A Fusion-based Approach for Handling Multiple
Faults in Distributed Systems

Bharath Balasubramanian, Vijay K. Garg
Parallel and Distributed Systems Laboratory,
Dept. of Electrical and Computer Engineering,
The University of Texas at Austin.
{bal asubr, gar g}@ce. ut exas. edu

Abstract—The paper describes a technique to correct faults queues, replication requires three backup copies of eashequ
in large data structures hosted on distributed servers, baexi resumng in a total of fifteen backup queues. Though regover
on the concept of fused backups. The prevalent solution to is cheap and simple, for large valuesaf this is expensive

this problem is replication. Given n distinct data structures, . t f th d by the back
replication requires nf additional replicas to correct f crash In terms of the space consumed by the backups.

faults or | f/2| Byzantine faults among the data structures. If Coding theory[2], [13], [19] is used as a space-efficient
each of the primaries containsO(m) nodes of O(s) size each, alternative to replication, both in the fields of communicat

this translates to O(nmsf) total backup space. Our technique and data storage. Data that needs to be transmitted across a
uses a combination of error/erasure correcting codes and B=- -hsnnel is encoded using redundancy bits that can correct

tive replication to correct f crash faults (or | f/2] Byzantine . . S
faults) using just f additional backups consumingO(msf) total errors introduced by a noisy channel [26]. Applications of

backup space, while incurring minimal overhead during normal coding theory in the storage domain include RAID disks
operation. Since the data is maintained in the coded form, [16], [5] for persistent storage, network coding approadoe
recovery is costly as compared to replication. However, in a reducing losses in multi-cast [14], [3] or information dispal
system with infrequent faults, the savings in space OUWEIB 4 05rithms (IDA) for fault tolerance in a set of data blocks

the cost of recovery. We explore the theory and algorithms fo - .
these fused backups and provide a Java implementation of fesl [22], [4]. These solutions are oblivious to the structure of

backups for all the data structures in the Java 6 Collection the underlying data and are rarely applied to backup active
Framework. Our experimental evaluation confirms that fused sStructures in main memory. In the example of the lock servers

backups are space-efficient as compared to replication (alostn in order to correct faults among the queues, a simple coding-
times), while they cause very little overhead for updates. Mny {hegretic solution will encode the memory block occupied by

real world distributed systems such as Google's map reduce the lock server. Since the lock server is never maintained
framework or Amazon’s distributed data store use replication to :

achieve reliability. An alternate, fusion-based design aa result ~COntiguously in main memory, a structure-oblivious salnti |
in significant savings in space as well as resources. will have to encode all memory blocks that are associateld wit

the implementation of this lock server in main memory. This
is not space efficient, since there could be a huge number of
Distributed systems are often modeled as a set of indaich blocks in the form of free lists, memory book keeping
pendent servers interacting with clients through the use ioformation etc. Also, every small change to the memory
messages. To efficiently store and manipulate data, thesap associated with this lock has to be communicated to the
servers typically maintain large instances of data stmestu backup, rendering it expensive in terms of communicatiah an
such as linked lists, queues and hash tables. Faults tbamputation.
occur in these servers are classified into two categoriashcr
faults [24] and Byzantine faults [12]. In the case of crash
faults, the servers crash, leading to a loss in state of the tos by tos[2]
data structures. In the case of Byzantine faults, the server s — | bs :

I. INTRODUCTION

. . by | -
can reflect any arbitrary state of the data structufegive a2 by ae tos|1]
replication[10], [18], [25], [27] is the prevalent solution to this a by a1 +b
proplem- To correctf c.rash faglts among data _structures, Primary Stack X, Primary Stack X, Fused Stack F}
replication-based solutions maintajnbackup copies of each
primary, resulting in a total of.f backups. These copies can Fig. 1. Fault Tolerant Stacks

correct| f/2] Byzantine faults, since greater thafi/2| data In this paper, we present a technique referred tduamn
structures are truthful. A common example is a set of loakhich combines the best of both these worlds to achieve the
servers that maintain and coordinate the use of locks. Swepace efficiency of coding and the minimal update overhead of
a server maintains a list of pending requests in the form wdplication. Given a set of primary data structures, we tadin
a queue. To correct three crash faults among, say five sucket offusedbackup data structures that can corréarash

faults (or| f/2] Byzantine faults) among the primaries. These
fused backups maintain the primary elements in the coded
form to save space, while they replicate the index structure2)
of each primary to enable efficient updates. Unlike coding-
theoretic solutions, since the backups are designed at the
abstraction of the data structure rather than the raw data
behind them, we need not track the way data is maintained in
memory. In figure 1, we show the fused backup corresponding
to two primary array-based stacks, and X,. The backup is
implemented as a stack whose nodes contain the sum of the
values of the nodes in the primaries. We replicate the index
structure of the primaries (just the top of stack pointets) a
the fused stack. When an element is added toX;, this
element is sent to the fused stack and the value of the third
node is updated tas + bs. In case of a delete, say;, the

third node is updated te;. These set of data structures can
correct one crash fault. For example Xf, crashes, the values 3)
of its nodes can be computed by subtracting the values of the
nodes inX, from the appropriate nodes @f;. We make the
observation that in large practical systems, the size af tat
exceeds the size of the index structure. Hence replicaltiag t
index structure at the fused backups is of insignificant size
overhead. The real savings in space is achieved by fusing the
values in the data nodes. Henceforth, for convenience, ste ju
focus on crash faults. The extension to detection and ciorec

of Byzantine faults is presented in section IlI-C.

performed at the fused backups without any information
from the primary.
f-Fault Tolerance Using error/erasure correcting codes,
we extend the xor/addition based 1-fault tolerant design
of [9] to present f-fault tolerant data structures. In
example 1, we can maintain another fused stBgkhat
has identical structure t8;, but with nodes that contain
the difference in values of the primary elements rather
than the sum. The algorithms for updates are identical at
the backups and each primary update is applied on both
of them. These set of data structures can correct two
crash faults. We extend this using Reed Solomon (RS)
erasure codes [23], which are widely used to generate the
optimal number of parity blocks in RAID-like systems.
Using RS codes, we correg¢t crash faults among the
primaries using jusyf additional fused backups.
Space Optimality Given n. primaries, each containing
O(m) nodes of sizeO(s) each, the space complexity
of a single backup for list-based primaries in [9] is
O(nms). This is as bad as the space required to maintain
n replicas to correct one crash fault. For the design in
this paper, the space occupied by a fused backup is
O(ms). To correctf faults, we require jusO(msf)
backup space, achievin@(n) times savings as com-
pared to replication. We show that this is the minimum
amount of space required to corrgttrash faults.
Update Efficiency In [9], the time taken to update
the fused backup for linked lists is proportional to the
number of nodes in the fused backup i&nm). We
show that the time complexity to update our fused
backups is identical to that at the corresponding primary.
In the case of linked lists, this i©(m). Further, we
show that by locking just a constant number of nodes,
multiple primary threads can update the fused backups
concurrently. Since the primaries are independent of
each other, this could achieve significant speed-up.
) Order Independencdhe state of the fused backup in [9]
is dependent on the order in which updates are received
from the primaries. Hence, if we simply extend their
algorithms forf-fault tolerance, then we need to ensure
that all the backups receive updates from the primary
in the same order. This implies the need for synchrony,
which will cause considerable overhead during normal
operation. In this paper, we show that as long as the
updates from a single primary are received in FIFO
order, the state of the fused backup is independent of
the order of updates. FIFO order among primary updates

Fusion is extremely space efficient while recovery is very 4)
cheap in replication. In figure 1, to correct one crash fault
amongX; and X5, replication requires a backup copy for both
X, and X», resulting in two backups containing five nodes in
total as compared to the fusion-based solution that reg)juss
one back containing three nodes. However, in case of a crash
fault, recovery in replication just involves obtaining thalue
from the corresponding replica. Fusion needs a centralised
recovery algorithm that obtains all available data strregu
and decodes the data nodes of the backups. In general,
this is the key trade-off between replication and fusion. In S
systems with infrequent faults, the cost of recovery is an
acceptable compromise for the savings in space achieved by
fusion. Previous work on this topic [9] provides the algomits
to generate a single fused backup for array or list-based
primaries, that can correct one crash fault. In Table I, we
present the main differences among three backup solutions:
replication, the older version of fusion, and the newer iegrs
of fusion presented in this paper. The following are the main
contributions of this paper:

1) Generic Design We extend the array and list-based

fused backups of [9] to present a generic design for
most commonly used data structures such as stacksg)
vectors, binary search trees, hash maps, hash tables etc.
While [9] supports only add and remove operations on
the primaries, we support both these operations and all
other operations whose updates at the backups does
not require decoding the values. For example, when a
primary binary search tree is balanced, the update can be

is a strict requirement even for replication and can be
easily implemented using TCP channels.

Extension to Limited Backup Serveta practical sys-
tems, sufficient servers may not be available to host all
the backup structures and hence, some of the backups
have to be distributed among the servers hosting the
primaries. These servers can crash, resulting in the
loss of all data structures residing on them. Given a
set of n data structures, each residing on a distinct

7

8)

server, we prove thatn/(n+a— f)] - f backups are [I. MODEL AND NOTATION

necessary and sufficient to corrgictrash faults among oyr system consists of independent distributed servets hos
the host servers, when there are omlgdditional servers jng data structures. We denote theprimary data structures,
available to host the backup structures. each residing on a distinct hos; ... X,,. The backup data
Real World Example, Amazon’s DynanWe apply the stryctures that are generated based on the idea of combining
design of fused backups to a real world system angimary data are referred to dssed backupsr fused data
illustrate its practical usefulness. We consider Amazong,ctures The ¢ fused backups, each residing on a distinct
highly available key-value storéynamo[6], which is host are denoted", ... F,. The operator used to combine
the data-store underlying many of the sgrvices exposgqmary data is called théusion operator In figure 1, X1,

by Amazon to the end-user. Examples include the seg:, gre the primariesF; is the fused backup and the fusion
vice that maintains shopping cart information or thgperator is addition. We assume that the size of data far
one that maintains user state. Dynamo achieves its tWiRceeds the overhead of maintaining the index structure at
goals of fault tolerance (durability) and fast responsge packup. This is a reasonable assumption to make, since in
time for writes (availability) using a simple replication-most real world systems, the data is in the order of megabytes
based approach. We propose an alternate design usingifle the auxiliary structure is in the order of bytes (likext
combination of both fused backups and replicas, Whicﬁbinters in linked lists).

consumes far less space, while providing almost theThe ypdates to the servers in our system originate from
same levels of durability, and availability for writes. Wey set of clients. When an update is sent to a primary, the
show that for a typical host cluster, where there are 1Qfta structure hosted on it is modified and the primary sends
dynamo hosts, the original approach requiesbackup syfficient information to update the backups. We assume FIFO
hosts, while our approach requires onl0 backup channels with reliable message delivery between the pigmar
hosts. This translates to significant savings in both thgq the backups. The updates to the backups are asynchronous
space occupied by the hosts as well as the infrastructiigy can be received in any order. The only requirement is that
costs such as power and resources consumed by theffhen there are faults, all the data structures in the system h

Implementation and Resulté/e provide a Java imple- acted on all the updates before the failed data structuees ar
mentation of fused backups [1] using RS codes for glcovered.

the data structures in the Java 6 Collection Framework.The data structures in the system, both primaries and
This covers most commonly used data structures sughckups, may undergo crash or Byzantine faults. When a fault
as sorted lists, stacks, vectors, hash maps, hash tabigsurs, no updates are sent by the clients until the stat# of a
tree map etc. We evaluate the performance of the fusgg failed data structures have been recovered. Crasts fault
backups presented in this paper with the one in [9] andsylt in the loss of the current state of the data struciive.
replication. We consider three main parameters: backgBsume that the system in consideration can detect sudh.faul
space, update time at the backups and recovery ting.the case of Byzantine faults, the data structures can be in
The current version of fusion is very space efficierdny arbitrary state. We provide algorithms for the detectio
as compared to both replication (almosttimes) and and correction of such faults. For recovery, we assume the
the older version (almost/2 times). The time taken presence of a trusted, recovery agent that can obtain all the

to update the backups is almost as much as replicatig@aijlable data structures, detect and correct faults.
(around 1.25 times slower) while it is much better than

the older version (3 times faster). Recovery is mucH!- FUSION-BASED FAULT TOLERANT DATA STRUCTURES
cheaper in replication (order of hundred times) but the In [9], the authors present fusible data structures foryarra
current version of fusion performs almosy2 times and list-based primaries. In this section, we present argene
better than the older version. These results confirgesign of fused backups for most commonly used data struc-
the fact that the fused backups presented in this pageres such as lists, stacks, vectors, trees, hash tablgs ma
are space efficient while incurring very little overheaétc.
during normal operation.

b as+b;
- 1 [1
TABLE | ‘ \
FUSION VS. REPLICATION (n PRIMARIES CONTAININGO(m) NODES OF as + by
SIZEO(s), f FAULTS) T
Replication Old Fusion | New Fusion a1+by
Types of Primaries All Arrays, Lists All “ L1
Faults Corrected f=>1 f=1 f=>1 (i) Primary X; (i) Primary X, (iil) Fused Backup Fy
Number of Backups nf f f
Backup Space O(nmsf) O(nmsf) O(msf) . :
Update Optimality Yes No Yes Fig. 2. Old Fusion [9]
Order lndepen%emé Yes No Yes Design Motivation In [9], the authors present a design to
Concurrent Updateg Yes No Yes : ; :
Recovery Time Otms) I Otms 2 1 Otms o) fuse primary linked lists to correct one crash fault. Theetlis

structure is a linked list whose nodes contain Xoe of the ensures that the stack never contains more nodes than the
primary values. Each node contains a bit array of size largest primary. Since the final element is present in thedus
with each bit indicating the presence of a primary elemefdrm, the primary has to send this value with every delete to
in that node. A primary is element inserted in the correenable this shift. To know which element to send with every
position at the backup by iterating through the fused noddslete, the primary has to track the order of its elements at
using the bit array and a similar operation is performed fdhe backup stack. We achieve this by maintaining an auyiliar
deletes. An example is shown in figure 2 with two primaridsst at the primary, which mimics the operations of the bazku
and one backup. After the delete of primary elementand stack. When an element is inserted into the primary, we inser
bs (shown in dotted lines), the first and third nodes of tha pointer to this element at the end of its auxiliary list. Whe
fused backup are updated b and a3 respectively (deleted an element is deleted from the primary, we delete the element
elements in grey scale). After the deletes, while the priesar in the auxiliary list that contains a pointer to this element
each contain only two nodes, the fused backup contains thesel shift the final auxiliary element to this position. Hence
nodes. If there are a series of inserts to the headf;oénd to the primary knows exactly which element to send with every
the tail of X, following this, the number of nodes in the fusedlelete. Figure 3 illustrates these operations with an el@amp
backup will be very high. This brings us to the main desigiWe explain them in greater detail in the following paragmaph
motivation of this section: Can we come up with a generic Inserts Figure 4 shows the algorithms for the insert of
design for fused backups, for all types of data structures sua key-value pair at the primaries and the backups. At each
that the fused backup contains only as many nodes as flranary X;, along with the primary data structure we maintain
largest primary (in this e.g. two nodes), while guarantgeiran auxiliary list that mimics the operation of the backugkta
that updates are efficient? We present a solution for link&dhen the client sends an insert, if the key is not already
lists and then generalize it for complex data structures. present, the primary creates a new node containing this key-
, . value, inserts it into the primary linked list and insertsognper
A. Fused Backups for Linked Lists to this node at the end of the aux list. The primary sends the

We use a combination of replication and erasure codksy, the new value to be added and the old value associated
to implement fused backups each of which are identical with the key to all the fused backups. Each fused backup
structure and differ only in the values of the data nodes. maintains a stack that contains the primary elements in the
our design of the fused backup, we maintain a stack of nodeeded form. On receiving the insert update frof, if the
referred to afused nodeshat contains the data elements okey is not already present, the backup updates the code value
the primaries in the coded form. The fused nodes at the saofethe fused node following the one that contains the top-
position across the backups contain the same primary elsmenost element ofX; Further to maintain order information,
and correspond to the code words of those elements. Figthe backup inserts a pointer to the newly updated fused node,
3 shows two primary linked lists(; and X and two fused into the aux structure foX; with the key received.
backupsF; and F, that can correct two faults among the Figure 3(ii) shows the state df; and F; after the insert of
primaries. The fused node in t¢" position at the backups (3, a}). We assume that the keys are sorted in this linked list
contain the elements; and b; with F; holding their sum and hence the key-value pdi, a}) is inserted at index 1 of
and F>» their difference. Along with the stack, at each fusethe primary linked list and a pointer tg is inserted at the end
backup, we also maintain auxiliary structures that repdicaof the aux list. At the backup, the value of the second node
the index information of the primaries. The auxiliary sttwe is updated ta:; + bs and a pointer to this node is inserted at
corresponding to primar¥; at the fused backup is identical inindex 1 of the aux linked list foX;. The identical operation
structure taX;, but while X; consists data nodes, the auxiliarys performed atFs,, with the only difference being that the
structure only contains pointers to the fused nodes. In tBecond fused node is updatedifo— b;. Observe that the aux
case of linked list based primaries, the auxiliary struesurlist at the primaryX; in figure 3(ii) specifies the exact order
are simply linked lists. The savings in space are achieveflelements maintained at the backup stack- az — af).
because primary nodes are being fused, while updates Armlogously, the aux list forX; at the fused backup points
efficient since we maintain the “structure” of each primario the fused nodes that contain elementsXafin the correct
at the backup. order @1 — aj — a2).

Overview We begin with a high-level description on how Delete Figure 5 shows the algorithms for the delete of a
we restrict the number of nodes in the backup stack. Elemekey at the primaries and the backups; deletes the node
belonging to primaryX; are simply inserted one following associated with the key from the primary data structure and
the other in the backup stack with a corresponding updatedbtains its value which needs to be sent to the backups. Along
the index structure of; at the backup to preserve the actualith this value and the ke, the primary also sends the value
ordering information. The case of deletes is more complext the element pointed to by the tail node of the aux list.
If we just delete the element at the backup, then like in thghis corresponds to the top-most elementXgfat the backup
case of figure 2, a hole will be created and the fused backwgtack and is hence required for the shift operation that will
can grow very large. In our solution, we shift the top-modie performed at the backup. After sending these values, the
element of X; in the backup stack, to plug this hole. Thigrimary shifts the final node of the aux list to the position of

dataStack o
tos|2
/

b3 <—0 b3

; <—(>D
\ auxList[2] |
as + by as — by
auz List[1] @t b @ — b,

Fused Backup F; Fused Backup Fy

primLinkedList]
auzList

tos[1]

Primary X,

(1) Two Fused Backups for two crash faults

*

N a}
as + by as + by
a; + by a1+b3><§

Fused Backup F} Fused Backup F;

Primary X; Primary X,

(ii) After insert(3,a}) at X (iii) After delete(1) at Xo

Fig. 3. Fused Backups for Linked Lists

INSERT at PrimariesX; ::i=1..n INSERT at Fused Backuph; :: j = 1..t

Input: key k, data valued;

if (primLinkedList - contains(k))
/* key present, just update its value*/
old = primLinkedList - get(k) - value

Input: key k, new valued;, old valueold;;

if (auxLinkedList[i]- contains(k))
fusedNodef = auxLinkedList[i] - get(k);
f - updateCode(old;, d;);

primLinkedList - update(k, p); else
send(k,d, old) to all fused backups; fusedNodep = tosli] + +;
else if (p == null)

/* key not present, create new node*/
primNodep = new primNode;

p - value = d;

auxNodea = new auxNode;

a - primNode = p;,

p - auxNode = a;

/* mimic backup stack */
auxList.insert AtEnd(a);
primLinkedList - insert(k,p);
send(k,d,null) to all fused backups;

p = new fusedNode;
dataStack - insert(p);
dataStackTos + +;
p - updateCode(0, d;);
p-refCount + +;
[* mimic primary linked list */
auxNodea = new auxNode;
a - fusedNode = p;
p - auxNodeli] = a;
auxLinkedList[i] - insert(k, a);

Fig. 4. Fused Backups for Linked Lists: Inserts

the aux node pointing to the deleted element, to mimic theflects the correct order of its elements at the backup stack
shift of the final element at the backup. (bs — b2) and the aux structure dt, also reflects the correct

order of elements ak; (b, — b3). Note that, the space and

On receiving these values from the primary, the backup fifghe overhead of maintaining the auxiliary list at the prigna
obtains the fused nodepointed to by the aux node associateg negligible.

with & in the auxiliary structure ofX; at the backup. As the

aux structure ofX; at the backup preserves the exact positiodd- Fused Backups for Complex Data Structures

information of the elements ok, p contains the element of The design of fused backup for linked lists can easily be
X, associated witlk. The backup updates the valuepofvith generalized for all types of data structures. At each pymar
the top-most element (sent by the primarytas) to simulate along with the primary data structure, we maintain an aamli
the shift. The aux node pointers are updated to reflect tiifis shlist that tracks the order of elements at the backup stack.
Figure Jiii) shows the state ok; and F; after the delete At each backup, we maintain auxiliary structures for each
of b;. The key things to note are the fact thatfat b3 has primary, which is identical to the corresponding primary
been shifted from the end to tl&" node, the aux list a, except for the fact that it has pointers to the fused nodéerat

DELETE at PrimariesX; ::¢=1..n

Input: key k;
p = primLinkedList - delete(k);
old = p - value;

/* tail node of aux list points to top-most
element ofX; at backup stack */
auxNodeauzTail = auxList - getTail();

tos = auxT ail - primN ode - value;
send(k, old, tos) to all fused backups;
auxNodea = p - auzNode;

/* shift tail of aux list to replacez */
(a - prev) - next = auzxTail;

auzrTail - next = a - next;

DELETE at Fused Backups; :: j = 1..t

Input: key k, old valueold;, end valuetos;;
[* update fused node containingd;

with primary element ofX; at tos[i]*/
auxNodea = aux LinkedList[i] - delete(k);
fusedNodep = a - fusedN ode;
p - updateCode(old;, tos;);
tos[i] - updateCode(tos;, 0);
tos[i] - refCount — —;
[* update aux node pointing ttws[i] */
tos[i] - auxNodeli] - fusedNode = p;
if (tos[i].refCount == 0)

dataStackTos — —;

delete a; tosli] — —;

Fig. 5. Fused Backups for Linked Lists: Deletes

than primary elements. We explain this using the example wfany complex operations. Based on this we have implemented
balanced binary search trees (BBST). Figure 6(i) shows tfesible data structures and primaries for linked lists,toes;
primary BBSTs and a fused backup. For simplicity, we explaiueues, hash tables, tree maps etc. In the following section
the design using just one backup. The auxiliary structui€ at we describe the algorithms for the detection and correction
for X, is a BBST containing a root and two children, identicabf crash/Byzantine faults that are common to all types of
in structure toX;. The algorithms for inserts and deletes gbrimaries.

both primaries and backups remains identical t_o Imk_ed; !IS&' Fault Detection and Correction

except for the fact that at the primary, we are inserting into

a primary BBST and similarly at the backup we are insertin To correct crash faults, we need to obtain all the available
into an auxiliary BBST rather than an auxiliary linked listdat@ structures, both primaries and backups. As seen ilsect

Figure 6(ii) shows the state of, and F, after the delete of [1l, the fused node at the same position at all the fusgd hascku
as followed by the insert ofi,. The aux list atX; specifies are the codewords for thg primary elements belonging tcgthes
the order(a; — as — a4), which is the order in which the nqdes. To obtain the missing primary elements belonging t_o
elements ofX, are maintained aF; in figure 6(ii). Similarly, this node, we decode the c_:ode Wo_rds of these nodes alon_g with
the auxiliary BBST forX, at F; maintains the ordering of th_e data values of the available primary elements_belont@m_g
the elements atY;. Since the root atX; is the element this node.. We apply the standard erasure dgcodmg algorithm
containinga,, the root of the aux BBST aF} points to the for decoding e_ach S(_et of. values. In figure 3(i), to recover the
fused node containing,. As we maintain auxiliary structures State of the failed primaries, we obtaify and 1% and iterate

at the backup that are identical to the primary data stresturthrough their nodes. Th@th fused node offy contains the

it is is not necessary that each container provide the segsant@/U€ a1 + b1, while the 0°* node of /%, contains the value

of insert(key,value) and delete(key). For example, we %1 — b1. Using these, We can obtain the valueSanand b,l'

can also support the semantiossert(position, value) and The value of all the primary nodes can be obtained this way

delete(position, value) since the primary data structures an@"d their order can be obtained using the index structure at

the auxiliary data structure being identical, support them €ach backup. _ _ _
_ To correct Byzantine faults, the only difference is that we
So far we have focused only on the insert and dele

') - #ecode the codes for errors rather than erasures. To detect
operations to the data structure, since those are the @pesatg, , antine faults, we need to periodically encode the values
that are adding and deleting data nodes. However, singee primaries and compare it to the fused values at the
we maintain the entire index structure at the backups, Wgckup. If these values do not match, this indicates a Bjant
support any operation to the primary data structure, as 108fo, |n general, a code that can corrgatrasures can detect

as the_corresponding operatipn to the backup does not iavoby errors and correctf/2] errors [2], [13], [19]. Hence, the
decoding the values of the primary elements at the backup. YWeeq packups that can correttcrash faults can also detect
illustrate this with the example of the balance operatiothim f Byzantine faults and corredif /2| Byzantine faults. In the

BBST shown in figure 6(iii). The balance at the primary jusgiowing section, we describe Reed Solomon codes as the
involves a change in the relative ordering of the elemertte. T qion operator forf fault tolerance.

update corresponding to this at the fused backup will change

the relative ordering of the elements in the auxiliary BBSE- Reed Solomon Codes as Fusion Operator

identical to that at the primary. In conclusion, our design f In this section, we present the Reed Solomon (RS) erasure
fused backups can support all types of data structures withdes that can be used as a fusion operator to cofréaults

dataStackT os

primBBST @ tos(1] tos[2)]
=]

auzList P jA a3 / auzBBST[2]
AR

@ @‘ =0 as + by
T X, auz BBST(1] ar+ b

- dataStack
X £

(i) Fused Backup for BBST (Keys, F5 not shown due to space constraint)

aq ay
p

@4 as + by as + by
@4 a; + by a1+ by

(if) X, Fy after delete a3 and insert ay (iii) X7, F after balance

Fig. 6. Fused Backups for Balanced Binary Search Trees

among the primaries usinf) backups. Readers are referred t®hen exactlyf data words fail,B’ is an x n matrix. As
standard texts on coding theory [2], [13], [19] for a thorbugmentioned above, any sub-matrix generated by delefing
treatment. Givenn data words{d;,ds,...d,}, RS erasure columns fromB is an invertible matrix. Hence, matri®’ is
coding generateg checksum wordgci, ¢, ...cr} that can guaranteed to be invertible. The data words can be generated
correct f erasures among the data and the checksum words.follows: P’ x (B’)~! = D.
All operations are performed over a finite field with more than Time Complexity Analysis for Crash Correctiowe con-
n+ f elements [19]. Hence, we can use RS codes to fuse #ger the cost of crash fault recovery for fused backupsdase
primary elements of the data structures and the backupsstagly section 11I-C with RS codes as the fusion operator. To
maintain thesef codewords. recover the state off failed structures among the + f
Fusion (Encoding)The algorithm comprises of generatingyrimaries and fused backups, we need to obtain the state of
ann x (n + f) information dispersal matrix3, that satisfies the remaining: data structures at a centralized stateless server.

the following properties: For simplicity, we assume faults only in the primary liste. T
« The n x n matrix in the firstn columns is an identity obtain the data values of the failed lists belonging to a node
matrix. in the same position at all the fused lists, we decode jthe
« Any sub-matrix formed by the deletion ¢f columns of code words of these nodes along with the data values of the
the matrix, is invertible. n— f available primary lists belonging to this node. We iterate
Hence,B can be represented as the combination of an identifyf©ugh all the nodes to obtain the entire failed lists. et
matrix 7 and another matrixs, ie., B = [I S]. B is complexity of recovery is proportional to the number of nede

derived from a Vandermonde matrix with elementary matrik €ach fused list, multiplied by the cost of RS decoding &@iv

operations. LeD be the data vector anél the encoded vector 7 data values, the C05t2°f recoverifigralues , each of size
obtained after multiplyingD with B, i.e., [D] x [B] = by RS decoding i€)(sf“n) [20]. Since the number of nodes

[D] % [I S] _ [P} _ [D C] where C is the set of N the fused list is bound by the size of the primary list,

check sums (the fused data) computed for the datset ~ the time complexity for recovery i&)(msf*n) where each

Update Whenever a data word, is updated taZ,, all the Primary hasO(im) nodes ofO(s) size each.

code words can be updated just using the differefjce d;
ande;: , , IV. THEORY OF FUSED DATA STRUCTURES
c;=¢+ bj,i(di —d;)
where b;; is (j,4)" element of the information dispersal In this section we prove theoretical properties on the fused
matrix B. Since the new code word is computed without thiackups such as size optimality, update optimality, update
value of the other code words, updates are very efficient in R&ler independence and so on, all of which are important con-
erasure coding. This update corresponds towpéateCode siderations when implementing a system using these backups
routine used in figures 4 and 5. These properties ensure that the overhead in space and time
Recovery (Decoding)in the case of erasures, we cartaused due to these backups is minimal. The results in this
recover the data words using the encoded vedtorand section apply for all types of primaries and are independent
the information dispersal matri®. Data word erasures areof the fusion operator used. The only assumption we make is
reflected by deleting the corresponding columns fidrand P that the codes can be updated locally in constant time (like
to obtainB’ and P’ that adhere to the equatioP,x B’ = P’. RS codes).

A. Space Optimality B. Efficient Updates

We define update optimality as follows: the time complexity

Considern primaries, each containing(m) nodes, each of ypdates to the backup for all operations takes the same
of sizeO(s). In [9], to correct one crash fault, the backup fofime as that of the corresponding update to the primary. In
linked lists and list-based queues consuriEsms) space, [9], in order to update the backup for linked lists, we need
which is as bad as replication. We show that the fused backygsiterate through all the fused nodes. Since the number of
presented in this paper require orfli{ns) space. Further, to fysed nodes in the backup @(nm), the time complexity of
correct f faults, we show that the fused backups need Onbbdates isO(nm), while the time complexity for the update
O(msf) space, which we prove is optimal. Replication, 0Bt the primary is onlyO(m). Hence, it is not update optimal.
the other hand require3(mns f) space, which i©)(n) times \we show that the fused backups presented in this paper are
more than fusion. In ﬁgure 3, the number of fused nodes Update 0pt|ma| for all types of primaries’ thereby Causing
Fy or F; is always equal to the number of nodes in the largegfinimal overhead during normal operation. An update to the
primary. When we insert a node at the backup, we do so at hgckup consists of two operations: updating the data stack
end of the stack and when we create a hole due to a dele{gg updating the auxiliary structure. The first takes carsta
we shift the final element of that primary in the stack to filime while the second, which involves inserting or deleting
the hole. This ensures that the number of nodes in the Staﬁk) the aux”iary Structure’ takes On'y as much time as #hat
never exceeds the number of nodes in the largest primary.the primary since the auxiliary structure is constructedyéo

Lemma 1:The data stack of each fused backup contaif@entical in structure to the primary data structure.
only m fused nodes. Theorem 2 (Update Optimality)The time complexity of

Proof: This is a data stack where we insert primary”e updates to a fused backup is of the same order as that

elements at the top of the stack. Clearly, if there are noshofdt the primary.

in the data stack, i.e a fused node that does not contain an Proof: Let us assume primar¥; sends an insert or delete
element from a primary followed by a fused node that do®§ an element with key:. Operations at the backup consist
contain an element from the same primary, then the invarigt Update to the data stack and the update to the auxiliary
holds. When the stack is empty, there are no holes. In the c&#éicture corresponding to the primary that sent the update
of inserts toX;, we always insert at the fused node on top ofay Xi. In the case of inserts, we obtain the node following
the last fused node containing an element fr&im Hence, no the top most element of; in the data stack and update it in
hole is created. For deletes, when a hole is created, we shfifiStant time. The update to the auxiliary structure comsis
the final element of the primary, pointed to bys[i] plug this of an insert of an element with ke, which is the identical

hole, thereby maintaining the invariant. m oOperation at the primary.
Similarly, for deletes, we first remove the node with key

'from the auxiliary data structure, an operation that was
xecuted on the data structure of the same type at the primary
ence, it takes as much time as that at the primary. Once

lemma 1 we know that the fused backups contains just e obtain the auxiliary node that was deleted, we obtain a
: oo . 8|nter to the fused node that needs to be updated followed
maximum number of nodes across all primaries. Since t

size of each primary element i9(s), the backups space y a constant time shift of the final element to this position.
required by our fused backups with ,RS codes as the fusi%ﬂ' for both inserts and deletes the fused backups are update

operator isO(ms). In the following theorem, we show thatoptlmal. This extends easily for more complex information,

this is optimal when the data across the primaries is ewir&ecause the basp idea s the same: any complgx operation
uncorrelated. performed on the index structure of the primary will also be

performed on the index structure maintained at the auyiliar
Theorem 1 (Space Optimality)the fused backups gener-stryctures at the backup. Updating the data nodes of th stac
ated by our design using RS codes as the fusion operator gfiees constant time. m
of optimal size. Since the primaries are independent of each other, in many
Proof: f crash faults among the primaries will resultases the updates to the backup can be to different fused
in the failure of at leastf data nodes, each of siz@(s). nodes. Hence, multiple concurrent threads updating easufu
To correctf crash faults among them, we need to maintaimackup can achieve considerable speed-up as long as the
at least f backup nodes each of siz@(s). Since the data overhead of locking is minimal. As described in section I,
structures each contaii(m) nodes, to correct crash faults the updates to the fused backup corresponding to a primary
among them, we need to maintafnbackups containing eachare mostly independent of the elements belonging to ther othe
containingO(ms) space. Hence the minimum space requirgatimaries and they do not affect their order at the backups. |
is O(msf). The fused backups using RS codes consumi following theorem we show that multiple threads beloggi
exactly that amount of backup space and is hence optimal different primaries can update the fused backup conuotiyre
E with minimal locking of nodes.

In section I1I-D, we saw that using Reed Solomon code
we can correctf crash faults among the primaries using jus
f fused backups. This is clearly an optimal number for t
number of backups required to correttcrash faults. From

Theorem 3 (Concurrent UpdatesTthere exists an algo- in which the updates are received, as long as updates from the
rithm for multiple threads belonging to different primagi®m same primary are received in FIFO order.
update a fused backup concurrently with orily1) locking Proof: Clearly, updates to the auxiliary structure com-
of nodes. mute. In the case of inserts, the only fused node that is eddat

Proof: We modify the algorithms in figures 4 and 5 tas the one following the last fused node containing an elémen

enable concurrent updates. We assume the presence of fiing the corresponding primary. Since this is independént o
grained locks that can lock just the fused nodes and if redquirother primaries, this is order independent. Similarly, dietete
a fused node along with théataStackTos. Since updates and shift operation do not depend on other primaries. The
from the same primary are never applied concurrently, wgdate of the values are independent of other primaries and
don't need to lock the index structure. they affect the same fused node independent of the order.

Inserts If the insert has to create a new fused node, thétence the updates commute. Other operations (other than
the updating thread has to loaktaStackTos and the fused insert and delete) affect only the auxiliary structure aadde
node pointed to by this pointer using a single lock, insed arthey too commute. u
update a new fused node, incremdntaStackT os and then
release this combined lock. If the insert froXi does not have
to create a new node it only has to lock the node pointed toSo far we have assumed that the primary and backup
by tosli], update the node’s code value and release the logkiuctures reside on independent servers for the fusieaeba
When the primaries are of different sizes, then the insert $glution (the same is true for [9]). In many practical scergr
the backups never occurs to the same fused node and heéhgenumber of servers available maybe less than the number
are fully concurrent. of fused backups. In these cases, some of the backups have to

Deletes The updating thread has to obtain the node coRe distributed among the servers hosting the primarieerGiv
taining the element to be deleted, lock it, update its valite w@ Set ofn data structures, each residing on a distinct server,
tos and release it. Then it has to lock the node pointed to My prove thatn/(n+a— f)]- f backups are necessary and
tos[i], update it with zero and release the lock. Similar to theufficient to correctf crash faults among the host servers,
case of inserts, when the delete causes a node of the stacwfign there are only. additional servers available to host
be deleted, the thread needs to lock dnéaStackTos as well the backup structures. Further, we present an algorithm for
as the node pointed to by this pointer in one lock, delete tBgnerating the optimal number of backup structures. Based o

node, update the pointer and then release the combined I0&i€ design in section I1I-D, we assume that we can corfect
m crash faults among the primaries using jfstused backups.

To simplify our discussion, we start with the assumption
that no additional servers are available for hosting the back-
ups. As some of the servers host more than one backup

The state of the fused backups in [9] are dependent sttucture,f faults among the servers, results in more thfan
the ordered in which the updates are received. If we simplyults among the data structures. Hence, a direct fusiseeba
extend these algorithms fof-fault tolerance using erasuresolution cannot be applied to this problem. Given a set of
codes, then all the backups have to receive the updates infie primaries,{ X; ... X5}, each residing on a distinct server
same order failing which the fused nodes at the same positiabelled, {H; ... Hs}, consider the problem of correcting
across the backups can contain different primary elemendstee crash faults among the servers=£ 5, f = 3). Let
In this case, recovery is not possible. For example in figuig just generate three backups, F», Fs, and distribute
3, if the first node ofF} containsa; + by, while the first them among the hostd,, H,, Hs respectively. Crash faults
node of > containsaz — by, then we cannot recover theamong these three servers will result in the crash of six data
primary elements whe; and X fail. This implies the need structures, whereas these set of backups can only correet th
for synchrony, that will cause considerable overhead durimrash faults. We solve this problem by partitioning the det o
normal operation. We show that the fused backups in thisrpapeimaries and generating backups for each individual block
are order independent. As a simple example consider the twan this example, we can partition the primaries into three
updates shown in figures The updates to the auxiliary listblocks [X1, X»], [X3, X4] and[X5] and generate three fused
commute since they are to different lists. As far as updatesifackups for each block of primaries. Henceforth, we denote
the stack are concerned, the update frdindepends only on the backup obtained by fusing the primarigs , X, , ..., by
the last fused node containing an element frdmand hence F;(iy, is,...). For e.g., the backups fdX;, X»] are denoted
is independent of the update froi, which does not change as F(1,2) ... F3(1,2). Consider the following distribution of
the order of elements ok, at the fused backup. Similarly backups among hosts:
the update fromX,, is to the first and third nodes of the stack
immaterial of whethet] has been inserted or not. Hence, they Hy = [X1, Fi(3,4), F1(5)], Hy = [X2, F5(3,4), F5(5)]
also commute.

Theorem 4 (Order Independencélhe state of the fused Hs = [Xa, Fa(1,)] F5(5)], Ha = [Xa, F2(1, 2)]
backups after a set of updates is independent of the order Hs = [X5, F5(1,2), F3(3,4)]

D. Fault Tolerance with Limited Backup Servers

C. Order Independence

The backups for any block of primaries, do not reside oof backups. We claim that the total number of backups in
any of the servers hosting the primaries in that block. Thréleesef servers is strictly greater than— f. Failure of these
server faults will result in at most three faults among theervers, will result in more than — f + f faults (adding
primaries belonging to any single block and its backupsc&infaults of f primary structures). This would be impossible to
the fused backups of any block correct three faults among tberrect with¢ backups. We know that,
data structures in a block, this partitioning scheme carectr ¢t < [n/(n+a— f)] - f
three server faults. Here, each block of primaries requates= ¢ < [1+ f/(n4+a— f)] - f
least three distinct servers (other than those hosting thtem = (t — f) < [f/(n+a— f)]- f
host their backups. Hence, far = 5, the size of any block = (t — f)/f < [f/(n+a — [)]
in this partition cannot exceed— f = 2. Based on this idea,
we present the following algorithm, to corregtfaults among If the f servers with the largest number of backups have
the host servers. less than or equal to— f backups in all, then the server with

(Partitioning Algorithm): Partition the set of primarieX the smallest number of backups among them will have less
as evenly possible intdon/(n — f)] blocks, generate th¢ than the average number of backups whiclftis- f)/f.
fused backups for each such block and place them on distincBince the remaining + a — f servers have more than or
servers not hosting the primaries in that block. equal to f backups, the server with the largest number of

The number of blocks generated by the partitioning abackups among them will have as many or greater than the
gorithm is [n/(n — f)] and hence, the number of backumverage number of backups which[ig/(n + a — f)].
structures required i$n/(n — f)] - f. Replication, on the Since,(t— f)/f < [f/(n+a— f)], we get a contradiction
other hand requires - f backup structures which is alwaysthat the smallest among thg servers hosting the largest
greater than or equal ton/(n — f)] - f. We show that number of backups , hosts less number of backups than the

[n/(n— f)] - f is a tight bound for the number of backupargest among the remaining— f servers. []
structures required to correg¢tfaults among the servers. For _ ,
the example where = 5, f = 3, the partitioning algorithm V. PRACTICAL EXAMPLE: AMAZON’S DYNAMO

requires nine backups. Consider a solution with eight bpsku In this section, we present a practical application of our
In any distribution of the backups among the servers, theethitechnique based on a real world implementation of a dis-
servers with the maximum number of data structures will hostbuted system. Amazon’s Dynamo [6] is a distributed data
nine data structures in total. For example, if the backups atore that needs to provide both durability and very low
distributed as evenly as possible, the three servers Ilgoter response times (availability) for writes to the end usereyrh
maximum number of backups will each host two backups amadhieve this using a replication-based solution whichrigos:
a primary. Failure of these servers will result in the falurto maintain but expensive in terms of space. We propose an al-
of nine data structures. Using just eight backups, we cannetnate design using a combination of both fused backups and
correct nine faults among the data structures. In the fafigw replicas, which consumes far less space, while guararmteein
theorem, we prove this result for generabnd f along with nearly the same levels of durability and availability.
the assumption that there asie(rather than zero) additional o)
servers available to host the backup structures. A. Existing Dynamo Design

Theorem 5:Given a set ofn data structures, each residing We present a simplified version of Dynamo with a focus on
on a distinct server, to corregt faults among the servers, itthe replication strategy. Dynamo consists of clusters iofigry
is necessary and sufficient to afld/(n+ a — f)] - f backup hosts each containing a data store like a hash table thaisstor

structures. key-value pairs. The key space is partitioned across thests h
Proof: to ensure sufficient load-balancing. For both fault tolesan
(Sufficiency): and availability,f replicas of each primary are maintained in

We prove the correctness of the partitioning algorithndistinct backup hosts. Theget 1 identical copies can correct
Since the maximum number of primaries in any block of th¢ crash faults among the primaries. The system also defines
partitioning algorithm is. +a — f, there are at least distinct two parameters andw which denote the minimum number
servers (not hosting the primaries in the block) available bf hosts that must participate in each read request and write
host thef fused backups of any block of primaries. So, theequest respectively. These values are each chosen tose les
fused backups can be distributed among the host servers stian f. The authors in [6] mention that the most common
that f server faults only lead tg' faults among the backupsvalues of(n,w,) observed among their clients a®, 2, 2).
and primaries corresponding to each block. Hence the fudedigure 7, we illustrate a simple set up of dynamo fo+ 4
backups generated by the partitioning algorithm can corfec primaries, with f = 3 replicas maintained for each one of
server faults. them.

(Necessity): To read and write from the data store, the client can send its

Suppose there is a scheme with backups such that request to any one of the+1 replicas that cater to the key of
t < [n/(n+a— f)]-f.Inany distribution of the backupsthe request, and designate it tbeordinator The coordinator
among the servers, choogeservers with the largest numbenreads/writes the value corresponding to the key locally and

sends the request to the remainifigcopies. On receiving mainly for writes, this may not be a cause for concern. To
r—1 orw — 1 responses from the replicas for read and writalleviate the load on the fused backups, we can partition the
requests respectively, the coordinator responds to themtcliset of primaries into smaller blocks. For the set up shown in
with the data value (for reads) or just an acknowledgmefigure 7, we can maintain four fused backups wheéke F»
(for writes). Sincew < f, clearly some of the replicasare the fused copies foX; and X5, while F5 and F, are the
may not be up to date when the coordinator responds to flused copies ofX'3 and X4. This will reduce the load on the
client. This necessitates some form of data versioning, abhdckups while ensuring that the number of hosts as compared
the coordinator or the client has to reconcile the diffedata to the solution in figure 7(ii) increases only by two.
versions on every read. This is considered an acceptable cosSSimilar to the existing design, when hosts crash, if there
since Dynamo is mainly concerned with optimizing writes tare surviving replicas that cater to the same keys, then they
the store. In this setup, when one or more hosts crash, t@n take over operation. However, since we maintain only
remaining copies that cater to the same key space can take @ree host replica per primary, it is possible that none of the
all requests addressed to the failed hosts. Once the crassed replicas remain. In this case, the fused backuproatateinto
comes back, the replica that was acting as proxy just tresisfene or more of the failed primaries. It can receive requests
back the keys that were meant for the node. Since there @mresponding to the failed primaries, update its localhhas
be at most three crash faults in the system, there is at leile and maintain data in its normal form (without fusing
one node replica for each primary remaining for recovery. them). Concurrently, to recover the failed primaries, inhca
obtain the data values from the remaining hosts and decode
i1 and its Replicas Fused Backups for X; ... Xy the values. Hence, even though transiently the fault totsra

© © % \@ cperational parormance. Dynamo has been designod o Scale
.

to 100 hosts. So in a typical cluster with = 100, f = 3

ORORO
() (%) (o) (%) ® the original approach requires, * f = 300 backup hosts.
))

Consider a hybrid solution that maintains a replica for each

@ @ host and maintains two fused backups for every 10 hosts. This

(i) Existing Dynamo: 12 Backup Hosts | (ii) Hybrid Dynamo: 6 Backup Hosts approaCh reqUires Onlyoo +20 =120 baCkup hosts. This
argument can be extended to all Dynamo clusters deployed
Fig. 7. Design Strategies for Dynamo around the world. The savings achieved in space, power and

resources can be crucial for such a real-world system.

B. Hybrid Dynamo Design VI. IMPLEMENTATION AND RESULTS

We propose a hybrid design for Dynamo that uses a combi-In this section, we describe our fusion-based data strectur
nation of fusion and replication. We focus on the typicalecadibrary [1] that includes all data structures provided by th
of (f,w,r) = (3,2,2). Instead of maintaining three replicaslava Collection Framework. Further we have evaluated our
for each primary (= 3), we maintain just a single replicaperformance against replication and the older version sibfu
for each primary and two fused backups for the entire set [&. The current version of fusion outperforms the older
primaries as shown in figure 7(ii). The fused backups, beingrsion on all three counts: Backups space, update timesat th
optimal in size, achieve savings in space while the replichackups and time taken for recovery. In terms of comparison
allows the necessary availability for reads. The fused bpsk with replication, we save)(n) times space as confirmed by
along with the replica can correct three crash faults ambag tthe theoretical results while not causing too much update
primaries. The basic protocol for reads and writes remdias toverhead. Recovery is much cheaper in replication.
same except for the fact that the fused copies cannot directl Fault-Tolerant Data Structure Library We implemented
respond to the client requests. In the case of writes, thedfusused backups and primary wrappers for the data structures
copies require the old value associated with the key (sectim the Java 6 Collection framework that are broadly divided
[11). However, on receiving a write request, the coordimai@n into list-based, map-based, set-based and queue-basad dat
send the request to these fused backups which can responstitactures. The fusion operator is RS codes based on the
the request after updating the table. For the typical case @f+ library provided by James S. Plank [21]. We evaluated
w = 2, as long as the coordinator, sa&j; obtains a responsethe performance of a representative data structure in efich o
from one among the three backups (a replica and two fusemse categories: linked lists for list-based, tree mapsfap-
backups) the write can succeed. This is similar to the exjstibased, hash sets for set-based and queues for queue-based da
design and hence performance for writes is not affected btructures.
much. On the other hand, performance for reads does droftvaluation To evaluate performance, we implemented a
since the fused copies that contain data in the coded fodistributed system of hosts, each running either a primary o
cannot return the data value corresponding to a key in arbackup data structure and compared the performance of our
efficient manner. Hence, the two replicas need to answer sdllution ('New Fusion’) with the one presented in [9] ('Old
requests to maintain availability. Since Dynamo is optidiz Fusion’) and replication. The algorithms were implemerited

Java 6 with TCP sockets for communication and the expetite case of crash faults, at legst 1 synchronous rounds are
ments were executed on a single Intel quad-core PC with 2.@®juired to achieve consensus [11]. These results do nbt app
GHz clock frequency and 12 GB RAM. The three parametets our model because we assume a trusted recovery agent.
that were varied across the experiments were the number

of primariesn, number of faultsf and the total number of VIII. CONCLUSION

operations performed per primaryys. The operations were

biased towards inserts (80 %) and the tests were averaged Yed technique that guarante@én) savings in space as
four rur;s. quﬁscﬁbe the resultsdfor th_e three r:naltr)] tekalls tIaompared to replication and prove theoretically that thmeyr

we periorme 'TP?C up ipafce, ﬁp ate time at the ac :j_p q‘ﬂfﬁimal overhead during normal operation. We provide a
recovery time. The graphs for these tests are shown in 'gub%neric design of fused backups and their implementation fo

8 and 9. Il the data structures in the Java 6 Collection framewoak th

Given n primary data structures, we present a fusion-

h . fusion for linked i ‘ he In a system with infrequent faults fusion is a better cholent
The new version of fusion for linked lists performs much eett replication. We compare the main features of our work with

than both replication (almost times) and the solution in [9] a previous work on this topic [9] and replication, in Table I.

(almostr/2 times) becquse the number of_nod_es per baCkNPany real world systems such Amazon’s Dynamo or Google’s
never exceeds the maximum among the primaries. We use mgp-Reduce framework use replication extensively for tfaul

same experiment to calculate the recovery time taken by %?erance. Using concepts presented in this paper, we can
three approaches measured as the time taken to dedtele consider an alternate design using a combination of reita

obtaining the necessary data structures at a recovery.agent and fusion-based techniques. We illustrate this in section

new version of fusion performs much better than old fusi presenting a simple design alternative for Amazon's data
In a typical Dynamo cluster of 100 hosts

(almostn/2 times) for a similar reason: recovery in fusionStore Dynamo
involves iteration through all the nodes of each fused bpck ur éombined :atpproach requires only 120 backup hosts as

The newer version contains considgrably less number ofs10 %mpared to the existing set up of 300 backup hosts without
and hence performs better. The time taken for recovery B?ﬁmpromising on other important QoS parameters such as

repllc_atlon is negligible as compared o both (_)thgr sohmo_ response times. Thus fusion achieves significant savings in
This is to be expected since recovery in replication reqUIrg ace, power and resources

just copying the failed data structures after obtainingrthe

Finally, to measure the update time at the backups, since we IX. ACKNOWLEDGMENT

were primarily concerned with the overhead of coding, we

fixedn = 1, f = 1 and variedops from 500 to 5000. The We are thankful to Vinit Ogale for discussions on the
new version of fusion has slightly more update overhead #Pic. This research was supported in part by the NSF Grants
compared to replication (around 1.25 times slower) while §NS-0718990, CNS-0509024, Texas Education Board Grant
performs much better than the older version (almost 3 timé§1, SRC Grant 2006-TJ-1426, and Cullen Trust for Higher
faster) since the latter solution may have to iterate thncaiy Education Endowed Professorship.

the fused nodes at the backup for updates. The practicdtgesu
hence confirm the theoretical bounds: the solution predéante
this paper saves considerably on space, while causing @inimyi) harath Balasubramanian and Vijay K. Garg. Fused datactsre

REFERENCES

overhead during normal operation. library (implemented in java 1.6). IRarallel and Distributed Systems
Laboratory, http://maple.ece.utexas.ed010.
VIl. RELATED WORK [2] E. R. Berlekamp.Algebraic Coding TheoryMcGraw-Hill, New York,
1968.

In our work in [15], we present a coding-theoretic solution[3] John W. Byers, Michael Luby, Michael Mitzenmacher, andhatosh

; i i ; Rege. A digital fountain approach to reliable distributiohbulk data.
to fault tolerance in finite state machines. This approach SIGCOMM Comput, Commun, Re28(4) 5667, 1998,

is eXte_nded for infinite _St&tG maChir_‘eS and optimized fo[‘4] John W. Byers, Michael Luby, Michael Mitzenmacher, andhatosh
Byzantine fault tolerance in [8]. Extensive work has beenealo Rege. A digital fountain approach to reliable distributiohbulk data.

on consensus in distributed systems. The FLP result [/@stat N SIGCOMM '98: Proceedings of the ACM SIGCOMM '98 conference
.. . . . on Applications, technologies, architectures, and protedor computer
that it is impossible to achieve consensus among a given set communicationpages 56-67, New York, NY, USA, 1998. ACM.

of machines in an asynchronous system with even one crafh Peter M. Chen, Edward K. Lee, Garth A. Gibson, Randy H.zKand
fault among the machines. We assume the presence of a failure David A. Patterson. Rald:_ high-performance, reliable sdegy storage.
detector f h faults i t Similarlv. th h ACM Comput. Sury.26(2):145-185, 1994.

etector tor (_:ras aults In our system. 'm'ar_ y, there a[6] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, vandiaan
been a considerable body of research for solving consensus Kakulapati, Avinash Lakshman, Alex Pilchin, SwaminathdvaSubra-

among the servers in synchronous systems. Given a system of manian, Peter Vosshall, and Werner Vogels. Dynamo: amszughly
available key-value store. IRroceedings of twenty-first ACM SIGOPS

n machines in which up tg maCh'nleS may undergo Byzantine symposium on Operating systems princip®®SP '07, pages 205-220,
faults, consensus cannot be achieved untess 3f [17]. In New York, NY, USA, 2007. ACM.

Backup Space

Backup Size

(7]

(8]
El

[10]
[11]

[12]

(23]

[14]

[15]

[16]

[17]
(18]
[19]

[20]

(i) Size Test, Faults = 3, Updates/primary = 500

8000

6000

4000

2000

(i) Update Test, Primaries = 1, Faults = 1

(iii) Recovery Test, Faults = 3, Updates/primary = 500

Old Fusion
— New Fusion -
- - Replication L7

Old Fusion
— New Fusion
30F| - - Replication

Update Time/Operation in Microseconds

Old Fusion
— New Fusion
- - Replication

50000
40000

30000

20000

10000-//

Recovery Time in Microseconds

1 2 3 8 9 10 500

4 5 6 7
Number of Primaries

Fig. 8.

(i) Size Test, Faults = 3, Updates/primary = 500

8000

6000

4000 e ’

2000

1000 1500 2000 2500 3000 3500 4000 4500 5000 1 2 3
Number of Operations

(i) Update Time Test, Primaries = 1, Faults = 1

4 5 6 7 8 9 10
Number of Primaries

Linked List Tests

(iii) Recovery Test, Faults = 3, Updates/primary = 500

— New Fusion — New Fusion
- - Replication Al Replication

Update Time/Operation in Microseconds

— New Fusion
- - Replication

12000
10000
8000
6000
4000

2000

Recovery Time in Microseconds

1 2 3 4 5 6 7 8 9 10 500
Number of Primaries

1000 1500 2000 2500 3000 3500 4000 4500 5000 1 2 3 4 5 6 7 8 9 10
Number of Operations

Number of Primaries

Fig. 9. Tree Map Tests

M. J. Fischer, N. Lynch, and M. Paterson. Impossibilifydistributed
consensus with one faulty procesdournal of the ACM 32(2), April
1985.

Vijay K. Garg. Implementing fault-tolerant servicesing state ma-
chines: Beyond replication. IBISC, pages 450-464, 2010.

Vijay K. Garg and Vinit Ogale. Fusible data structures flalt tolerance.
In ICDCS 2007: Proceedings of the 27th International Confeeson
Distributed Computing Systemdune 2007.

Leslie Lamport. The implementation of reliable distried multiprocess
systems.Computer networks2:95-114, 1978.

Leslie Lamport and Michael Fischer. Byzantine gereraid transaction
commit protocols. Technical report, 1982.

Leslie Lamport, Robert E. Shostak, and Marshall C. Bed$e byzan-
tine generals problemACM Trans. Program. Lang. Sys#(3):382—401,
1982.

J. H. Van Lint. Introduction to Coding Theory Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 1998.

Michael G. Luby, Michael Mitzenmacher, M. Amin Shokadi,
Daniel A. Spielman, and Volker Stemann. Practical losdiees codes.
In STOC '97: Proceedings of the twenty-ninth annual ACM syinpos
on Theory of computingpages 150-159, New York, NY, USA, 1997.
ACM Press.

Vinit Ogale, Bharath Balasubramanian, and Vijay K. GaA fusion-
based approach for tolerating faults in finite state machirie IPDPS
'09: Proceedings of the 2009 IEEE International SymposiunParal-
lel&Distributed Processingpages 1-11, Washington, DC, USA, 2009.
IEEE Computer Society.

David A. Patterson, Garth Gibson, and Randy H. Katz. /Aeca
for redundant arrays of inexpensive disks (raid). SIGMOD ’88:
Proceedings of the 1988 ACM SIGMOD international confeeeinn
Management of datgpages 109-116, New York, NY, USA, 1988. ACM
Press.

M. Pease and L. Lamport. Reaching agreement in the pcesef faults.
Journal of the ACM27:228-234, 1980.

M. Pease, R. Shostak, and L. Lamport. Reaching agreeiethe
presence of faultsJ. ACM 27(2):228-234, 1980.

Wesley W. Peterson and E. J. Weld&mror-Correcting Codes - Revised,
2nd Edition The MIT Press, 2 edition, March 1972.

J. S. Plank. A tutorial on Reed-Solomon coding for faalerance in

[21]

[22]

(23]

[24]

[25]

[26]

[27]

RAID-like systems.Software — Practice & Experienc@7(9):995-1012,
September 1997.

J. S. Plank, S. Simmerman, and C. D. Schuman. Jerasulibraky in
C/C++ facilitating erasure coding for storage applicaierVersion 1.2.
Technical Report CS-08-627, University of Tennessee, AugQ008.
Michael O. Rabin. Efficient dispersal of informationrfsecurity, load
balancing, and fault tolerancd. ACM 36(2):335-348, 1989.

I. S. Reed and G. Solomon. Polynomial Codes Over Cerfiite
Fields. Journal of the Society for Industrial and Applied Matherogti
8(2):300-304, 1960.

Fred B. Schneider. Byzantine generals in action: imgleting fail-stop
processorsACM Trans. Comput. Sys2(2):145-154, 1984.

Fred B. Schneider. Implementing fault-tolerant seeegi using the state
machine approach: A tutoriaBRCM Computing Survey22(4):299-319,
1990.

Claude Elwood Shannon. A mathematical theory of comigation.
Bell Systems Technical Journd7:379-423,623—-656, 1948.

Jeremy B. Sussman and Keith Marzullo. Comparing prmtaEckup
and state machines for crash failures.PI®@DC '96: Proceedings of the
fifteenth annual ACM symposium on Principles of distributenhputing
page 90, New York, NY, USA, 1996. ACM Press.

