shift the top-most
element ofXi in the backup stack, to plug this hole. This

ensures that the stack never contains more nodes than the
largest primary. Since the final element is present in the fused
form, the primary has to send this value with every delete to
enable this shift. To know which element to send with every
delete, the primary has to track the order of its elements at
the backup stack. We achieve this by maintaining an auxiliary
list at the primary, which mimics the operations of the backup
stack. When an element is inserted into the primary, we insert
a pointer to this element at the end of its auxiliary list. When
an element is deleted from the primary, we delete the element
in the auxiliary list that contains a pointer to this element
and shift the final auxiliary element to this position. Hence,
the primary knows exactly which element to send with every
delete. Figure 3 illustrates these operations with an example.
We explain them in greater detail in the following paragraphs.

Inserts: Figure 4 shows the algorithms for the insert of
a key-value pair at the primaries and the backups. At each
primaryXi, along with the primary data structure we maintain
an auxiliary list that mimics the operation of the backup stack.
When the client sends an insert, if the key is not already
present, the primary creates a new node containing this key-
value, inserts it into the primary linked list and inserts a pointer
to this node at the end of the aux list. The primary sends the
key, the new value to be added and the old value associated
with the key to all the fused backups. Each fused backup
maintains a stack that contains the primary elements in the
coded form. On receiving the insert update fromXi, if the
key is not already present, the backup updates the code value
of the fused node following the one that contains the top-
most element ofXi Further to maintain order information,
the backup inserts a pointer to the newly updated fused node,
into the aux structure forXi with the key received.

Figure 3(ii) shows the state ofX1 andF1 after the insert of
(3, a∗

1
). We assume that the keys are sorted in this linked list

and hence the key-value pair(3, a∗

1
) is inserted at index 1 of

the primary linked list and a pointer toa∗

1 is inserted at the end
of the aux list. At the backup, the value of the second node
is updated toa∗

1 + b3 and a pointer to this node is inserted at
index 1 of the aux linked list forX1. The identical operation
is performed atF2, with the only difference being that the
second fused node is updated toa∗

1 − b3. Observe that the aux
list at the primaryX1 in figure 3(ii) specifies the exact order
of elements maintained at the backup stack (a1 → a2 → a∗

1
).

Analogously, the aux list forX1 at the fused backup points
to the fused nodes that contain elements ofX1 in the correct
order (a1 → a∗

1 → a2).
Delete: Figure 5 shows the algorithms for the delete of a

key at the primaries and the backups.Xi deletes the node
associated with the key from the primary data structure and
obtains its value which needs to be sent to the backups. Along
with this value and the keyk, the primary also sends the value
of the element pointed to by the tail node of the aux list.
This corresponds to the top-most element ofXi at the backup
stack and is hence required for the shift operation that will
be performed at the backup. After sending these values, the
primary shifts the final node of the aux list to the position of
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INSERT at PrimariesXi :: i = 1..n
Input : key k, data valued;
if (primLinkedList · contains(k))

/* key present, just update its value*/
old = primLinkedList · get(k) · value
primLinkedList · update(k, p);
send(k, d, old) to all fused backups;

else
/* key not present, create new node*/
primNodep = new primNode;
p · value = d;
auxNodea = new auxNode;
a · primNode = p;
p · auxNode = a;
/* mimic backup stack */
auxList.insertAtEnd(a);
primLinkedList · insert(k, p);
send(k, d, null) to all fused backups;

INSERT at Fused BackupsFj :: j = 1..t
Input : key k, new valuedi, old valueoldi;
if (auxLinkedList[i] · contains(k))

fusedNodef = auxLinkedList[i] · get(k);
f · updateCode(oldi, di);

else
fusedNodep = tos[i] + +;
if (p == null)

p = new fusedNode;
dataStack · insert(p);
dataStackTos + +;

p · updateCode(0, di);
p · refCount + +;
/* mimic primary linked list */
auxNodea = new auxNode;
a · fusedNode = p;
p · auxNode[i] = a;
auxLinkedList[i] · insert(k, a);

Fig. 4. Fused Backups for Linked Lists: Inserts

the aux node pointing to the deleted element, to mimic the
shift of the final element at the backup.

On receiving these values from the primary, the backup first
obtains the fused nodep pointed to by the aux node associated
with k in the auxiliary structure ofXi at the backup. As the
aux structure ofXi at the backup preserves the exact position
information of the elements ofXi, p contains the element of
Xi associated withk. The backup updates the value ofp with
the top-most element (sent by the primary astos) to simulate
the shift. The aux node pointers are updated to reflect this shift.
Figure 3(iii) shows the state ofX1 and F1 after the delete
of b1. The key things to note are the fact that atF1, b3 has
been shifted from the end to the0th node, the aux list atX2

reflects the correct order of its elements at the backup stack
(b3 → b2) and the aux structure atF2 also reflects the correct
order of elements atX1 (b2 → b3). Note that, the space and
time overhead of maintaining the auxiliary list at the primary
is negligible.

B. Fused Backups for Complex Data Structures

The design of fused backup for linked lists can easily be
generalized for all types of data structures. At each primary
along with the primary data structure, we maintain an auxiliary
list that tracks the order of elements at the backup stack.
At each backup, we maintain auxiliary structures for each
primary, which is identical to the corresponding primary
except for the fact that it has pointers to the fused nodes rather



DELETE at PrimariesXi :: i = 1..n
Input : key k;
p = primLinkedList · delete(k);
old = p · value;
/* tail node of aux list points to top-most

element ofXi at backup stack */
auxNodeauxTail = auxList · getTail();
tos = auxTail · primNode · value;
send(k, old, tos) to all fused backups;
auxNodea = p · auxNode;
/* shift tail of aux list to replacea */
(a · prev) · next = auxTail;
auxTail · next = a · next;
delete a;

DELETE at Fused BackupsFj :: j = 1..t
Input : key k, old valueoldi, end valuetosi;
/* update fused node containingoldi

with primary element ofXi at tos[i]*/
auxNodea = auxLinkedList[i] · delete(k);
fusedNodep = a · fusedNode;
p · updateCode(oldi, tosi);
tos[i] · updateCode(tosi, 0);
tos[i] · refCount −−;
/* update aux node pointing totos[i] */
tos[i] · auxNode[i] · fusedNode = p;
if (tos[i].refCount == 0)

dataStackTos−−;
tos[i] −−;

Fig. 5. Fused Backups for Linked Lists: Deletes

than primary elements. We explain this using the example of
balanced binary search trees (BBST). Figure 6(i) shows two
primary BBSTs and a fused backup. For simplicity, we explain
the design using just one backup. The auxiliary structure atF1

for X1 is a BBST containing a root and two children, identical
in structure toX1. The algorithms for inserts and deletes at
both primaries and backups remains identical to linked lists
except for the fact that at the primary, we are inserting into
a primary BBST and similarly at the backup we are inserting
into an auxiliary BBST rather than an auxiliary linked list.
Figure 6(ii) shows the state ofX1 andF1 after the delete of
a3 followed by the insert ofa4. The aux list atX1 specifies
the order(a1 → a2 → a4), which is the order in which the
elements ofX1 are maintained atF1 in figure 6(ii). Similarly,
the auxiliary BBST forX1 at F1 maintains the ordering of
the elements atX1. Since the root atX1 is the element
containinga1, the root of the aux BBST atF1 points to the
fused node containinga1. As we maintain auxiliary structures
at the backup that are identical to the primary data structures,
it is is not necessary that each container provide the semantics
of insert(key, value) and delete(key). For example, we
can also support the semanticsinsert(position, value) and
delete(position, value) since the primary data structures and
the auxiliary data structure being identical, support them.

So far we have focused only on the insert and delete
operations to the data structure, since those are the operations
that are adding and deleting data nodes. However, since
we maintain the entire index structure at the backups, we
support any operation to the primary data structure, as long
as the corresponding operation to the backup does not involve
decoding the values of the primary elements at the backup. We
illustrate this with the example of the balance operation inthe
BBST shown in figure 6(iii). The balance at the primary just
involves a change in the relative ordering of the elements. The
update corresponding to this at the fused backup will change
the relative ordering of the elements in the auxiliary BBST,
identical to that at the primary. In conclusion, our design for
fused backups can support all types of data structures with

many complex operations. Based on this we have implemented
fusible data structures and primaries for linked lists, vectors,
queues, hash tables, tree maps etc. In the following section
we describe the algorithms for the detection and correction
of crash/Byzantine faults that are common to all types of
primaries.

C. Fault Detection and Correction

To correct crash faults, we need to obtain all the available
data structures, both primaries and backups. As seen in section
III, the fused node at the same position at all the fused backups
are the codewords for the primary elements belonging to these
nodes. To obtain the missing primary elements belonging to
this node, we decode the code words of these nodes along with
the data values of the available primary elements belongingto
this node. We apply the standard erasure decoding algorithm
for decoding each set of values. In figure 3(i), to recover the
state of the failed primaries, we obtainF1 andF2 and iterate
through their nodes. The0th fused node ofF1 contains the
value a1 + b1, while the 0th node ofF2 contains the value
a1 − b1. Using these, we can obtain the values ofa1 and b1.
The value of all the primary nodes can be obtained this way
and their order can be obtained using the index structure at
each backup.

To correct Byzantine faults, the only difference is that we
decode the codes for errors rather than erasures. To detect
Byzantine faults, we need to periodically encode the values
of the primaries and compare it to the fused values at the
backup. If these values do not match, this indicates a Byzantine
error. In general, a code that can correctf erasures can detect
f errors and correct⌊f/2⌋ errors [2], [13], [19]. Hence, the
fused backups that can correctf crash faults can also detect
f Byzantine faults and correct⌊f/2⌋ Byzantine faults. In the
following section, we describe Reed Solomon codes as the
fusion operator forf fault tolerance.

D. Reed Solomon Codes as Fusion Operator

In this section, we present the Reed Solomon (RS) erasure
codes that can be used as a fusion operator to correctf faults
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among the primaries usingf backups. Readers are referred to
standard texts on coding theory [2], [13], [19] for a thorough
treatment. Givenn data words{d1, d2, . . . dn}, RS erasure
coding generatesf checksum words{c1, c2, . . . cf} that can
correctf erasures among the data and the checksum words.
All operations are performed over a finite field with more than
n + f elements [19]. Hence, we can use RS codes to fuse the
primary elements of the data structures and the backup stacks
maintain thesef codewords.

Fusion (Encoding): The algorithm comprises of generating
an n × (n + f) information dispersal matrixB, that satisfies
the following properties:

• The n × n matrix in the firstn columns is an identity
matrix.

• Any sub-matrix formed by the deletion off columns of
the matrix, is invertible.

Hence,B can be represented as the combination of an identity
matrix I and another matrixS, i.e., B =

[

I S
]

. B is
derived from a Vandermonde matrix with elementary matrix
operations. LetD be the data vector andP the encoded vector
obtained after multiplyingD with B, i.e.,

[

D
]

×
[

B
]

=
[

D
]

×
[

I S
]

=
[

P
]

=
[

D C
]

, where C is the set of
check sums (the fused data) computed for the data setD.

Update: Whenever a data worddi is updated tod′i, all the
code words can be updated just using the differenced′i − di

andcj :
c′j = cj + bj,i(d

′

i − di)

where bj,i is (j, i)th element of the information dispersal
matrix B. Since the new code word is computed without the
value of the other code words, updates are very efficient in RS
erasure coding. This update corresponds to theupdateCode
routine used in figures 4 and 5.

Recovery (Decoding): In the case of erasures, we can
recover the data words using the encoded vectorP and
the information dispersal matrixB. Data word erasures are
reflected by deleting the corresponding columns fromB andP
to obtainB′ andP ′ that adhere to the equation,D×B′ = P ′.

When exactlyf data words fail,B′ is a n × n matrix. As
mentioned above, any sub-matrix generated by deletingf
columns fromB is an invertible matrix. Hence, matrixB′ is
guaranteed to be invertible. The data words can be generated
as follows:P ′ × (B′)−1 = D.

Time Complexity Analysis for Crash Correction: We con-
sider the cost of crash fault recovery for fused backups based
on section III-C with RS codes as the fusion operator. To
recover the state off failed structures among then + f
primaries and fused backups, we need to obtain the state of
the remainingn data structures at a centralized stateless server.
For simplicity, we assume faults only in the primary lists. To
obtain the data values of the failed lists belonging to a node
in the same position at all the fused lists, we decode thef
code words of these nodes along with the data values of the
n−f available primary lists belonging to this node. We iterate
through all the nodes to obtain the entire failed lists. The time
complexity of recovery is proportional to the number of nodes
in each fused list, multiplied by the cost of RS decoding. Given
n data values, the cost of recoveringf values , each of sizes
by RS decoding isO(sf2n) [20]. Since the number of nodes
in the fused list is bound by the size of the primary list,m,
the time complexity for recovery isO(msf2n) where each
primary hasO(m) nodes ofO(s) size each.

IV. T HEORY OFFUSED DATA STRUCTURES

In this section we prove theoretical properties on the fused
backups such as size optimality, update optimality, update
order independence and so on, all of which are important con-
siderations when implementing a system using these backups.
These properties ensure that the overhead in space and time
caused due to these backups is minimal. The results in this
section apply for all types of primaries and are independent
of the fusion operator used. The only assumption we make is
that the codes can be updated locally in constant time (like
RS codes).



A. Space Optimality

Considern primaries, each containingO(m) nodes, each
of sizeO(s). In [9], to correct one crash fault, the backup for
linked lists and list-based queues consumesO(nms) space,
which is as bad as replication. We show that the fused backups
presented in this paper require onlyO(ms) space. Further, to
correctf faults, we show that the fused backups need only
O(msf) space, which we prove is optimal. Replication, on
the other hand requiresO(mnsf) space, which isO(n) times
more than fusion. In figure 3, the number of fused nodes in
F1 or F2 is always equal to the number of nodes in the largest
primary. When we insert a node at the backup, we do so at the
end of the stack and when we create a hole due to a delete,
we shift the final element of that primary in the stack to fill
the hole. This ensures that the number of nodes in the stack
never exceeds the number of nodes in the largest primary.

Lemma 1:The data stack of each fused backup contains
only m fused nodes.

Proof: This is a data stack where we insert primary
elements at the top of the stack. Clearly, if there are no holes
in the data stack, i.e a fused node that does not contain an
element from a primary followed by a fused node that does
contain an element from the same primary, then the invariant
holds. When the stack is empty, there are no holes. In the case
of inserts toXi, we always insert at the fused node on top of
the last fused node containing an element fromXi. Hence, no
hole is created. For deletes, when a hole is created, we shift
the final element of the primary, pointed to bytos[i] plug this
hole, thereby maintaining the invariant.

In section III-D, we saw that using Reed Solomon codes,
we can correctf crash faults among the primaries using just
f fused backups. This is clearly an optimal number for the
number of backups required to correctf crash faults. From
lemma 1 we know that the fused backups contains just the
maximum number of nodes across all primaries. Since the
size of each primary element isO(s), the backups space
required by our fused backups with RS codes as the fusion
operator isO(msf). In the following theorem, we show that
this is optimal when the data across the primaries is entirely
uncorrelated.

Theorem 1 (Space Optimality):The fused backups gener-
ated by our design using RS codes as the fusion operator are
of optimal size.

Proof: f crash faults among the primaries will result
in the failure of at leastf data nodes, each of sizeO(s).
To correctf crash faults among them, we need to maintain
at leastf backup nodes each of sizeO(s). Since the data
structures each containO(m) nodes, to correctf crash faults
among them, we need to maintainf backups containing each
containingO(ms) space. Hence the minimum space required
is O(msf). The fused backups using RS codes consumes
exactly that amount of backup space and is hence optimal.

B. Efficient Updates

We define update optimality as follows: the time complexity
of updates to the backup for all operations takes the same
time as that of the corresponding update to the primary. In
[9], in order to update the backup for linked lists, we need
to iterate through all the fused nodes. Since the number of
fused nodes in the backup isO(nm), the time complexity of
updates isO(nm), while the time complexity for the update
at the primary is onlyO(m). Hence, it is not update optimal.
We show that the fused backups presented in this paper are
update optimal for all types of primaries, thereby causing
minimal overhead during normal operation. An update to the
backup consists of two operations: updating the data stack
and updating the auxiliary structure. The first takes constant
time while the second, which involves inserting or deleting
into the auxiliary structure, takes only as much time as thatat
the primary since the auxiliary structure is constructed tobe
identical in structure to the primary data structure.

Theorem 2 (Update Optimality):The time complexity of
the updates to a fused backup is of the same order as that
at the primary.

Proof: Let us assume primaryXi sends an insert or delete
of an element with keyk. Operations at the backup consist
of update to the data stack and the update to the auxiliary
structure corresponding to the primary that sent the update,
say Xi. In the case of inserts, we obtain the node following
the top most element ofXi in the data stack and update it in
constant time. The update to the auxiliary structure consists
of an insert of an element with keyk, which is the identical
operation at the primary.

Similarly, for deletes, we first remove the node with key
k from the auxiliary data structure, an operation that was
executed on the data structure of the same type at the primary.
Hence, it takes as much time as that at the primary. Once
we obtain the auxiliary node that was deleted, we obtain a
pointer to the fused node that needs to be updated followed
by a constant time shift of the final element to this position.
So, for both inserts and deletes the fused backups are update
optimal. This extends easily for more complex information,
because the basic idea is the same: any complex operation
performed on the index structure of the primary will also be
performed on the index structure maintained at the auxiliary
structures at the backup. Updating the data nodes of the stack
takes constant time.

Since the primaries are independent of each other, in many
cases the updates to the backup can be to different fused
nodes. Hence, multiple concurrent threads updating each fused
backup can achieve considerable speed-up as long as the
overhead of locking is minimal. As described in section III,
the updates to the fused backup corresponding to a primary
are mostly independent of the elements belonging to the other
primaries and they do not affect their order at the backups. In
the following theorem we show that multiple threads belonging
to different primaries can update the fused backup concurrently
with minimal locking of nodes.



Theorem 3 (Concurrent Updates):There exists an algo-
rithm for multiple threads belonging to different primaries to
update a fused backup concurrently with onlyO(1) locking
of nodes.

Proof: We modify the algorithms in figures 4 and 5 to
enable concurrent updates. We assume the presence of fine
grained locks that can lock just the fused nodes and if required
a fused node along with thedataStackTos. Since updates
from the same primary are never applied concurrently, we
don’t need to lock the index structure.

Inserts: If the insert has to create a new fused node, then
the updating thread has to lockdataStackTos and the fused
node pointed to by this pointer using a single lock, insert and
update a new fused node, incrementdataStackTos and then
release this combined lock. If the insert fromXi does not have
to create a new node it only has to lock the node pointed to
by tos[i], update the node’s code value and release the lock.
When the primaries are of different sizes, then the insert to
the backups never occurs to the same fused node and hence
are fully concurrent.

Deletes: The updating thread has to obtain the node con-
taining the element to be deleted, lock it, update its value with
tos and release it. Then it has to lock the node pointed to by
tos[i], update it with zero and release the lock. Similar to the
case of inserts, when the delete causes a node of the stack to
be deleted, the thread needs to lock thedataStackTos as well
as the node pointed to by this pointer in one lock, delete the
node, update the pointer and then release the combined lock.

C. Order Independence

The state of the fused backups in [9] are dependent on
the ordered in which the updates are received. If we simply
extend these algorithms forf -fault tolerance using erasure
codes, then all the backups have to receive the updates in the
same order failing which the fused nodes at the same position
across the backups can contain different primary elements.
In this case, recovery is not possible. For example in figure
3, if the first node ofF1 containsa1 + b1, while the first
node of F2 containsa2 − b1, then we cannot recover the
primary elements whenX1 andX2 fail. This implies the need
for synchrony, that will cause considerable overhead during
normal operation. We show that the fused backups in this paper
are order independent. As a simple example consider the two
updates shown in figures3. The updates to the auxiliary list
commute since they are to different lists. As far as updates to
the stack are concerned, the update fromX1 depends only on
the last fused node containing an element fromX1 and hence
is independent of the update fromX2 which does not change
the order of elements ofX1 at the fused backup. Similarly
the update fromX2 is to the first and third nodes of the stack
immaterial of whethera∗

1
has been inserted or not. Hence, they

also commute.
Theorem 4 (Order Independence):The state of the fused

backups after a set of updates is independent of the order

in which the updates are received, as long as updates from the
same primary are received in FIFO order.

Proof: Clearly, updates to the auxiliary structure com-
mute. In the case of inserts, the only fused node that is updated
is the one following the last fused node containing an element
from the corresponding primary. Since this is independent of
other primaries, this is order independent. Similarly, thedelete
and shift operation do not depend on other primaries. The
update of the values are independent of other primaries and
they affect the same fused node independent of the order.
Hence the updates commute. Other operations (other than
insert and delete) affect only the auxiliary structure and hence
they too commute.

D. Fault Tolerance with Limited Backup Servers

So far we have assumed that the primary and backup
structures reside on independent servers for the fusion-based
solution (the same is true for [9]). In many practical scenarios,
the number of servers available maybe less than the number
of fused backups. In these cases, some of the backups have to
be distributed among the servers hosting the primaries. Given
a set ofn data structures, each residing on a distinct server,
we prove that⌈n/(n + a− f)⌉ · f backups are necessary and
sufficient to correctf crash faults among the host servers,
when there are onlya additional servers available to host
the backup structures. Further, we present an algorithm for
generating the optimal number of backup structures. Based on
the design in section III-D, we assume that we can correctf
crash faults among the primaries using justf fused backups.

To simplify our discussion, we start with the assumption
that no additional servers are available for hosting the back-
ups. As some of the servers host more than one backup
structure,f faults among the servers, results in more thanf
faults among the data structures. Hence, a direct fusion-based
solution cannot be applied to this problem. Given a set of
five primaries,{X1 . . . X5}, each residing on a distinct server
labelled, {H1 . . . H5}, consider the problem of correcting
three crash faults among the servers (n = 5, f = 3). Let
us just generate three backupsF1, F2, F3, and distribute
them among the hostsH1, H2, H3 respectively. Crash faults
among these three servers will result in the crash of six data
structures, whereas these set of backups can only correct three
crash faults. We solve this problem by partitioning the set of
primaries and generating backups for each individual block.

In this example, we can partition the primaries into three
blocks [X1, X2], [X3, X4] and [X5] and generate three fused
backups for each block of primaries. Henceforth, we denote
the backup obtained by fusing the primariesXi1 , Xi2 , . . ., by
Fj(i1, i2, . . .). For e.g., the backups for[X1, X2] are denoted
asF1(1, 2) . . . F3(1, 2). Consider the following distribution of
backups among hosts:

H1 = [X1, F1(3, 4), F1(5)], H2 = [X2, F2(3, 4), F2(5)]

H3 = [X3, F1(1, 2)], F3(5)], H4 = [X4, F2(1, 2)]

H5 = [X5, F3(1, 2), F3(3, 4)]



The backups for any block of primaries, do not reside on
any of the servers hosting the primaries in that block. Three
server faults will result in at most three faults among the
primaries belonging to any single block and its backups. Since
the fused backups of any block correct three faults among the
data structures in a block, this partitioning scheme can correct
three server faults. Here, each block of primaries requiresat
least three distinct servers (other than those hosting them) to
host their backups. Hence, forn = 5, the size of any block
in this partition cannot exceedn− f = 2. Based on this idea,
we present the following algorithm, to correctf faults among
the host servers.

(Partitioning Algorithm): Partition the set of primariesX
as evenly possible into⌈n/(n − f)⌉ blocks, generate thef
fused backups for each such block and place them on distinct
servers not hosting the primaries in that block.

The number of blocks generated by the partitioning al-
gorithm is ⌈n/(n − f)⌉ and hence, the number of backup
structures required is⌈n/(n − f)⌉ · f . Replication, on the
other hand requiresn · f backup structures which is always
greater than or equal to⌈n/(n − f)⌉ · f . We show that
⌈n/(n − f)⌉ · f is a tight bound for the number of backup
structures required to correctf faults among the servers. For
the example wheren = 5, f = 3, the partitioning algorithm
requires nine backups. Consider a solution with eight backups.
In any distribution of the backups among the servers, the three
servers with the maximum number of data structures will host
nine data structures in total. For example, if the backups are
distributed as evenly as possible, the three servers hosting the
maximum number of backups will each host two backups and
a primary. Failure of these servers will result in the failure
of nine data structures. Using just eight backups, we cannot
correct nine faults among the data structures. In the following
theorem, we prove this result for generaln andf along with
the assumption that there area (rather than zero) additional
servers available to host the backup structures.

Theorem 5:Given a set ofn data structures, each residing
on a distinct server, to correctf faults among the servers, it
is necessary and sufficient to add⌈n/(n + a− f)⌉ · f backup
structures.

Proof:
(Sufficiency):
We prove the correctness of the partitioning algorithm.

Since the maximum number of primaries in any block of the
partitioning algorithm isn+a−f , there are at leastf distinct
servers (not hosting the primaries in the block) available to
host thef fused backups of any block of primaries. So, the
fused backups can be distributed among the host servers such
that f server faults only lead tof faults among the backups
and primaries corresponding to each block. Hence the fused
backups generated by the partitioning algorithm can correct f
server faults.

(Necessity):
Suppose there is a scheme witht backups such that

t < ⌈n/(n + a − f)⌉ · f . In any distribution of the backups
among the servers, choosef servers with the largest number

of backups. We claim that the total number of backups in
thesef servers is strictly greater thant − f . Failure of these
servers, will result in more thant − f + f faults (adding
faults of f primary structures). This would be impossible to
correct witht backups. We know that,
t < ⌈n/(n + a − f)⌉ · f
⇒ t < ⌈1 + f/(n + a − f)⌉ · f
⇒ (t − f) < ⌈f/(n + a − f)⌉ · f
⇒ (t − f)/f < ⌈f/(n + a − f)⌉

If the f servers with the largest number of backups have
less than or equal tot− f backups in all, then the server with
the smallest number of backups among them will have less
than the average number of backups which is(t − f)/f .

Since the remainingn + a − f servers have more than or
equal to f backups, the server with the largest number of
backups among them will have as many or greater than the
average number of backups which is⌈f/(n + a − f)⌉.

Since,(t− f)/f < ⌈f/(n+a− f)⌉, we get a contradiction
that the smallest among thef servers hosting the largest
number of backups , hosts less number of backups than the
largest among the remainingn − f servers.

V. PRACTICAL EXAMPLE : AMAZON ’ S DYNAMO

In this section, we present a practical application of our
technique based on a real world implementation of a dis-
tributed system. Amazon’s Dynamo [6] is a distributed data
store that needs to provide both durability and very low
response times (availability) for writes to the end user. They
achieve this using a replication-based solution which is simple
to maintain but expensive in terms of space. We propose an al-
ternate design using a combination of both fused backups and
replicas, which consumes far less space, while guaranteeing
nearly the same levels of durability and availability.

A. Existing Dynamo Design

We present a simplified version of Dynamo with a focus on
the replication strategy. Dynamo consists of clusters of primary
hosts each containing a data store like a hash table that stores
key-value pairs. The key space is partitioned across these hosts
to ensure sufficient load-balancing. For both fault tolerance
and availability,f replicas of each primary are maintained in
distinct backup hosts. Thesef +1 identical copies can correct
f crash faults among the primaries. The system also defines
two parametersr andw which denote the minimum number
of hosts that must participate in each read request and write
request respectively. These values are each chosen to be less
than f . The authors in [6] mention that the most common
values of(n, w, r) observed among their clients are(3, 2, 2).
In figure 7, we illustrate a simple set up of dynamo forn = 4
primaries, withf = 3 replicas maintained for each one of
them.

To read and write from the data store, the client can send its
request to any one of thef +1 replicas that cater to the key of
the request, and designate it thecoordinator. The coordinator
reads/writes the value corresponding to the key locally and



sends the request to the remainingf copies. On receiving
r − 1 or w − 1 responses from the replicas for read and write
requests respectively, the coordinator responds to the client
with the data value (for reads) or just an acknowledgment
(for writes). Sincew < f , clearly some of the replicas
may not be up to date when the coordinator responds to the
client. This necessitates some form of data versioning, and
the coordinator or the client has to reconcile the differentdata
versions on every read. This is considered an acceptable cost
since Dynamo is mainly concerned with optimizing writes to
the store. In this setup, when one or more hosts crash, the
remaining copies that cater to the same key space can take over
all requests addressed to the failed hosts. Once the crashedhost
comes back, the replica that was acting as proxy just transfers
back the keys that were meant for the node. Since there can
be at most three crash faults in the system, there is at least
one node replica for each primary remaining for recovery.
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B. Hybrid Dynamo Design

We propose a hybrid design for Dynamo that uses a combi-
nation of fusion and replication. We focus on the typical case
of (f, w, r) = (3, 2, 2). Instead of maintaining three replicas
for each primary (f = 3), we maintain just a single replica
for each primary and two fused backups for the entire set of
primaries as shown in figure 7(ii). The fused backups, being
optimal in size, achieve savings in space while the replicas
allows the necessary availability for reads. The fused backups
along with the replica can correct three crash faults among the
primaries. The basic protocol for reads and writes remains the
same except for the fact that the fused copies cannot directly
respond to the client requests. In the case of writes, the fused
copies require the old value associated with the key (section
III). However, on receiving a write request, the coordinator can
send the request to these fused backups which can respond to
the request after updating the table. For the typical case of
w = 2, as long as the coordinator, sayXi obtains a response
from one among the three backups (a replica and two fused
backups) the write can succeed. This is similar to the existing
design and hence performance for writes is not affected by
much. On the other hand, performance for reads does drop
since the fused copies that contain data in the coded form
cannot return the data value corresponding to a key in an
efficient manner. Hence, the two replicas need to answer all
requests to maintain availability. Since Dynamo is optimized

mainly for writes, this may not be a cause for concern. To
alleviate the load on the fused backups, we can partition the
set of primaries into smaller blocks. For the set up shown in
figure 7, we can maintain four fused backups whereF1, F2

are the fused copies forX1 andX2, while F3 andF4 are the
fused copies ofX3 andX4. This will reduce the load on the
backups while ensuring that the number of hosts as compared
to the solution in figure 7(ii) increases only by two.

Similar to the existing design, when hosts crash, if there
are surviving replicas that cater to the same keys, then they
can take over operation. However, since we maintain only
one host replica per primary, it is possible that none of the
replicas remain. In this case, the fused backup canmutateinto
one or more of the failed primaries. It can receive requests
corresponding to the failed primaries, update its local hash
table and maintain data in its normal form (without fusing
them). Concurrently, to recover the failed primaries, it can
obtain the data values from the remaining hosts and decode
the values. Hence, even though transiently the fault tolerance
of the system is reduced, there is not much reduction in
operational performance. Dynamo has been designed to scale
to 100 hosts. So in a typical cluster withn = 100, f = 3
the original approach requires,n ∗ f = 300 backup hosts.
Consider a hybrid solution that maintains a replica for each
host and maintains two fused backups for every 10 hosts. This
approach requires only100 + 20 = 120 backup hosts. This
argument can be extended to all Dynamo clusters deployed
around the world. The savings achieved in space, power and
resources can be crucial for such a real-world system.

VI. I MPLEMENTATION AND RESULTS

In this section, we describe our fusion-based data structure
library [1] that includes all data structures provided by the
Java Collection Framework. Further we have evaluated our
performance against replication and the older version of fusion
[9]. The current version of fusion outperforms the older
version on all three counts: Backups space, update time at the
backups and time taken for recovery. In terms of comparison
with replication, we saveO(n) times space as confirmed by
the theoretical results while not causing too much update
overhead. Recovery is much cheaper in replication.

Fault-Tolerant Data Structure Library: We implemented
fused backups and primary wrappers for the data structures
in the Java 6 Collection framework that are broadly divided
into list-based, map-based, set-based and queue-based data
structures. The fusion operator is RS codes based on the
C++ library provided by James S. Plank [21]. We evaluated
the performance of a representative data structure in each of
these categories: linked lists for list-based, tree maps for map-
based, hash sets for set-based and queues for queue-based data
structures.

Evaluation: To evaluate performance, we implemented a
distributed system of hosts, each running either a primary or
a backup data structure and compared the performance of our
solution (’New Fusion’) with the one presented in [9] (’Old
Fusion’) and replication. The algorithms were implementedin



Java 6 with TCP sockets for communication and the experi-
ments were executed on a single Intel quad-core PC with 2.66
GHz clock frequency and 12 GB RAM. The three parameters
that were varied across the experiments were the number
of primariesn, number of faultsf and the total number of
operations performed per primary,ops. The operations were
biased towards inserts (80 %) and the tests were averaged over
four runs. We describe the results for the three main tests that
we performed: backup space, update time at the backup and
recovery time. The graphs for these tests are shown in figures
8 and 9.

To measure backup space, we assume that the size of data
far exceeds the overhead of the index structure and hence, we
just plot the total number of backup nodes consumed by each
solution. We fixf = 3, ops = 500 and varyn from 1 to 10.
The new version of fusion for linked lists performs much better
than both replication (almostn times) and the solution in [9]
(almostn/2 times) because the number of nodes per backup
never exceeds the maximum among the primaries. We use the
same experiment to calculate the recovery time taken by the
three approaches measured as the time taken to decodeafter
obtaining the necessary data structures at a recovery agent. The
new version of fusion performs much better than old fusion
(almost n/2 times) for a similar reason: recovery in fusion
involves iteration through all the nodes of each fused backup.
The newer version contains considerably less number of nodes
and hence performs better. The time taken for recovery by
replication is negligible as compared to both other solutions.
This is to be expected since recovery in replication requires
just copying the failed data structures after obtaining them.
Finally, to measure the update time at the backups, since we
were primarily concerned with the overhead of coding, we
fixed n = 1, f = 1 and variedops from 500 to 5000. The
new version of fusion has slightly more update overhead as
compared to replication (around 1.25 times slower) while it
performs much better than the older version (almost 3 times
faster) since the latter solution may have to iterate through all
the fused nodes at the backup for updates. The practical results
hence confirm the theoretical bounds: the solution presented in
this paper saves considerably on space, while causing minimal
overhead during normal operation.

VII. R ELATED WORK

In our work in [15], we present a coding-theoretic solution
to fault tolerance in finite state machines. This approach
is extended for infinite state machines and optimized for
Byzantine fault tolerance in [8]. Extensive work has been done
on consensus in distributed systems. The FLP result [7] states
that it is impossible to achieve consensus among a given set
of machines in an asynchronous system with even one crash
fault among the machines. We assume the presence of a failure
detector for crash faults in our system. Similarly, there has
been a considerable body of research for solving consensus
among the servers in synchronous systems. Given a system of
n machines in which up tof machines may undergo Byzantine
faults, consensus cannot be achieved unlessn > 3f [17]. In

the case of crash faults, at leastf +1 synchronous rounds are
required to achieve consensus [11]. These results do not apply
to our model because we assume a trusted recovery agent.

VIII. C ONCLUSION

Given n primary data structures, we present a fusion-
based technique that guaranteesO(n) savings in space as
compared to replication and prove theoretically that they incur
minimal overhead during normal operation. We provide a
generic design of fused backups and their implementation for
all the data structures in the Java 6 Collection framework that
includes vectors, stacks, maps, trees and most other commonly
used data structures. Our evaluation confirms that fusion isex-
tremely space efficient while recovery is cheaper in replication.
In a system with infrequent faults fusion is a better choice than
replication. We compare the main features of our work with
a previous work on this topic [9] and replication, in Table I.
Many real world systems such Amazon’s Dynamo or Google’s
Map-Reduce framework use replication extensively for fault
tolerance. Using concepts presented in this paper, we can
consider an alternate design using a combination of replication
and fusion-based techniques. We illustrate this in sectionV
by presenting a simple design alternative for Amazon’s data
store, Dynamo. In a typical Dynamo cluster of 100 hosts
our combined approach requires only 120 backup hosts as
compared to the existing set up of 300 backup hosts without
compromising on other important QoS parameters such as
response times. Thus fusion achieves significant savings in
space, power and resources.
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