
Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 1/44

Distributed Operating Systems:
Theoretical Foundations

Neeraj Mittal

Department of Computer Science

The University of Texas at Dallas

neerajm@utdallas.edu



Inherent Limitations

❖ Two Important Characteristics

❖ Absence of Global Clock

❖ Absence of Shared Memory

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 2/44

Two Important Characteristics

■ Absence of Global Clock
◆ there is no common notion of time

■ Absence of Shared Memory
◆ no process has up-to-date knowledge about the system



Inherent Limitations

❖ Two Important Characteristics

❖ Absence of Global Clock

❖ Absence of Shared Memory

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 2/44

Two Important Characteristics

■ Absence of Global Clock
◆ there is no common notion of time

■ Absence of Shared Memory
◆ no process has up-to-date knowledge about the system



Inherent Limitations

❖ Two Important Characteristics

❖ Absence of Global Clock

❖ Absence of Shared Memory

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 3/44

Absence of Global Clock

■ Different processes may have different notions of time

I invented AIDS cure!

Who did it first?

Patent Officer

I invented AIDS cure!

Earth Mars

Problem: How do we order events on different processes?



Inherent Limitations

❖ Two Important Characteristics

❖ Absence of Global Clock

❖ Absence of Shared Memory

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 3/44

Absence of Global Clock

■ Different processes may have different notions of time

I invented AIDS cure!I invented AIDS cure!

Earth Mars

I invented AIDS cure!

Who did it first?

Patent Officer

I invented AIDS cure!

Earth Mars

Problem: How do we order events on different processes?



Inherent Limitations

❖ Two Important Characteristics

❖ Absence of Global Clock

❖ Absence of Shared Memory

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 3/44

Absence of Global Clock

■ Different processes may have different notions of time

I invented AIDS cure!

Who did it first?

Patent Officer

I invented AIDS cure!

Earth Mars

Problem: How do we order events on different processes?



Inherent Limitations

❖ Two Important Characteristics

❖ Absence of Global Clock

❖ Absence of Shared Memory

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 3/44

Absence of Global Clock

■ Different processes may have different notions of time

I invented AIDS cure!

Who did it first?

Patent Officer

I invented AIDS cure!

Earth Mars

Problem: How do we order events on different processes?



Inherent Limitations

❖ Two Important Characteristics

❖ Absence of Global Clock

❖ Absence of Shared Memory

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 4/44

Absence of Shared Memory

■ A process does not know current state of other processes

Bob

Harry

What is Harry doing
at present?

0

Problem: How do we obtain a coherent view of the system?



Inherent Limitations

❖ Two Important Characteristics

❖ Absence of Global Clock

❖ Absence of Shared Memory

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 4/44

Absence of Shared Memory

■ A process does not know current state of other processes

Bob

Harry

0

Bob

Harry

What is Harry doing
at present?

0

Problem: How do we obtain a coherent view of the system?



Inherent Limitations

❖ Two Important Characteristics

❖ Absence of Global Clock

❖ Absence of Shared Memory

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 4/44

Absence of Shared Memory

■ A process does not know current state of other processes

Bob

Harry

0

Bob

Harry

What is Harry doing
at present?

0

Problem: How do we obtain a coherent view of the system?



Inherent Limitations

❖ Two Important Characteristics

❖ Absence of Global Clock

❖ Absence of Shared Memory

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 4/44

Absence of Shared Memory

■ A process does not know current state of other processes

Bob

Harry

What is Harry doing
at present?

0

Problem: How do we obtain a coherent view of the system?



Inherent Limitations

❖ Two Important Characteristics

❖ Absence of Global Clock

❖ Absence of Shared Memory

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 4/44

Absence of Shared Memory

■ A process does not know current state of other processes

Bob

Harry

What is Harry doing
at present?

0

Problem: How do we obtain a coherent view of the system?



Inherent Limitations

Ordering of Events

❖ When is it possible to order

two events?
❖ Happened-Before Relation

❖ Concurrent Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 5/44

When is it possible to order two events?

Three cases:

1. Events executed on the same process:

■ if e and f are events on the same process and e

occurred before f , then e happened-before f

2. Communication events of the same message:
■ if e is the send event of a message and f is the receive

event of the same message, then e happened-before f

3. Events related by transitivity:
■ if event e happened-before event g and event g

happened-before event f , then e happened-before f



Inherent Limitations

Ordering of Events

❖ When is it possible to order

two events?
❖ Happened-Before Relation

❖ Concurrent Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 5/44

When is it possible to order two events?

Three cases:

1. Events executed on the same process:
■ if e and f are events on the same process and e

occurred before f , then e happened-before f

2. Communication events of the same message:
■ if e is the send event of a message and f is the receive

event of the same message, then e happened-before f

3. Events related by transitivity:
■ if event e happened-before event g and event g

happened-before event f , then e happened-before f



Inherent Limitations

Ordering of Events

❖ When is it possible to order

two events?
❖ Happened-Before Relation

❖ Concurrent Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 5/44

When is it possible to order two events?

Three cases:

1. Events executed on the same process:
■ if e and f are events on the same process and e

occurred before f , then e happened-before f

2. Communication events of the same message:

■ if e is the send event of a message and f is the receive
event of the same message, then e happened-before f

3. Events related by transitivity:
■ if event e happened-before event g and event g

happened-before event f , then e happened-before f



Inherent Limitations

Ordering of Events

❖ When is it possible to order

two events?
❖ Happened-Before Relation

❖ Concurrent Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 5/44

When is it possible to order two events?

Three cases:

1. Events executed on the same process:
■ if e and f are events on the same process and e

occurred before f , then e happened-before f

2. Communication events of the same message:
■ if e is the send event of a message and f is the receive

event of the same message, then e happened-before f

3. Events related by transitivity:
■ if event e happened-before event g and event g

happened-before event f , then e happened-before f



Inherent Limitations

Ordering of Events

❖ When is it possible to order

two events?
❖ Happened-Before Relation

❖ Concurrent Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 5/44

When is it possible to order two events?

Three cases:

1. Events executed on the same process:
■ if e and f are events on the same process and e

occurred before f , then e happened-before f

2. Communication events of the same message:
■ if e is the send event of a message and f is the receive

event of the same message, then e happened-before f

3. Events related by transitivity:

■ if event e happened-before event g and event g

happened-before event f , then e happened-before f



Inherent Limitations

Ordering of Events

❖ When is it possible to order

two events?
❖ Happened-Before Relation

❖ Concurrent Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 5/44

When is it possible to order two events?

Three cases:

1. Events executed on the same process:
■ if e and f are events on the same process and e

occurred before f , then e happened-before f

2. Communication events of the same message:
■ if e is the send event of a message and f is the receive

event of the same message, then e happened-before f

3. Events related by transitivity:
■ if event e happened-before event g and event g

happened-before event f , then e happened-before f



Inherent Limitations

Ordering of Events

❖ When is it possible to order

two events?
❖ Happened-Before Relation

❖ Concurrent Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 6/44

Happened-Before Relation

■ Happened-before relation is denoted by →

■ Illustration:

g h i

a b c

d e f
P2

P3

P1

◆ Events on the same process:
examples: a → b, a → c, d → f

◆ Events of the same message:
examples: b → e, f → i

◆ Transitivity:
examples: a → e, a → i, e → i



Inherent Limitations

Ordering of Events

❖ When is it possible to order

two events?
❖ Happened-Before Relation

❖ Concurrent Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 6/44

Happened-Before Relation

■ Happened-before relation is denoted by →

■ Illustration:

g h i

a b c

d e f
P2

P3

P1

◆ Events on the same process:
examples: a → b, a → c, d → f

◆ Events of the same message:
examples: b → e, f → i

◆ Transitivity:
examples: a → e, a → i, e → i



Inherent Limitations

Ordering of Events

❖ When is it possible to order

two events?
❖ Happened-Before Relation

❖ Concurrent Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 6/44

Happened-Before Relation

■ Happened-before relation is denoted by →

■ Illustration:

g h i

a b c

d e f
P2

P3

P1

◆ Events on the same process:
examples: a → b, a → c, d → f

◆ Events of the same message:
examples: b → e, f → i

◆ Transitivity:
examples: a → e, a → i, e → i



Inherent Limitations

Ordering of Events

❖ When is it possible to order

two events?
❖ Happened-Before Relation

❖ Concurrent Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 6/44

Happened-Before Relation

■ Happened-before relation is denoted by →

■ Illustration:

g h i

a b c

d e f
P2

P3

P1

◆ Events on the same process:
examples: a → b, a → c, d → f

◆ Events of the same message:
examples: b → e, f → i

◆ Transitivity:
examples: a → e, a → i, e → i



Inherent Limitations

Ordering of Events

❖ When is it possible to order

two events?
❖ Happened-Before Relation

❖ Concurrent Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 6/44

Happened-Before Relation

■ Happened-before relation is denoted by →

■ Illustration:

g h i

a b c

d e f
P2

P3

P1

◆ Events on the same process:
examples: a → b, a → c, d → f

◆ Events of the same message:
examples: b → e, f → i

◆ Transitivity:
examples: a → e, a → i, e → i



Inherent Limitations

Ordering of Events

❖ When is it possible to order

two events?
❖ Happened-Before Relation

❖ Concurrent Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 7/44

Concurrent Events

■ Events not related by happened-before relation

■ Concurrency relation is denoted by ‖

■ Illustration:

g h i

a b c

d e f
P2

P3

P1

◆ Examples: a ‖ d, d ‖ h, c ‖ e

■ Concurrency relation is not transitive:
example: a ‖ d and d ‖ c but a ∦ c



Inherent Limitations

Ordering of Events

❖ When is it possible to order

two events?
❖ Happened-Before Relation

❖ Concurrent Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 7/44

Concurrent Events

■ Events not related by happened-before relation
■ Concurrency relation is denoted by ‖

■ Illustration:

g h i

a b c

d e f
P2

P3

P1

◆ Examples: a ‖ d, d ‖ h, c ‖ e

■ Concurrency relation is not transitive:
example: a ‖ d and d ‖ c but a ∦ c



Inherent Limitations

Ordering of Events

❖ When is it possible to order

two events?
❖ Happened-Before Relation

❖ Concurrent Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 7/44

Concurrent Events

■ Events not related by happened-before relation
■ Concurrency relation is denoted by ‖

■ Illustration:

g h i

a b c

d e f
P2

P3

P1

◆ Examples: a ‖ d, d ‖ h, c ‖ e

■ Concurrency relation is not transitive:
example: a ‖ d and d ‖ c but a ∦ c



Inherent Limitations

Ordering of Events

❖ When is it possible to order

two events?
❖ Happened-Before Relation

❖ Concurrent Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 7/44

Concurrent Events

■ Events not related by happened-before relation
■ Concurrency relation is denoted by ‖

■ Illustration:

g h i

a b c

d e f
P2

P3

P1

◆ Examples: a ‖ d, d ‖ h, c ‖ e

■ Concurrency relation is not transitive:
example: a ‖ d and d ‖ c but a ∦ c



Inherent Limitations

Ordering of Events

❖ When is it possible to order

two events?
❖ Happened-Before Relation

❖ Concurrent Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 7/44

Concurrent Events

■ Events not related by happened-before relation
■ Concurrency relation is denoted by ‖

■ Illustration:

g h i

a b c

d e f
P2

P3

P1

◆ Examples: a ‖ d, d ‖ h, c ‖ e

■ Concurrency relation is not transitive:
example: a ‖ d and d ‖ c but a ∦ c



Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 8/44

Different Kinds of Clocks

■ Logical Clocks
◆ used to totally order all events

■ Vector Clocks
◆ used to track happened-before relation

■ Matrix Clocks
◆ used to track what other processes know about other

processes

■ Direct Dependency Clocks
◆ used to track direct causal dependencies



Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 8/44

Different Kinds of Clocks

■ Logical Clocks
◆ used to totally order all events

■ Vector Clocks
◆ used to track happened-before relation

■ Matrix Clocks
◆ used to track what other processes know about other

processes

■ Direct Dependency Clocks
◆ used to track direct causal dependencies



Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 8/44

Different Kinds of Clocks

■ Logical Clocks
◆ used to totally order all events

■ Vector Clocks
◆ used to track happened-before relation

■ Matrix Clocks
◆ used to track what other processes know about other

processes

■ Direct Dependency Clocks
◆ used to track direct causal dependencies



Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 8/44

Different Kinds of Clocks

■ Logical Clocks
◆ used to totally order all events

■ Vector Clocks
◆ used to track happened-before relation

■ Matrix Clocks
◆ used to track what other processes know about other

processes

■ Direct Dependency Clocks
◆ used to track direct causal dependencies



Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 9/44

Logical Clock

■ Implements the notion of virtual time

■ Can be used to totally order all events

■ Assigns timestamp to each event in a way that is
consistent with the happened-before relation:

e → f ⇒ C(e) < C(f)

C(e): timestamp for event e

C(f): timestamp for event f



Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 9/44

Logical Clock

■ Implements the notion of virtual time

■ Can be used to totally order all events

■ Assigns timestamp to each event in a way that is
consistent with the happened-before relation:

e → f ⇒ C(e) < C(f)

C(e): timestamp for event e

C(f): timestamp for event f



Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 9/44

Logical Clock

■ Implements the notion of virtual time

■ Can be used to totally order all events

■ Assigns timestamp to each event in a way that is
consistent with the happened-before relation:

e → f ⇒ C(e) < C(f)

C(e): timestamp for event e

C(f): timestamp for event f



Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 10/44

Implementing Logical Clock

■ Each process has a local scalar clock, initialized to zero
◆ Ci denotes the local clock of process Pi

■ Action depends on the type of the event:

■ Protocol for process Pi:

◆ On executing an interval event:
Ci := Ci + 1

◆ On sending a message m:
Ci := Ci + 1
piggyback Ci on m

◆ On receiving a message m:
let tm be the timestamp piggybacked on m

Ci := max{Ci, tm} + 1



Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 10/44

Implementing Logical Clock

■ Each process has a local scalar clock, initialized to zero
◆ Ci denotes the local clock of process Pi

■ Action depends on the type of the event:

■ Protocol for process Pi:

◆ On executing an interval event:
Ci := Ci + 1

◆ On sending a message m:
Ci := Ci + 1
piggyback Ci on m

◆ On receiving a message m:
let tm be the timestamp piggybacked on m

Ci := max{Ci, tm} + 1



Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 10/44

Implementing Logical Clock

■ Each process has a local scalar clock, initialized to zero
◆ Ci denotes the local clock of process Pi

■ Action depends on the type of the event:

■ Protocol for process Pi:

◆ On executing an interval event:
Ci := Ci + 1

◆ On sending a message m:
Ci := Ci + 1
piggyback Ci on m

◆ On receiving a message m:
let tm be the timestamp piggybacked on m

Ci := max{Ci, tm} + 1



Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 10/44

Implementing Logical Clock

■ Each process has a local scalar clock, initialized to zero
◆ Ci denotes the local clock of process Pi

■ Action depends on the type of the event:

■ Protocol for process Pi:

◆ On executing an interval event:
Ci := Ci + 1

◆ On sending a message m:
Ci := Ci + 1
piggyback Ci on m

◆ On receiving a message m:
let tm be the timestamp piggybacked on m

Ci := max{Ci, tm} + 1



Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 10/44

Implementing Logical Clock

■ Each process has a local scalar clock, initialized to zero
◆ Ci denotes the local clock of process Pi

■ Action depends on the type of the event:

■ Protocol for process Pi:

◆ On executing an interval event:
Ci := Ci + 1

◆ On sending a message m:
Ci := Ci + 1
piggyback Ci on m

◆ On receiving a message m:
let tm be the timestamp piggybacked on m

Ci := max{Ci, tm} + 1



Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 10/44

Implementing Logical Clock

■ Each process has a local scalar clock, initialized to zero
◆ Ci denotes the local clock of process Pi

■ Action depends on the type of the event:

■ Protocol for process Pi:

◆ On executing an interval event:
Ci := Ci + 1

◆ On sending a message m:
Ci := Ci + 1
piggyback Ci on m

◆ On receiving a message m:
let tm be the timestamp piggybacked on m

Ci := max{Ci, tm} + 1



Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 11/44

Implementing Logical Clock: An Illustration

1

1

P2

P3

P1

a

a: internal event C(a) = 1

1 2 3 4

1 3 4

1 52

2

4

P2

P3

P1

b e

a d

c



Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 11/44

Implementing Logical Clock: An Illustration

1

1

1

P2

P3

P1

c

b

a

b and c: internal events C(b) = 1 and C(c) = 1

1 2 3 4

1 3 4

1 52

2

4

P2

P3

P1

b e

a d

c



Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 11/44

Implementing Logical Clock: An Illustration

2

1

1 2

1

P2

P3

P1

a d

c

b

d: send event C(d) = 2

1 2 3 4

1 3 4

1 52

2

4

P2

P3

P1

b e

a d

c



Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 11/44

Implementing Logical Clock: An Illustration

2

1 3

1 2

1

P2

P3

P1

b e

a d

c

e: receive event C(e) = 3

1 2 3 4

1 3 4

1 52

2

4

P2

P3

P1

b e

a d

c



Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 11/44

Implementing Logical Clock: An Illustration

1 2 3 4

1 3 4

1 52

2

4

P2

P3

P1

b e

a d

c



Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 12/44

Limitation of Logical Clock

■ Logical clock cannot be used to determine whether two
events are concurrent

e ‖ f does not imply C(e) = C(f)



Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 12/44

Limitation of Logical Clock

■ Logical clock cannot be used to determine whether two
events are concurrent

e ‖ f does not imply C(e) = C(f)



Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 13/44

Vector Clock

■ Captures the happened-before relation

■ Assigns timestamp to each event such that:

e → f ⇐⇒ C(e) < C(f)

C(e): timestamp for event e

C(f): timestamp for event f



Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 13/44

Vector Clock

■ Captures the happened-before relation

■ Assigns timestamp to each event such that:

e → f ⇐⇒ C(e) < C(f)

C(e): timestamp for event e

C(f): timestamp for event f



Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 14/44

Comparing Two Vectors

■ Vectors are compared component-wise:

◆ Equality:

V = V ′ iff 〈∀i : V [i] = V ′[i]〉

◆ Less Than:

V < V ′ iff 〈∀i : V [i] ≤ V ′[i]〉 ∧ 〈∃i : V [i] < V ′[i]〉





1

2

0



 <





2

3

1



 and





2

1

1



 <





2

3

4



 but





1

2

1



 6<





2

1

3







Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 14/44

Comparing Two Vectors

■ Vectors are compared component-wise:

◆ Equality:

V = V ′ iff 〈∀i : V [i] = V ′[i]〉

◆ Less Than:

V < V ′ iff 〈∀i : V [i] ≤ V ′[i]〉 ∧ 〈∃i : V [i] < V ′[i]〉





1

2

0



 <





2

3

1



 and





2

1

1



 <





2

3

4



 but





1

2

1



 6<





2

1

3







Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 14/44

Comparing Two Vectors

■ Vectors are compared component-wise:

◆ Equality:

V = V ′ iff 〈∀i : V [i] = V ′[i]〉

◆ Less Than:

V < V ′ iff 〈∀i : V [i] ≤ V ′[i]〉 ∧ 〈∃i : V [i] < V ′[i]〉





1

2

0



 <





2

3

1



 and





2

1

1



 <





2

3

4



 but





1

2

1



 6<





2

1

3







Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 14/44

Comparing Two Vectors

■ Vectors are compared component-wise:

◆ Equality:

V = V ′ iff 〈∀i : V [i] = V ′[i]〉

◆ Less Than:

V < V ′ iff 〈∀i : V [i] ≤ V ′[i]〉 ∧ 〈∃i : V [i] < V ′[i]〉





1

2

0



 <





2

3

1



 and





2

1

1



 <





2

3

4



 but





1

2

1



 6<





2

1

3







Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 15/44

Implementing Vector Clock

■ Each process has a local vector clock
◆ Ci denotes the local clock of process Pi

■ Action depends on the type of the event:

■ Protocol for process Pi:

◆ On executing an interval event:
Ci[i] := Ci[i] + 1

◆ On sending a message m:
Ci[i] := Ci[i] + 1
piggyback Ci on m

◆ On receiving a message m:
let tm be the timestamp piggybacked on m

∀k Ci[k] := max{Ci[k], tm[k]}
Ci[i] := Ci[i] + 1



Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 15/44

Implementing Vector Clock

■ Each process has a local vector clock
◆ Ci denotes the local clock of process Pi

■ Action depends on the type of the event:

■ Protocol for process Pi:

◆ On executing an interval event:
Ci[i] := Ci[i] + 1

◆ On sending a message m:
Ci[i] := Ci[i] + 1
piggyback Ci on m

◆ On receiving a message m:
let tm be the timestamp piggybacked on m

∀k Ci[k] := max{Ci[k], tm[k]}
Ci[i] := Ci[i] + 1



Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 15/44

Implementing Vector Clock

■ Each process has a local vector clock
◆ Ci denotes the local clock of process Pi

■ Action depends on the type of the event:

■ Protocol for process Pi:

◆ On executing an interval event:
Ci[i] := Ci[i] + 1

◆ On sending a message m:
Ci[i] := Ci[i] + 1
piggyback Ci on m

◆ On receiving a message m:
let tm be the timestamp piggybacked on m

∀k Ci[k] := max{Ci[k], tm[k]}
Ci[i] := Ci[i] + 1



Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 15/44

Implementing Vector Clock

■ Each process has a local vector clock
◆ Ci denotes the local clock of process Pi

■ Action depends on the type of the event:

■ Protocol for process Pi:

◆ On executing an interval event:
Ci[i] := Ci[i] + 1

◆ On sending a message m:
Ci[i] := Ci[i] + 1
piggyback Ci on m

◆ On receiving a message m:
let tm be the timestamp piggybacked on m

∀k Ci[k] := max{Ci[k], tm[k]}
Ci[i] := Ci[i] + 1



Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 15/44

Implementing Vector Clock

■ Each process has a local vector clock
◆ Ci denotes the local clock of process Pi

■ Action depends on the type of the event:

■ Protocol for process Pi:

◆ On executing an interval event:
Ci[i] := Ci[i] + 1

◆ On sending a message m:
Ci[i] := Ci[i] + 1
piggyback Ci on m

◆ On receiving a message m:
let tm be the timestamp piggybacked on m

∀k Ci[k] := max{Ci[k], tm[k]}
Ci[i] := Ci[i] + 1



Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 15/44

Implementing Vector Clock

■ Each process has a local vector clock
◆ Ci denotes the local clock of process Pi

■ Action depends on the type of the event:

■ Protocol for process Pi:

◆ On executing an interval event:
Ci[i] := Ci[i] + 1

◆ On sending a message m:
Ci[i] := Ci[i] + 1
piggyback Ci on m

◆ On receiving a message m:
let tm be the timestamp piggybacked on m

∀k Ci[k] := max{Ci[k], tm[k]}
Ci[i] := Ci[i] + 1



Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 16/44

Implementing Vector Clock: An Illustration

P2

P3

P1

a
[

1

0

0

]

[

0

0

1

]

a: internal event C(a) =





1

0

0





b e

a d

c

P2

P3

P1 [

1

0

0

] [

3

0

0

] [

4

0

0

][

2

0

0

]

[

2

0

0

]

[

2

2

0

][

0

1

0

] [

2

3

0

]

[

2

3

0

]

[

0

0

1

] [

0

0

2

] [

2

3

3

]



Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 16/44

Implementing Vector Clock: An Illustration

c

P2

P3

P1

b

a
[

1

0

0

]

[

0

1

0

]

[

0

0

1

]

b and c: internal events C(b) =





1

0

0



 and C(c) =





0

0

1





b e

a d

c

P2

P3

P1 [

1

0

0

] [

3

0

0

] [

4

0

0

][

2

0

0

]

[

2

0

0

]

[

2

2

0

][

0

1

0

] [

2

3

0

]

[

2

3

0

]

[

0

0

1

] [

0

0

2

] [

2

3

3

]



Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 16/44

Implementing Vector Clock: An Illustration

a d

c

P2

P3

P1

b

[

1

0

0

] [

2

0

0

]

[

2

0

0

]

[

0

1

0

]

[

0

0

1

]

d: send event C(d) =





2

0

0





b e

a d

c

P2

P3

P1 [

1

0

0

] [

3

0

0

] [

4

0

0

][

2

0

0

]

[

2

0

0

]

[

2

2

0

][

0

1

0

] [

2

3

0

]

[

2

3

0

]

[

0

0

1

] [

0

0

2

] [

2

3

3

]



Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 16/44

Implementing Vector Clock: An Illustration

b e

a d

c

P2

P3

P1 [

1

0

0

] [

2

0

0

]

[

2

0

0

]

[

2

2

0

][

0

1

0

]

[

0

0

1

]

e: receive event C(e) =





2

2

0





b e

a d

c

P2

P3

P1 [

1

0

0

] [

3

0

0

] [

4

0

0

][

2

0

0

]

[

2

0

0

]

[

2

2

0

][

0

1

0

] [

2

3

0

]

[

2

3

0

]

[

0

0

1

] [

0

0

2

] [

2

3

3

]



Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 16/44

Implementing Vector Clock: An Illustration

b e

a d

c

P2

P3

P1 [

1

0

0

] [

3

0

0

] [

4

0

0

][

2

0

0

]

[

2

0

0

]

[

2

2

0

][

0

1

0

] [

2

3

0

]

[

2

3

0

]

[

0

0

1

] [

0

0

2

] [

2

3

3

]



Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 17/44

Properties of Vector Clock

■ How many comparisons are needed to determine whether
an event e happened-before another event f?

◆ As many as N integers may need to be compared in the
worst case, where N is the number of processes

◆ Suppose e and f occurred on processes Pi and Pj

e → f

if and only if

(i = j) ∧ (C(e)[i] < C(f)[i])
∨

(i 6= j) ∧ (C(e)[i] ≤ C(f)[i])



Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 17/44

Properties of Vector Clock

■ How many comparisons are needed to determine whether
an event e happened-before another event f?

◆ As many as N integers may need to be compared in the
worst case, where N is the number of processes

◆ Suppose e and f occurred on processes Pi and Pj

e → f

if and only if

(i = j) ∧ (C(e)[i] < C(f)[i])
∨

(i 6= j) ∧ (C(e)[i] ≤ C(f)[i])



Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 17/44

Properties of Vector Clock

■ How many comparisons are needed to determine whether
an event e happened-before another event f?

◆ As many as N integers may need to be compared in the
worst case, where N is the number of processes

◆ Suppose e and f occurred on processes Pi and Pj

e → f

if and only if

(i = j) ∧ (C(e)[i] < C(f)[i])
∨

(i 6= j) ∧ (C(e)[i] ≤ C(f)[i])



Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 17/44

Properties of Vector Clock

■ How many comparisons are needed to determine whether
an event e happened-before another event f?

◆ As many as N integers may need to be compared in the
worst case, where N is the number of processes

◆ Suppose e and f occurred on processes Pi and Pj

e → f

if and only if

(i = j) ∧ (C(e)[i] < C(f)[i])
∨

(i 6= j) ∧ (C(e)[i] ≤ C(f)[i])



Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 17/44

Properties of Vector Clock

■ How many comparisons are needed to determine whether
an event e happened-before another event f?

◆ As many as N integers may need to be compared in the
worst case, where N is the number of processes

◆ Suppose e and f occurred on processes Pi and Pj

e → f

if and only if

(i = j) ∧ (C(e)[i] < C(f)[i])

∨

(i 6= j) ∧ (C(e)[i] ≤ C(f)[i])



Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 17/44

Properties of Vector Clock

■ How many comparisons are needed to determine whether
an event e happened-before another event f?

◆ As many as N integers may need to be compared in the
worst case, where N is the number of processes

◆ Suppose e and f occurred on processes Pi and Pj

e → f

if and only if

(i = j) ∧ (C(e)[i] < C(f)[i])
∨

(i 6= j) ∧ (C(e)[i] ≤ C(f)[i])



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 18/44

Ordering of Messages

■ For many applications, messages should be delivered in
certain order to be interpreted meaningfully

■ Example:

m1: Have you seen the movie “Shrek”?

m2: Yes I have and I liked it

Bob

Alice

Tom

◆ m2 cannot be interpreted until m1 has been received
◆ Tom receives m2 before m1: an undesriable behavior



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 18/44

Ordering of Messages

■ For many applications, messages should be delivered in
certain order to be interpreted meaningfully

■ Example:

m1: Have you seen the movie “Shrek”?

m2: Yes I have and I liked it

Bob

Alice

Tom

◆ m2 cannot be interpreted until m1 has been received
◆ Tom receives m2 before m1: an undesriable behavior



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 19/44

Useful Notations

■ For a message m:
◆ src(m): source process of m

◆ dst(m): destination process of m

◆ snd(m): send event of m

◆ rcv(m): send event of m

e

m

dst(m)

f

rcv(m)

snd(m)src(m)

Pi

Pj



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 20/44

Causal Delivery of Messages

■ A message w causally precedes a message m if
snd(w) → snd(m)

■ An execution of a distributed system is said to be causally
ordered if the following holds for every message m:

every message that causally precedes m and is
destined for the same process as m is delivered
before m

Mathematically, for every message w:

(snd(w) → snd(m)) ∧ (dst(w) = dst(m))

⇒

rcv(w) → rcv(m)



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 20/44

Causal Delivery of Messages

■ A message w causally precedes a message m if
snd(w) → snd(m)

■ An execution of a distributed system is said to be causally
ordered if the following holds for every message m:

every message that causally precedes m and is
destined for the same process as m is delivered
before m

Mathematically, for every message w:

(snd(w) → snd(m)) ∧ (dst(w) = dst(m))

⇒

rcv(w) → rcv(m)



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 20/44

Causal Delivery of Messages

■ A message w causally precedes a message m if
snd(w) → snd(m)

■ An execution of a distributed system is said to be causally
ordered if the following holds for every message m:

every message that causally precedes m and is
destined for the same process as m is delivered
before m

Mathematically, for every message w:

(snd(w) → snd(m)) ∧ (dst(w) = dst(m))

⇒

rcv(w) → rcv(m)



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 21/44

A Causally Ordered Delivery Protocol

■ Proposed by Birman, Schiper and Stephenson (BSS)

■ Assumption:

◆ communication is broadcast based: a process sends a
message to every other process

■ Each process maintains a vector with one entry for each
process:

◆ let Vi denote the vector for process Pi

◆ the jth entry of Vi refers to the number of messages that
have been broadcast by process Pj that Pi knows of



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 21/44

A Causally Ordered Delivery Protocol

■ Proposed by Birman, Schiper and Stephenson (BSS)

■ Assumption:

◆ communication is broadcast based: a process sends a
message to every other process

■ Each process maintains a vector with one entry for each
process:

◆ let Vi denote the vector for process Pi

◆ the jth entry of Vi refers to the number of messages that
have been broadcast by process Pj that Pi knows of



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 21/44

A Causally Ordered Delivery Protocol

■ Proposed by Birman, Schiper and Stephenson (BSS)

■ Assumption:

◆ communication is broadcast based: a process sends a
message to every other process

■ Each process maintains a vector with one entry for each
process:

◆ let Vi denote the vector for process Pi

◆ the jth entry of Vi refers to the number of messages that
have been broadcast by process Pj that Pi knows of



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 22/44

The BSS Protocol

■ Protocol for process Pi:

◆ On broadcasting a message m:
piggyback Vi on m

Vi[i] := Vi[i] + 1

◆ On arrival of a message m from process Pj :
let Vm be the vector piggybacked on m

deliver m once Vi ≥ Vm

◆ On delivery of a message m sent by process Pj :

Vi[j] := Vi[j] + 1



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 22/44

The BSS Protocol

■ Protocol for process Pi:

◆ On broadcasting a message m:
piggyback Vi on m

Vi[i] := Vi[i] + 1

◆ On arrival of a message m from process Pj :
let Vm be the vector piggybacked on m

deliver m once Vi ≥ Vm

◆ On delivery of a message m sent by process Pj :

Vi[j] := Vi[j] + 1



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 22/44

The BSS Protocol

■ Protocol for process Pi:

◆ On broadcasting a message m:
piggyback Vi on m

Vi[i] := Vi[i] + 1

◆ On arrival of a message m from process Pj :
let Vm be the vector piggybacked on m

deliver m once Vi ≥ Vm

◆ On delivery of a message m sent by process Pj :

Vi[j] := Vi[j] + 1



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 22/44

The BSS Protocol

■ Protocol for process Pi:

◆ On broadcasting a message m:
piggyback Vi on m

Vi[i] := Vi[i] + 1

◆ On arrival of a message m from process Pj :
let Vm be the vector piggybacked on m

deliver m once Vi ≥ Vm

◆ On delivery of a message m sent by process Pj :

Vi[j] := Vi[j] + 1



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 23/44

The BSS Protocol: An Illustration

P2

P3

P1
[

0

0

0

]

a e

[

0

0

0

]

[

0

0

0

]

[

0

0

0

]
[

1

1

0

]

P2

P3

P1
[

1

0

0

]

[

0

0

0

]
[

1

1

0

]
[

1

0

0

]

[

1

0

0

]

[

0

0

0

]

[

0

0

0

]

a e

gf

[

1

0

0

]

cb

[

0

0

0

] [

1

0

0

] [

1

1

0

]



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 23/44

The BSS Protocol: An Illustration

P2

P3

P1
[

0

0

0

] [

1

0

0

]

[

0

0

0

]

a

[

0

0

0

]

e

[

0

0

0

]

b

[

0

0

0

]

[

0

0

0

]
[

1

1

0

]

P2

P3

P1
[

1

0

0

]

[

0

0

0

]
[

1

1

0

]
[

1

0

0

]

[

1

0

0

]

[

0

0

0

]

[

0

0

0

]

a e

gf

[

1

0

0

]

cb

[

0

0

0

] [

1

0

0

] [

1

1

0

]



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 23/44

The BSS Protocol: An Illustration

P2

P3

P1
[

0

0

0

] [

1

0

0

]

[

0

0

0

]

a

[

0

0

0

]

e

[

0

0

0

]
[

1

0

0

]

b

[

0

0

0

]

[

0

0

0

]
[

1

1

0

]

P2

P3

P1
[

1

0

0

]

[

0

0

0

]
[

1

1

0

]
[

1

0

0

]

[

1

0

0

]

[

0

0

0

]

[

0

0

0

]

a e

gf

[

1

0

0

]

cb

[

0

0

0

] [

1

0

0

] [

1

1

0

]



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 23/44

The BSS Protocol: An Illustration

P2

P3

P1
[

0

0

0

] [

1

0

0

]

[

0

0

0

]
[

1

1

0

]
[

1

0

0

]

[

1

0

0

]

[

1

0

0

]

[

0

0

0

]

a

d

[

0

0

0

]

e

cb

[

0

0

0

]

[

0

0

0

]
[

1

1

0

]

P2

P3

P1
[

1

0

0

]

[

0

0

0

]
[

1

1

0

]
[

1

0

0

]

[

1

0

0

]

[

0

0

0

]

[

0

0

0

]

a e

gf

[

1

0

0

]

cb

[

0

0

0

] [

1

0

0

] [

1

1

0

]



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 23/44

The BSS Protocol: An Illustration

[

0

0

0

]
[

1

1

0

]

P2

P3

P1
[

1

0

0

]

[

0

0

0

]
[

1

1

0

]
[

1

0

0

]

[

1

0

0

]

[

1

0

0

]

[

0

0

0

]

a e

d

[

0

0

0

]

cb

[

0

0

0

]

[

0

0

0

]
[

1

1

0

]

P2

P3

P1
[

1

0

0

]

[

0

0

0

]
[

1

1

0

]
[

1

0

0

]

[

1

0

0

]

[

0

0

0

]

[

0

0

0

]

a e

gf

[

1

0

0

]

cb

[

0

0

0

] [

1

0

0

] [

1

1

0

]



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 23/44

The BSS Protocol: An Illustration

[

0

0

0

]
[

1

1

0

]

P2

P3

P1
[

1

0

0

]

[

0

0

0

]
[

1

1

0

]
[

1

0

0

]

[

1

0

0

]

[

1

0

0

]

[

0

0

0

]

[

0

0

0

]

a e

d f

cb

[

0

0

0

]

[

0

0

0

]
[

1

1

0

]

P2

P3

P1
[

1

0

0

]

[

0

0

0

]
[

1

1

0

]
[

1

0

0

]

[

1

0

0

]

[

0

0

0

]

[

0

0

0

]

a e

gf

[

1

0

0

]

cb

[

0

0

0

] [

1

0

0

] [

1

1

0

]



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 23/44

The BSS Protocol: An Illustration

[

0

0

0

]
[

1

1

0

]

P2

P3

P1
[

1

0

0

]

[

0

0

0

]
[

1

1

0

]
[

1

0

0

]

[

1

0

0

]

[

1

0

0

]

[

0

0

0

]

[

0

0

0

]

a e

d f

cb

[

0

0

0

] [

1

0

0

]

[

0

0

0

]
[

1

1

0

]

P2

P3

P1
[

1

0

0

]

[

0

0

0

]
[

1

1

0

]
[

1

0

0

]

[

1

0

0

]

[

0

0

0

]

[

0

0

0

]

a e

gf

[

1

0

0

]

cb

[

0

0

0

] [

1

0

0

] [

1

1

0

]



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 23/44

The BSS Protocol: An Illustration

[

0

0

0

]
[

1

1

0

]

P2

P3

P1
[

1

0

0

]

[

0

0

0

]
[

1

1

0

]
[

1

0

0

]

[

1

0

0

]

[

0

0

0

]

[

0

0

0

]

a e

gf

[

1

0

0

]

cb

[

0

0

0

] [

1

0

0

] [

1

1

0

]



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 24/44

Another Causally Ordered Delivery Protocol

■ Proposed by Schiper, Eggli and Sandoz (SES)

■ Assumption:

◆ communication is point-to-point
◆ processes are using vector clock algorithm

■ To determine whether a message has arrived out of causal
order:

◆ let Vm denote the vector timestamp of message m

◆ let Vi denote the vector clock of process Pi

Does there exist a message w that causally
precedes m and destined for Pi such that Vi 6> Vw?



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 24/44

Another Causally Ordered Delivery Protocol

■ Proposed by Schiper, Eggli and Sandoz (SES)

■ Assumption:

◆ communication is point-to-point
◆ processes are using vector clock algorithm

■ To determine whether a message has arrived out of causal
order:

◆ let Vm denote the vector timestamp of message m

◆ let Vi denote the vector clock of process Pi

Does there exist a message w that causally
precedes m and destined for Pi such that Vi 6> Vw?



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 24/44

Another Causally Ordered Delivery Protocol

■ Proposed by Schiper, Eggli and Sandoz (SES)

■ Assumption:

◆ communication is point-to-point
◆ processes are using vector clock algorithm

■ To determine whether a message has arrived out of causal
order:

◆ let Vm denote the vector timestamp of message m

◆ let Vi denote the vector clock of process Pi

Does there exist a message w that causally
precedes m and destined for Pi such that Vi 6> Vw?



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 24/44

Another Causally Ordered Delivery Protocol

■ Proposed by Schiper, Eggli and Sandoz (SES)

■ Assumption:

◆ communication is point-to-point
◆ processes are using vector clock algorithm

■ To determine whether a message has arrived out of causal
order:

◆ let Vm denote the vector timestamp of message m

◆ let Vi denote the vector clock of process Pi

Does there exist a message w that causally
precedes m and destined for Pi such that Vi 6> Vw?



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 24/44

Another Causally Ordered Delivery Protocol

■ Proposed by Schiper, Eggli and Sandoz (SES)

■ Assumption:

◆ communication is point-to-point
◆ processes are using vector clock algorithm

■ To determine whether a message has arrived out of causal
order:

◆ let Vm denote the vector timestamp of message m

◆ let Vi denote the vector clock of process Pi

Does there exist a message w that causally
precedes m and destined for Pi such that Vi 6> Vw?



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 25/44

When to Deliver a Message?

■ A message m destined for process Pi can be delivered if:

◆ for every message w that causally precedes m and
destined for Pi:

Vi > Vw

or, equivalently

◆ let past(m, j) denote the set of all messages that
causally precede m and are destined for process Pj :

Vi > max
w∈past(m,i)

{Vw}



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 25/44

When to Deliver a Message?

■ A message m destined for process Pi can be delivered if:

◆ for every message w that causally precedes m and
destined for Pi:

Vi > Vw

or, equivalently

◆ let past(m, j) denote the set of all messages that
causally precede m and are destined for process Pj :

Vi > max
w∈past(m,i)

{Vw}



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 25/44

When to Deliver a Message?

■ A message m destined for process Pi can be delivered if:

◆ for every message w that causally precedes m and
destined for Pi:

Vi > Vw

or, equivalently

◆ let past(m, j) denote the set of all messages that
causally precede m and are destined for process Pj :

Vi > max
w∈past(m,i)

{Vw}



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 25/44

When to Deliver a Message?

■ A message m destined for process Pi can be delivered if:

◆ for every message w that causally precedes m and
destined for Pi:

Vi > Vw

or, equivalently

◆ let past(m, j) denote the set of all messages that
causally precede m and are destined for process Pj :

Vi > max
w∈past(m,i)

{Vw}



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 26/44

The SES Protocol

■ Each process maintains a list of tuples with at most one
tuple for every other process

◆ let DLi denote the list for process Pi

■ The list is piggybacked on every message a process sends

◆ let DLm denote the list for message m

■ if past(m, j) = ∅, then DLm does not contain a tuple
for process Pj

■ Otherwise, the tuple for process Pj is given by:

(j, max
w∈past(m,j)

{Vw})



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 26/44

The SES Protocol

■ Each process maintains a list of tuples with at most one
tuple for every other process

◆ let DLi denote the list for process Pi

■ The list is piggybacked on every message a process sends

◆ let DLm denote the list for message m

■ if past(m, j) = ∅, then DLm does not contain a tuple
for process Pj

■ Otherwise, the tuple for process Pj is given by:

(j, max
w∈past(m,j)

{Vw})



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 26/44

The SES Protocol

■ Each process maintains a list of tuples with at most one
tuple for every other process

◆ let DLi denote the list for process Pi

■ The list is piggybacked on every message a process sends

◆ let DLm denote the list for message m

■ if past(m, j) = ∅, then DLm does not contain a tuple
for process Pj

■ Otherwise, the tuple for process Pj is given by:

(j, max
w∈past(m,j)

{Vw})



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 26/44

The SES Protocol

■ Each process maintains a list of tuples with at most one
tuple for every other process

◆ let DLi denote the list for process Pi

■ The list is piggybacked on every message a process sends

◆ let DLm denote the list for message m

■ if past(m, j) = ∅, then DLm does not contain a tuple
for process Pj

■ Otherwise, the tuple for process Pj is given by:

(j, max
w∈past(m,j)

{Vw})



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 27/44

The SES Protocol (Continued)

■ Protocol for process Pi:

◆ On sending a message m to process Pj :
piggyback DLi on m

remove entry for Pj from DLi, if any
add (j, Vm) to DLi

◆ On arrival of a message m from process Pj :
if DLm does not contain any tuple for Pi then

deliver m

else
let (j, V ) be the tuple for Pi in DLm

deliver m once Vi > V

endif

◆ On delivery of a message m:
merge DLi and DLm



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 27/44

The SES Protocol (Continued)

■ Protocol for process Pi:

◆ On sending a message m to process Pj :
piggyback DLi on m

remove entry for Pj from DLi, if any
add (j, Vm) to DLi

◆ On arrival of a message m from process Pj :
if DLm does not contain any tuple for Pi then

deliver m

else
let (j, V ) be the tuple for Pi in DLm

deliver m once Vi > V

endif

◆ On delivery of a message m:
merge DLi and DLm



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 27/44

The SES Protocol (Continued)

■ Protocol for process Pi:

◆ On sending a message m to process Pj :
piggyback DLi on m

remove entry for Pj from DLi, if any
add (j, Vm) to DLi

◆ On arrival of a message m from process Pj :
if DLm does not contain any tuple for Pi then

deliver m

else
let (j, V ) be the tuple for Pi in DLm

deliver m once Vi > V

endif

◆ On delivery of a message m:
merge DLi and DLm



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 27/44

The SES Protocol (Continued)

■ Protocol for process Pi:

◆ On sending a message m to process Pj :
piggyback DLi on m

remove entry for Pj from DLi, if any
add (j, Vm) to DLi

◆ On arrival of a message m from process Pj :
if DLm does not contain any tuple for Pi then

deliver m

else
let (j, V ) be the tuple for Pi in DLm

deliver m once Vi > V

endif

◆ On delivery of a message m:
merge DLi and DLm



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 28/44

The SES Protocol: An Illustration

P1

P2

P3

{}
[

0

0

0

]

a

{}

[

0

0

0

]

[

0

0

0

]

{}
[

1

0

1

]

P1

P2

P3

[

2

0

0

][

1

0

0

]

{}
[

0

0

0

]

a b

[

2

0

0

]

{}

[

1

0

0

]

{(3,

[

1

0

0

]

)}

dc

{(3,

[

1

0

0

]

)}

g f

{(3,

[

1

0

0

]

), (2,

[

2

0

0

]

)}

{}

[

0

0

0

]

{(3,

[

1

0

0

]

)}
{(3,

[

1

0

0

]

)}

[

2

1

0

]

[

2

2

0

]{(3,

[

2

2

0

]

))}

[

2

2

0

]

[

0

0

0

]

{} {}
[

1

0

1

]

{}
[

2

2

2

]



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 28/44

The SES Protocol: An Illustration

P1

P2

P3

[

1

0

0

]

{}
[

0

0

0

]

a

{}

[

1

0

0

]

{(3,

[

1

0

0

]

)}

{}

[

0

0

0

]

[

0

0

0

]

{}
[

1

0

1

]

P1

P2

P3

[

2

0

0

][

1

0

0

]

{}
[

0

0

0

]

a b

[

2

0

0

]

{}

[

1

0

0

]

{(3,

[

1

0

0

]

)}

dc

{(3,

[

1

0

0

]

)}

g f

{(3,

[

1

0

0

]

), (2,

[

2

0

0

]

)}

{}

[

0

0

0

]

{(3,

[

1

0

0

]

)}
{(3,

[

1

0

0

]

)}

[

2

1

0

]

[

2

2

0

]{(3,

[

2

2

0

]

))}

[

2

2

0

]

[

0

0

0

]

{} {}
[

1

0

1

]

{}
[

2

2

2

]



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 28/44

The SES Protocol: An Illustration

P1

P2

P3

[

2

0

0

][

1

0

0

]

{}
[

0

0

0

]

a b

[

2

0

0

]

{}

[

1

0

0

]

{(3,

[

1

0

0

]

)}

c

{(3,

[

1

0

0

]

)}
{(3,

[

1

0

0

]

), (2,

[

2

0

0

]

)}

{}

[

0

0

0

]

[

0

0

0

]

{}
[

1

0

1

]

P1

P2

P3

[

2

0

0

][

1

0

0

]

{}
[

0

0

0

]

a b

[

2

0

0

]

{}

[

1

0

0

]

{(3,

[

1

0

0

]

)}

dc

{(3,

[

1

0

0

]

)}

g f

{(3,

[

1

0

0

]

), (2,

[

2

0

0

]

)}

{}

[

0

0

0

]

{(3,

[

1

0

0

]

)}
{(3,

[

1

0

0

]

)}

[

2

1

0

]

[

2

2

0

]{(3,

[

2

2

0

]

))}

[

2

2

0

]

[

0

0

0

]

{} {}
[

1

0

1

]

{}
[

2

2

2

]



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 28/44

The SES Protocol: An Illustration

P1

P2

P3

[

2

0

0

][

1

0

0

]

{}
[

0

0

0

]

a b

[

2

0

0

]

{}

[

1

0

0

]

{(3,

[

1

0

0

]

)}

c

{(3,

[

1

0

0

]

)}
{(3,

[

1

0

0

]

), (2,

[

2

0

0

]

)}

{}

[

0

0

0

]

{(3,

[

1

0

0

]

)}

[

2

1

0

]

[

0

0

0

]

{}
[

1

0

1

]

P1

P2

P3

[

2

0

0

][

1

0

0

]

{}
[

0

0

0

]

a b

[

2

0

0

]

{}

[

1

0

0

]

{(3,

[

1

0

0

]

)}

dc

{(3,

[

1

0

0

]

)}

g f

{(3,

[

1

0

0

]

), (2,

[

2

0

0

]

)}

{}

[

0

0

0

]

{(3,

[

1

0

0

]

)}
{(3,

[

1

0

0

]

)}

[

2

1

0

]

[

2

2

0

]{(3,

[

2

2

0

]

))}

[

2

2

0

]

[

0

0

0

]

{} {}
[

1

0

1

]

{}
[

2

2

2

]



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 28/44

The SES Protocol: An Illustration

P1

P2

P3

[

2

0

0

][

1

0

0

]

{}
[

0

0

0

]

a b

[

2

0

0

]

{}

[

1

0

0

]

{(3,

[

1

0

0

]

)}

dc

{(3,

[

1

0

0

]

)}

e

{(3,

[

1

0

0

]

), (2,

[

2

0

0

]

)}

{}

[

0

0

0

]

{(3,

[

1

0

0

]

)}

[

2

1

0

] {(3,

[

1

0

0

]

)}

{(3,

[

2

2

0

]

))}

[

2

2

0

]

[

2

2

0

]

[

0

0

0

]

{}
[

1

0

1

]

P1

P2

P3

[

2

0

0

][

1

0

0

]

{}
[

0

0

0

]

a b

[

2

0

0

]

{}

[

1

0

0

]

{(3,

[

1

0

0

]

)}

dc

{(3,

[

1

0

0

]

)}

g f

{(3,

[

1

0

0

]

), (2,

[

2

0

0

]

)}

{}

[

0

0

0

]

{(3,

[

1

0

0

]

)}
{(3,

[

1

0

0

]

)}

[

2

1

0

]

[

2

2

0

]{(3,

[

2

2

0

]

))}

[

2

2

0

]

[

0

0

0

]

{} {}
[

1

0

1

]

{}
[

2

2

2

]



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 28/44

The SES Protocol: An Illustration

P1

P2

P3

[

2

0

0

][

1

0

0

]

{}
[

0

0

0

]

a b

[

2

0

0

]

{}

[

1

0

0

]

{(3,

[

1

0

0

]

)}

dc

{(3,

[

1

0

0

]

)}

ge

{(3,

[

1

0

0

]

), (2,

[

2

0

0

]

)}

{}

[

0

0

0

]

{(3,

[

1

0

0

]

)}

[

2

1

0

] {(3,

[

1

0

0

]

)}

{(3,

[

2

2

0

]

))}

[

2

2

0

]

[

2

2

0

]

[

0

0

0

]

{} {}
[

1

0

1

]

P1

P2

P3

[

2

0

0

][

1

0

0

]

{}
[

0

0

0

]

a b

[

2

0

0

]

{}

[

1

0

0

]

{(3,

[

1

0

0

]

)}

dc

{(3,

[

1

0

0

]

)}

g f

{(3,

[

1

0

0

]

), (2,

[

2

0

0

]

)}

{}

[

0

0

0

]

{(3,

[

1

0

0

]

)}
{(3,

[

1

0

0

]

)}

[

2

1

0

]

[

2

2

0

]{(3,

[

2

2

0

]

))}

[

2

2

0

]

[

0

0

0

]

{} {}
[

1

0

1

]

{}
[

2

2

2

]



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

❖ Ordering of Messages

❖ Useful Notations

❖ Causal Delivery of Messages

❖ A Causally Ordered Delivery

Protocol
❖ The BSS Protocol

❖ The BSS Protocol: An

Illustration
❖ Another Causally Ordered

Delivery Protocol
❖ When to Deliver a Message?

❖ The SES Protocol

❖ The SES Protocol (Continued)

❖ The SES Protocol: An

Illustration

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 28/44

The SES Protocol: An Illustration

P1

P2

P3

[

2

0

0

][

1

0

0

]

{}
[

0

0

0

]

a b

[

2

0

0

]

{}

[

1

0

0

]

{(3,

[

1

0

0

]

)}

dc

{(3,

[

1

0

0

]

)}

g f

{(3,

[

1

0

0

]

), (2,

[

2

0

0

]

)}

{}

[

0

0

0

]

{(3,

[

1

0

0

]

)}
{(3,

[

1

0

0

]

)}

[

2

1

0

]

[

2

2

0

]{(3,

[

2

2

0

]

))}

[

2

2

0

]

[

0

0

0

]

{} {}
[

1

0

1

]

{}
[

2

2

2

]



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 29/44

State of a Distributed System

■ State of a distributed system is a collection of states of all
its processes and channels:

◆ a process state is given by the values of all variables on
the process

◆ a channel state is given by the set of messages in transit
in the channel

■ can be determined by examining states of the two
processes it connects

■ State of a process is called local state or local snapshot

◆ the textbook refers to local state as cut event

◆ cut event is not same as event

■ State of a distributed system is called global state or global
snapshot



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 29/44

State of a Distributed System

■ State of a distributed system is a collection of states of all
its processes and channels:

◆ a process state is given by the values of all variables on
the process

◆ a channel state is given by the set of messages in transit
in the channel

■ can be determined by examining states of the two
processes it connects

■ State of a process is called local state or local snapshot

◆ the textbook refers to local state as cut event

◆ cut event is not same as event

■ State of a distributed system is called global state or global
snapshot



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 29/44

State of a Distributed System

■ State of a distributed system is a collection of states of all
its processes and channels:

◆ a process state is given by the values of all variables on
the process

◆ a channel state is given by the set of messages in transit
in the channel

■ can be determined by examining states of the two
processes it connects

■ State of a process is called local state or local snapshot

◆ the textbook refers to local state as cut event

◆ cut event is not same as event

■ State of a distributed system is called global state or global
snapshot



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 29/44

State of a Distributed System

■ State of a distributed system is a collection of states of all
its processes and channels:

◆ a process state is given by the values of all variables on
the process

◆ a channel state is given by the set of messages in transit
in the channel

■ can be determined by examining states of the two
processes it connects

■ State of a process is called local state or local snapshot

◆ the textbook refers to local state as cut event

◆ cut event is not same as event

■ State of a distributed system is called global state or global
snapshot



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 29/44

State of a Distributed System

■ State of a distributed system is a collection of states of all
its processes and channels:

◆ a process state is given by the values of all variables on
the process

◆ a channel state is given by the set of messages in transit
in the channel

■ can be determined by examining states of the two
processes it connects

■ State of a process is called local state or local snapshot

◆ the textbook refers to local state as cut event

◆ cut event is not same as event

■ State of a distributed system is called global state or global
snapshot



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 29/44

State of a Distributed System

■ State of a distributed system is a collection of states of all
its processes and channels:

◆ a process state is given by the values of all variables on
the process

◆ a channel state is given by the set of messages in transit
in the channel

■ can be determined by examining states of the two
processes it connects

■ State of a process is called local state or local snapshot

◆ the textbook refers to local state as cut event

◆ cut event is not same as event

■ State of a distributed system is called global state or global
snapshot



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 30/44

Events and Local States

■ Processes change their states by executing events

■ Example:

P2

y = 3y = 2y = 1

P1

x = 0 x = 2 x = 3

a b

dc

◆ Process P1 changes its state from x = 0 to x = 2 on
executing event a

◆ Process P2 changes its state from y = 2 to y = 3 on
executing event d



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 30/44

Events and Local States

■ Processes change their states by executing events

■ Example:

P2

y = 3y = 2y = 1

P1

x = 0 x = 2 x = 3

a b

dc

◆ Process P1 changes its state from x = 0 to x = 2 on
executing event a

◆ Process P2 changes its state from y = 2 to y = 3 on
executing event d



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 30/44

Events and Local States

■ Processes change their states by executing events

■ Example:

P2

y = 3y = 2y = 1

P1

x = 0 x = 2 x = 3

a b

dc

◆ Process P1 changes its state from x = 0 to x = 2 on
executing event a

◆ Process P2 changes its state from y = 2 to y = 3 on
executing event d



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 30/44

Events and Local States

■ Processes change their states by executing events

■ Example:

P2

y = 3y = 2y = 1

P1

x = 0 x = 2 x = 3

a b

dc

◆ Process P1 changes its state from x = 0 to x = 2 on
executing event a

◆ Process P2 changes its state from y = 2 to y = 3 on
executing event d



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 31/44

When is a Global State Meaningful?

■ Example:

P2

y = 3y = 2y = 1

P1

x = 0 x = 2 x = 3

a b

dc

◆ Is it possible for x to be 0 and y to be 3 at the same time?

◆ Does {s, x} form a meaningful global state?



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 31/44

When is a Global State Meaningful?

■ Example:

P2

y = 3y = 2y = 1

P1

x = 0 x = 2 x = 3

a b

dc

◆ Is it possible for x to be 0 and y to be 3 at the same time?

◆ Does {s, x} form a meaningful global state?



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 31/44

When is a Global State Meaningful?

■ Example:

P2

y = 3y = 2y = 1

P1

a bs t u

dc xwv

x = 0 x = 2 x = 3

◆ Is it possible for x to be 0 and y to be 3 at the same time?

◆ Does {s, x} form a meaningful global state?



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 32/44

Revisiting Happened-Before Relation

■ Typically, happened-before relation is defined on events

■ The relation can be extended to local states as follows:

◆ let s be a local state of process Pi

◆ let t be a local state of process Pj

◆ s → t if there exist events e and f such that:
1. Pi executed e after s,

2. Pj executed f before t, and

3. e → f



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 32/44

Revisiting Happened-Before Relation

■ Typically, happened-before relation is defined on events

■ The relation can be extended to local states as follows:

◆ let s be a local state of process Pi

◆ let t be a local state of process Pj

◆ s → t if there exist events e and f such that:
1. Pi executed e after s,

2. Pj executed f before t, and

3. e → f



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 32/44

Revisiting Happened-Before Relation

■ Typically, happened-before relation is defined on events

■ The relation can be extended to local states as follows:

◆ let s be a local state of process Pi

◆ let t be a local state of process Pj

◆ s → t if there exist events e and f such that:
1. Pi executed e after s,

2. Pj executed f before t, and

3. e → f



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 32/44

Revisiting Happened-Before Relation

■ Typically, happened-before relation is defined on events

■ The relation can be extended to local states as follows:

◆ let s be a local state of process Pi

◆ let t be a local state of process Pj

◆ s → t if there exist events e and f such that:
1. Pi executed e after s,

2. Pj executed f before t, and

3. e → f



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 32/44

Revisiting Happened-Before Relation

■ Typically, happened-before relation is defined on events

■ The relation can be extended to local states as follows:

◆ let s be a local state of process Pi

◆ let t be a local state of process Pj

◆ s → t if there exist events e and f such that:

1. Pi executed e after s,

2. Pj executed f before t, and

3. e → f



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 32/44

Revisiting Happened-Before Relation

■ Typically, happened-before relation is defined on events

■ The relation can be extended to local states as follows:

◆ let s be a local state of process Pi

◆ let t be a local state of process Pj

◆ s → t if there exist events e and f such that:
1. Pi executed e after s,

2. Pj executed f before t, and

3. e → f



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 32/44

Revisiting Happened-Before Relation

■ Typically, happened-before relation is defined on events

■ The relation can be extended to local states as follows:

◆ let s be a local state of process Pi

◆ let t be a local state of process Pj

◆ s → t if there exist events e and f such that:
1. Pi executed e after s,

2. Pj executed f before t, and

3. e → f



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 32/44

Revisiting Happened-Before Relation

■ Typically, happened-before relation is defined on events

■ The relation can be extended to local states as follows:

◆ let s be a local state of process Pi

◆ let t be a local state of process Pj

◆ s → t if there exist events e and f such that:
1. Pi executed e after s,

2. Pj executed f before t, and

3. e → f



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 33/44

A Consistent Global State

■ For a global state G, let G[i] refer to the local state of
process Pi in G

■ A global state G is meaningful or consistent if

∀i, j : i 6= j : G[i] ‖ G[j]



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 33/44

A Consistent Global State

■ For a global state G, let G[i] refer to the local state of
process Pi in G

■ A global state G is meaningful or consistent if

∀i, j : i 6= j : (G[i] 9 G[j]) ∧ (G[j] 9 G[i])

∀i, j : i 6= j : G[i] ‖ G[j]



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 33/44

A Consistent Global State

■ For a global state G, let G[i] refer to the local state of
process Pi in G

■ A global state G is meaningful or consistent if

∀i, j : i 6= j : G[i] ‖ G[j]



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 34/44

Recording a Consistent Global Snapshot

■ Proposed by Chandy and Lamport (CL)

■ Assumptions and Features:

◆ channels satisfy first-in-first-out (FIFO) property
◆ channels are not required to be bidirectional
◆ communication topology may not be fully connected

■ Messages exchanged by the underlying computation
(whose snapshot is being recorded) are called application
messages

■ Messages exchanged by the snapshot algorithm are called
control messages



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 34/44

Recording a Consistent Global Snapshot

■ Proposed by Chandy and Lamport (CL)

■ Assumptions and Features:

◆ channels satisfy first-in-first-out (FIFO) property

◆ channels are not required to be bidirectional
◆ communication topology may not be fully connected

■ Messages exchanged by the underlying computation
(whose snapshot is being recorded) are called application
messages

■ Messages exchanged by the snapshot algorithm are called
control messages



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 34/44

Recording a Consistent Global Snapshot

■ Proposed by Chandy and Lamport (CL)

■ Assumptions and Features:

◆ channels satisfy first-in-first-out (FIFO) property
◆ channels are not required to be bidirectional

◆ communication topology may not be fully connected

■ Messages exchanged by the underlying computation
(whose snapshot is being recorded) are called application
messages

■ Messages exchanged by the snapshot algorithm are called
control messages



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 34/44

Recording a Consistent Global Snapshot

■ Proposed by Chandy and Lamport (CL)

■ Assumptions and Features:

◆ channels satisfy first-in-first-out (FIFO) property
◆ channels are not required to be bidirectional
◆ communication topology may not be fully connected

■ Messages exchanged by the underlying computation
(whose snapshot is being recorded) are called application
messages

■ Messages exchanged by the snapshot algorithm are called
control messages



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 34/44

Recording a Consistent Global Snapshot

■ Proposed by Chandy and Lamport (CL)

■ Assumptions and Features:

◆ channels satisfy first-in-first-out (FIFO) property
◆ channels are not required to be bidirectional
◆ communication topology may not be fully connected

■ Messages exchanged by the underlying computation
(whose snapshot is being recorded) are called application
messages

■ Messages exchanged by the snapshot algorithm are called
control messages



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 34/44

Recording a Consistent Global Snapshot

■ Proposed by Chandy and Lamport (CL)

■ Assumptions and Features:

◆ channels satisfy first-in-first-out (FIFO) property
◆ channels are not required to be bidirectional
◆ communication topology may not be fully connected

■ Messages exchanged by the underlying computation
(whose snapshot is being recorded) are called application
messages

■ Messages exchanged by the snapshot algorithm are called
control messages



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 35/44

The CL Protocol

■ Initially: all processes are colored blue

■ Eventually: all processes become red

■ On changing color from blue to red:
record local snapshot
send a marker message along all outgoing channels

■ On receiving marker message along incoming channel C:
if color is blue then

change color from blue to red
endif
record state of channel C as application messages

received along C since turning red

■ Any process can initiate the snapshot protocol by
spontaneously changing its color from blue to red
◆ there can be multiple initiators of the snapshot protocol



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 35/44

The CL Protocol

■ Initially: all processes are colored blue

■ Eventually: all processes become red

■ On changing color from blue to red:
record local snapshot
send a marker message along all outgoing channels

■ On receiving marker message along incoming channel C:
if color is blue then

change color from blue to red
endif
record state of channel C as application messages

received along C since turning red

■ Any process can initiate the snapshot protocol by
spontaneously changing its color from blue to red
◆ there can be multiple initiators of the snapshot protocol



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 35/44

The CL Protocol

■ Initially: all processes are colored blue

■ Eventually: all processes become red

■ On changing color from blue to red:
record local snapshot
send a marker message along all outgoing channels

■ On receiving marker message along incoming channel C:
if color is blue then

change color from blue to red
endif
record state of channel C as application messages

received along C since turning red

■ Any process can initiate the snapshot protocol by
spontaneously changing its color from blue to red
◆ there can be multiple initiators of the snapshot protocol



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 35/44

The CL Protocol

■ Initially: all processes are colored blue

■ Eventually: all processes become red

■ On changing color from blue to red:
record local snapshot
send a marker message along all outgoing channels

■ On receiving marker message along incoming channel C:
if color is blue then

change color from blue to red
endif
record state of channel C as application messages

received along C since turning red

■ Any process can initiate the snapshot protocol by
spontaneously changing its color from blue to red
◆ there can be multiple initiators of the snapshot protocol



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 35/44

The CL Protocol

■ Initially: all processes are colored blue

■ Eventually: all processes become red

■ On changing color from blue to red:
record local snapshot
send a marker message along all outgoing channels

■ On receiving marker message along incoming channel C:
if color is blue then

change color from blue to red
endif
record state of channel C as application messages

received along C since turning red

■ Any process can initiate the snapshot protocol by
spontaneously changing its color from blue to red

◆ there can be multiple initiators of the snapshot protocol



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 35/44

The CL Protocol

■ Initially: all processes are colored blue

■ Eventually: all processes become red

■ On changing color from blue to red:
record local snapshot
send a marker message along all outgoing channels

■ On receiving marker message along incoming channel C:
if color is blue then

change color from blue to red
endif
record state of channel C as application messages

received along C since turning red

■ Any process can initiate the snapshot protocol by
spontaneously changing its color from blue to red
◆ there can be multiple initiators of the snapshot protocol



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 36/44

The CL Protocol (Continued)

■ Global Snapshot: local snapshots of processes just after
they turn red

■ In-Transit Messages: blue application messages received
by processes after they have turned red

■ Why is the global snapshot consistent?
◆ Assume an application message has the same color as

its sender
◆ Can a blue process receive a red application message?



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 36/44

The CL Protocol (Continued)

■ Global Snapshot: local snapshots of processes just after
they turn red

■ In-Transit Messages: blue application messages received
by processes after they have turned red

■ Why is the global snapshot consistent?
◆ Assume an application message has the same color as

its sender
◆ Can a blue process receive a red application message?



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 36/44

The CL Protocol (Continued)

■ Global Snapshot: local snapshots of processes just after
they turn red

■ In-Transit Messages: blue application messages received
by processes after they have turned red

■ Why is the global snapshot consistent?

◆ Assume an application message has the same color as
its sender

◆ Can a blue process receive a red application message?



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 36/44

The CL Protocol (Continued)

■ Global Snapshot: local snapshots of processes just after
they turn red

■ In-Transit Messages: blue application messages received
by processes after they have turned red

■ Why is the global snapshot consistent?
◆ Assume an application message has the same color as

its sender

◆ Can a blue process receive a red application message?



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 36/44

The CL Protocol (Continued)

■ Global Snapshot: local snapshots of processes just after
they turn red

■ In-Transit Messages: blue application messages received
by processes after they have turned red

■ Why is the global snapshot consistent?
◆ Assume an application message has the same color as

its sender
◆ Can a blue process receive a red application message?



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 37/44

The CL Protocol: An Illustration

■ Three processes: P1, P2 and P3

■ Five channels: C1,2, C1,3, C2,1, C2,3 and C3,1

P1

P2
P3

C2,3

C1,2

C2,1

C1,3

C3,1



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 38/44

The CL Protocol: An Illustration (Continued)

m3

m1

m4

m5

m2

P1

P2

P3

1. All processes are blue

m3

m1

m4

m5

m2

P1

P2

P3

1. P1 receives the marker message along C3,1

2. P1 records the state of C3,1 as {m2, m3}



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 38/44

The CL Protocol: An Illustration (Continued)

m3

m1

m4

m5

m2

P1

P2

P3

1. P1 turns red
2. P1 sends a marker message along C1,2 and C1,3

m3

m1

m4

m5

m2

P1

P2

P3

1. P1 receives the marker message along C3,1

2. P1 records the state of C3,1 as {m2, m3}



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 38/44

The CL Protocol: An Illustration (Continued)

m3

m1

m4

m5

m2

P1

P2

P3

1. P2 receives the marker message along C1,2 and turns red
2. P2 sends a marker message along C2,1 and C2,3

3. P2 records the state of C1,2 as ∅

m3

m1

m4

m5

m2

P1

P2

P3

1. P1 receives the marker message along C3,1

2. P1 records the state of C3,1 as {m2, m3}



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 38/44

The CL Protocol: An Illustration (Continued)

m3

m1

m4

m5

m2

P1

P2

P3

1. P3 receives the marker message along C1,3 and turns red
2. P3 sends a marker message along C3,1

3. P3 records the state of C1,3 as ∅

m3

m1

m4

m5

m2

P1

P2

P3

1. P1 receives the marker message along C3,1

2. P1 records the state of C3,1 as {m2, m3}



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 38/44

The CL Protocol: An Illustration (Continued)

m3

m1

m4

m5

m2

P1

P2

P3

1. P1 receives the marker message along C2,1

2. P1 records the state of C2,1 as {m4, m5}

m3

m1

m4

m5

m2

P1

P2

P3

1. P1 receives the marker message along C3,1

2. P1 records the state of C3,1 as {m2, m3}



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 38/44

The CL Protocol: An Illustration (Continued)

m3

m1

m4

m5

m2

P1

P2

P3

1. P3 receives the marker message along C2,3

2. P3 records the state of C2,3 as {m1}

m3

m1

m4

m5

m2

P1

P2

P3

1. P1 receives the marker message along C3,1

2. P1 records the state of C3,1 as {m2, m3}



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 38/44

The CL Protocol: An Illustration (Continued)

m3

m1

m4

m5

m2

P1

P2

P3

1. P1 receives the marker message along C3,1

2. P1 records the state of C3,1 as {m2, m3}



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 39/44

A Subclass of Distributed Computation

■ Many distributed computations obey the following
paradigm:

◆ A process is either in active state or passive state
◆ A process can send an application message only when

it is active
◆ An active process can become passive at any time
◆ A passive process, on receiving an application

message, becomes active

■ Intuitively:

◆ if a process is active, then it is doing some work
◆ if process is passive, then it is idle
◆ an active process uses an application message to send

a part of its work to another process



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 39/44

A Subclass of Distributed Computation

■ Many distributed computations obey the following
paradigm:

◆ A process is either in active state or passive state

◆ A process can send an application message only when
it is active

◆ An active process can become passive at any time
◆ A passive process, on receiving an application

message, becomes active

■ Intuitively:

◆ if a process is active, then it is doing some work
◆ if process is passive, then it is idle
◆ an active process uses an application message to send

a part of its work to another process



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 39/44

A Subclass of Distributed Computation

■ Many distributed computations obey the following
paradigm:

◆ A process is either in active state or passive state
◆ A process can send an application message only when

it is active

◆ An active process can become passive at any time
◆ A passive process, on receiving an application

message, becomes active

■ Intuitively:

◆ if a process is active, then it is doing some work
◆ if process is passive, then it is idle
◆ an active process uses an application message to send

a part of its work to another process



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 39/44

A Subclass of Distributed Computation

■ Many distributed computations obey the following
paradigm:

◆ A process is either in active state or passive state
◆ A process can send an application message only when

it is active
◆ An active process can become passive at any time

◆ A passive process, on receiving an application
message, becomes active

■ Intuitively:

◆ if a process is active, then it is doing some work
◆ if process is passive, then it is idle
◆ an active process uses an application message to send

a part of its work to another process



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 39/44

A Subclass of Distributed Computation

■ Many distributed computations obey the following
paradigm:

◆ A process is either in active state or passive state
◆ A process can send an application message only when

it is active
◆ An active process can become passive at any time
◆ A passive process, on receiving an application

message, becomes active

■ Intuitively:

◆ if a process is active, then it is doing some work
◆ if process is passive, then it is idle
◆ an active process uses an application message to send

a part of its work to another process



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 39/44

A Subclass of Distributed Computation

■ Many distributed computations obey the following
paradigm:

◆ A process is either in active state or passive state
◆ A process can send an application message only when

it is active
◆ An active process can become passive at any time
◆ A passive process, on receiving an application

message, becomes active

■ Intuitively:

◆ if a process is active, then it is doing some work
◆ if process is passive, then it is idle
◆ an active process uses an application message to send

a part of its work to another process



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 39/44

A Subclass of Distributed Computation

■ Many distributed computations obey the following
paradigm:

◆ A process is either in active state or passive state
◆ A process can send an application message only when

it is active
◆ An active process can become passive at any time
◆ A passive process, on receiving an application

message, becomes active

■ Intuitively:

◆ if a process is active, then it is doing some work

◆ if process is passive, then it is idle
◆ an active process uses an application message to send

a part of its work to another process



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 39/44

A Subclass of Distributed Computation

■ Many distributed computations obey the following
paradigm:

◆ A process is either in active state or passive state
◆ A process can send an application message only when

it is active
◆ An active process can become passive at any time
◆ A passive process, on receiving an application

message, becomes active

■ Intuitively:

◆ if a process is active, then it is doing some work
◆ if process is passive, then it is idle

◆ an active process uses an application message to send
a part of its work to another process



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 39/44

A Subclass of Distributed Computation

■ Many distributed computations obey the following
paradigm:

◆ A process is either in active state or passive state
◆ A process can send an application message only when

it is active
◆ An active process can become passive at any time
◆ A passive process, on receiving an application

message, becomes active

■ Intuitively:

◆ if a process is active, then it is doing some work
◆ if process is passive, then it is idle
◆ an active process uses an application message to send

a part of its work to another process



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 40/44

Distributed Computation: An Illustration

�����

P2

P3

P1

P2

P3

P1

m1

m2

m3

m4



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 40/44

Distributed Computation: An Illustration

�����

P2

P3

P1

m1

P2

P3

P1

m1

m2

m3

m4



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 40/44

Distributed Computation: An Illustration

�����

�����

P2

P3

P1

m1

P2

P3

P1

m1

m2

m3

m4



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 40/44

Distributed Computation: An Illustration

�����

�����

P2

P3

P1

m1

m2

P2

P3

P1

m1

m2

m3

m4



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 40/44

Distributed Computation: An Illustration

�����

�����

����������

P2

P3

P1

m1

m2

P2

P3

P1

m1

m2

m3

m4



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 40/44

Distributed Computation: An Illustration

�����

�����

����������

P2

P3

P1

m1

m2

m3

P2

P3

P1

m1

m2

m3

m4



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 40/44

Distributed Computation: An Illustration

�����

�����

����������

P2

P3

P1

m1

m2

m3

m4

P2

P3

P1

m1

m2

m3

m4



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 40/44

Distributed Computation: An Illustration

�����

�����

����� �����		�



P2

P3

P1

m1

m2

m3

m4

P2

P3

P1

m1

m2

m3

m4



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 40/44

Distributed Computation: An Illustration

�����

����� �����

����� 		�


�����

���

P2

P3

P1

m1

m2

m3

m4

P2

P3

P1

m1

m2

m3

m4



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 40/44

Distributed Computation: An Illustration

�����

����� �����

����� 		�

 �����

���

�����

P2

P3

P1

m1

m2

m3

m4



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 41/44

Termination Detection

■ To detect if the computation has finished doing all the work

◆ all processes have become passive, and
◆ all channels have become empty

■ Different types of computations:

◆ diffusing: only one process is active in the beginning
◆ non-diffusing: any subset of processes can be active in

the beginning
■ no process knows which processes are active and

which processes are passive



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 41/44

Termination Detection

■ To detect if the computation has finished doing all the work

◆ all processes have become passive, and

◆ all channels have become empty

■ Different types of computations:

◆ diffusing: only one process is active in the beginning
◆ non-diffusing: any subset of processes can be active in

the beginning
■ no process knows which processes are active and

which processes are passive



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 41/44

Termination Detection

■ To detect if the computation has finished doing all the work

◆ all processes have become passive, and
◆ all channels have become empty

■ Different types of computations:

◆ diffusing: only one process is active in the beginning
◆ non-diffusing: any subset of processes can be active in

the beginning
■ no process knows which processes are active and

which processes are passive



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 41/44

Termination Detection

■ To detect if the computation has finished doing all the work

◆ all processes have become passive, and
◆ all channels have become empty

■ Different types of computations:

◆ diffusing: only one process is active in the beginning
◆ non-diffusing: any subset of processes can be active in

the beginning
■ no process knows which processes are active and

which processes are passive



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 41/44

Termination Detection

■ To detect if the computation has finished doing all the work

◆ all processes have become passive, and
◆ all channels have become empty

■ Different types of computations:

◆ diffusing: only one process is active in the beginning

◆ non-diffusing: any subset of processes can be active in
the beginning
■ no process knows which processes are active and

which processes are passive



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 41/44

Termination Detection

■ To detect if the computation has finished doing all the work

◆ all processes have become passive, and
◆ all channels have become empty

■ Different types of computations:

◆ diffusing: only one process is active in the beginning
◆ non-diffusing: any subset of processes can be active in

the beginning

■ no process knows which processes are active and
which processes are passive



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 41/44

Termination Detection

■ To detect if the computation has finished doing all the work

◆ all processes have become passive, and
◆ all channels have become empty

■ Different types of computations:

◆ diffusing: only one process is active in the beginning
◆ non-diffusing: any subset of processes can be active in

the beginning
■ no process knows which processes are active and

which processes are passive



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 42/44

Huang’s Algorithm

■ Assumption: computation is diffusing

◆ the initially active process is called the coordinator
■ coordinator is responsible for detecting termination

■ Initially:

◆ coordinator has a weight of 1
◆ all other processes have a weight of 0

■ Invariants:

◆ total amount of weight in the system is 1
◆ a non-coordinator process has a non-zero weight if and

only if it is active
◆ a channel has a non-zero weight if and only if it is

non-empty
■ weight of a channel is the sum of the weight of all its

messages



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 42/44

Huang’s Algorithm

■ Assumption: computation is diffusing

◆ the initially active process is called the coordinator

■ coordinator is responsible for detecting termination

■ Initially:

◆ coordinator has a weight of 1
◆ all other processes have a weight of 0

■ Invariants:

◆ total amount of weight in the system is 1
◆ a non-coordinator process has a non-zero weight if and

only if it is active
◆ a channel has a non-zero weight if and only if it is

non-empty
■ weight of a channel is the sum of the weight of all its

messages



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 42/44

Huang’s Algorithm

■ Assumption: computation is diffusing

◆ the initially active process is called the coordinator
■ coordinator is responsible for detecting termination

■ Initially:

◆ coordinator has a weight of 1
◆ all other processes have a weight of 0

■ Invariants:

◆ total amount of weight in the system is 1
◆ a non-coordinator process has a non-zero weight if and

only if it is active
◆ a channel has a non-zero weight if and only if it is

non-empty
■ weight of a channel is the sum of the weight of all its

messages



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 42/44

Huang’s Algorithm

■ Assumption: computation is diffusing

◆ the initially active process is called the coordinator
■ coordinator is responsible for detecting termination

■ Initially:

◆ coordinator has a weight of 1
◆ all other processes have a weight of 0

■ Invariants:

◆ total amount of weight in the system is 1
◆ a non-coordinator process has a non-zero weight if and

only if it is active
◆ a channel has a non-zero weight if and only if it is

non-empty
■ weight of a channel is the sum of the weight of all its

messages



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 42/44

Huang’s Algorithm

■ Assumption: computation is diffusing

◆ the initially active process is called the coordinator
■ coordinator is responsible for detecting termination

■ Initially:

◆ coordinator has a weight of 1

◆ all other processes have a weight of 0

■ Invariants:

◆ total amount of weight in the system is 1
◆ a non-coordinator process has a non-zero weight if and

only if it is active
◆ a channel has a non-zero weight if and only if it is

non-empty
■ weight of a channel is the sum of the weight of all its

messages



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 42/44

Huang’s Algorithm

■ Assumption: computation is diffusing

◆ the initially active process is called the coordinator
■ coordinator is responsible for detecting termination

■ Initially:

◆ coordinator has a weight of 1
◆ all other processes have a weight of 0

■ Invariants:

◆ total amount of weight in the system is 1
◆ a non-coordinator process has a non-zero weight if and

only if it is active
◆ a channel has a non-zero weight if and only if it is

non-empty
■ weight of a channel is the sum of the weight of all its

messages



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 42/44

Huang’s Algorithm

■ Assumption: computation is diffusing

◆ the initially active process is called the coordinator
■ coordinator is responsible for detecting termination

■ Initially:

◆ coordinator has a weight of 1
◆ all other processes have a weight of 0

■ Invariants:

◆ total amount of weight in the system is 1
◆ a non-coordinator process has a non-zero weight if and

only if it is active
◆ a channel has a non-zero weight if and only if it is

non-empty
■ weight of a channel is the sum of the weight of all its

messages



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 42/44

Huang’s Algorithm

■ Assumption: computation is diffusing

◆ the initially active process is called the coordinator
■ coordinator is responsible for detecting termination

■ Initially:

◆ coordinator has a weight of 1
◆ all other processes have a weight of 0

■ Invariants:

◆ total amount of weight in the system is 1

◆ a non-coordinator process has a non-zero weight if and
only if it is active

◆ a channel has a non-zero weight if and only if it is
non-empty
■ weight of a channel is the sum of the weight of all its

messages



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 42/44

Huang’s Algorithm

■ Assumption: computation is diffusing

◆ the initially active process is called the coordinator
■ coordinator is responsible for detecting termination

■ Initially:

◆ coordinator has a weight of 1
◆ all other processes have a weight of 0

■ Invariants:

◆ total amount of weight in the system is 1
◆ a non-coordinator process has a non-zero weight if and

only if it is active

◆ a channel has a non-zero weight if and only if it is
non-empty
■ weight of a channel is the sum of the weight of all its

messages



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 42/44

Huang’s Algorithm

■ Assumption: computation is diffusing

◆ the initially active process is called the coordinator
■ coordinator is responsible for detecting termination

■ Initially:

◆ coordinator has a weight of 1
◆ all other processes have a weight of 0

■ Invariants:

◆ total amount of weight in the system is 1
◆ a non-coordinator process has a non-zero weight if and

only if it is active
◆ a channel has a non-zero weight if and only if it is

non-empty

■ weight of a channel is the sum of the weight of all its
messages



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 42/44

Huang’s Algorithm

■ Assumption: computation is diffusing

◆ the initially active process is called the coordinator
■ coordinator is responsible for detecting termination

■ Initially:

◆ coordinator has a weight of 1
◆ all other processes have a weight of 0

■ Invariants:

◆ total amount of weight in the system is 1
◆ a non-coordinator process has a non-zero weight if and

only if it is active
◆ a channel has a non-zero weight if and only if it is

non-empty
■ weight of a channel is the sum of the weight of all its

messages



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 43/44

Huang’s Algorithm (Continued)

■ Actions:

◆ On sending an application message:
■ send half of its weight along with the message

◆ On receiving an application message:
■ add the weight of the message to the current weight

◆ On becoming passive:
■ send the current weight to the coodrinator

■ Coordinator announces termination once:

◆ it has become passive and
◆ it has collected all the weight



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 43/44

Huang’s Algorithm (Continued)

■ Actions:

◆ On sending an application message:

■ send half of its weight along with the message

◆ On receiving an application message:
■ add the weight of the message to the current weight

◆ On becoming passive:
■ send the current weight to the coodrinator

■ Coordinator announces termination once:

◆ it has become passive and
◆ it has collected all the weight



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 43/44

Huang’s Algorithm (Continued)

■ Actions:

◆ On sending an application message:
■ send half of its weight along with the message

◆ On receiving an application message:
■ add the weight of the message to the current weight

◆ On becoming passive:
■ send the current weight to the coodrinator

■ Coordinator announces termination once:

◆ it has become passive and
◆ it has collected all the weight



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 43/44

Huang’s Algorithm (Continued)

■ Actions:

◆ On sending an application message:
■ send half of its weight along with the message

◆ On receiving an application message:

■ add the weight of the message to the current weight

◆ On becoming passive:
■ send the current weight to the coodrinator

■ Coordinator announces termination once:

◆ it has become passive and
◆ it has collected all the weight



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 43/44

Huang’s Algorithm (Continued)

■ Actions:

◆ On sending an application message:
■ send half of its weight along with the message

◆ On receiving an application message:
■ add the weight of the message to the current weight

◆ On becoming passive:
■ send the current weight to the coodrinator

■ Coordinator announces termination once:

◆ it has become passive and
◆ it has collected all the weight



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 43/44

Huang’s Algorithm (Continued)

■ Actions:

◆ On sending an application message:
■ send half of its weight along with the message

◆ On receiving an application message:
■ add the weight of the message to the current weight

◆ On becoming passive:

■ send the current weight to the coodrinator

■ Coordinator announces termination once:

◆ it has become passive and
◆ it has collected all the weight



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 43/44

Huang’s Algorithm (Continued)

■ Actions:

◆ On sending an application message:
■ send half of its weight along with the message

◆ On receiving an application message:
■ add the weight of the message to the current weight

◆ On becoming passive:
■ send the current weight to the coodrinator

■ Coordinator announces termination once:

◆ it has become passive and
◆ it has collected all the weight



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 43/44

Huang’s Algorithm (Continued)

■ Actions:

◆ On sending an application message:
■ send half of its weight along with the message

◆ On receiving an application message:
■ add the weight of the message to the current weight

◆ On becoming passive:
■ send the current weight to the coodrinator

■ Coordinator announces termination once:

◆ it has become passive and
◆ it has collected all the weight



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 43/44

Huang’s Algorithm (Continued)

■ Actions:

◆ On sending an application message:
■ send half of its weight along with the message

◆ On receiving an application message:
■ add the weight of the message to the current weight

◆ On becoming passive:
■ send the current weight to the coodrinator

■ Coordinator announces termination once:

◆ it has become passive and

◆ it has collected all the weight



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 43/44

Huang’s Algorithm (Continued)

■ Actions:

◆ On sending an application message:
■ send half of its weight along with the message

◆ On receiving an application message:
■ add the weight of the message to the current weight

◆ On becoming passive:
■ send the current weight to the coodrinator

■ Coordinator announces termination once:

◆ it has become passive and
◆ it has collected all the weight



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 44/44

Huang’s Algorithm: An Illustration

�����

P2

P3

P1

1

0

0

P2

P3

P1

m1(
1

2
)

m2(
1

4
)

1 1

2

1

16

0 1

2

m4(
1

16
)

m3(
1

8
)

3

8

1

4

0 1

4

1

8

1

16

3

8

9

16

15

16
1

0

0



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 44/44

Huang’s Algorithm: An Illustration

�����

P2

P3

P1

m1(
1

2
)

1 1

2

0

0

P2

P3

P1

m1(
1

2
)

m2(
1

4
)

1 1

2

1

16

0 1

2

m4(
1

16
)

m3(
1

8
)

3

8

1

4

0 1

4

1

8

1

16

3

8

9

16

15

16
1

0

0



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 44/44

Huang’s Algorithm: An Illustration

�����

�����

�����

�����

P2

P3

P1

m1(
1

2
)

1 1

2

0 1

2

0

P2

P3

P1

m1(
1

2
)

1 1

2

0 1

2

0

P2

P3

P1

m1(
1

2
)

m2(
1

4
)

1 1

2

1

16

0 1

2

m4(
1

16
)

m3(
1

8
)

3

8

1

4

0 1

4

1

8

1

16

3

8

9

16

15

16
1

0

0



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 44/44

Huang’s Algorithm: An Illustration

�����

�����

P2

P1

m1(
1

2
)

m2(
1

4
)

1 1

2

0 1

2

1

4

0
P3

P2

P3

P1

m1(
1

2
)

m2(
1

4
)

1 1

2

1

16

0 1

2

m4(
1

16
)

m3(
1

8
)

3

8

1

4

0 1

4

1

8

1

16

3

8

9

16

15

16
1

0

0



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 44/44

Huang’s Algorithm: An Illustration

�����

�����

����������

P2

P3

P1

m1(
1

2
)

m2(
1

4
)

1 1

2

0 1

2

1

4

0 1

4

P2

P3

P1

m1(
1

2
)

m2(
1

4
)

1 1

2

1

16

0 1

2

m4(
1

16
)

m3(
1

8
)

3

8

1

4

0 1

4

1

8

1

16

3

8

9

16

15

16
1

0

0



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 44/44

Huang’s Algorithm: An Illustration

�����

�����

����������

P2

P3

P1

m1(
1

2
)

m2(
1

4
)

1 1

2

0 1

2

m3(
1

8
)

1

4

0 1

4

1

8

P2

P3

P1

m1(
1

2
)

m2(
1

4
)

1 1

2

1

16

0 1

2

m4(
1

16
)

m3(
1

8
)

3

8

1

4

0 1

4

1

8

1

16

3

8

9

16

15

16
1

0

0



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 44/44

Huang’s Algorithm: An Illustration

�����

�����

����������

P2

P3

P1

m1(
1

2
)

m2(
1

4
)

1 1

2

0 1

2

m4(
1

16
)

m3(
1

8
)

1

4

0 1

4

1

8

1

16

3

8

P2

P3

P1

m1(
1

2
)

m2(
1

4
)

1 1

2

1

16

0 1

2

m4(
1

16
)

m3(
1

8
)

3

8

1

4

0 1

4

1

8

1

16

3

8

9

16

15

16
1

0

0



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 44/44

Huang’s Algorithm: An Illustration

�����

�����

����� �����		�



P2

P3

P1

m1(
1

2
)

m2(
1

4
)

1 1

2

0 1

2

m4(
1

16
)

m3(
1

8
)

1

4

0 1

4

1

8

1

16

3

8

9

16

P2

P3

P1

m1(
1

2
)

m2(
1

4
)

1 1

2

1

16

0 1

2

m4(
1

16
)

m3(
1

8
)

3

8

1

4

0 1

4

1

8

1

16

3

8

9

16

15

16
1

0

0



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 44/44

Huang’s Algorithm: An Illustration

�����

����� �����

����� 		�


�����

���

P2

P3

P1

m1(
1

2
)

m2(
1

4
)

1 1

2

1

16

0 1

2

m4(
1

16
)

m3(
1

8
)

3

8

1

4

0 1

4

1

8

1

16

3

8

9

16

15

16

0

0

P2

P3

P1

m1(
1

2
)

m2(
1

4
)

1 1

2

1

16

0 1

2

m4(
1

16
)

m3(
1

8
)

3

8

1

4

0 1

4

1

8

1

16

3

8

9

16

15

16
1

0

0



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 44/44

Huang’s Algorithm: An Illustration

�����

����� �����

����� 		�

 �����

���

�����

P2

P3

P1

m1(
1

2
)

m2(
1

4
)

1 1

2

1

16

0 1

2

m4(
1

16
)

m3(
1

8
)

3

8

1

4

0 1

4

1

8

1

16

3

8

9

16

15

16
1

0

0


	Inherent Limitations
	Two Important Characteristics
	Two Important Characteristics

	Absence of Global Clock
	Absence of Global Clock
	Absence of Global Clock
	Absence of Global Clock

	Absence of Shared Memory
	Absence of Shared Memory
	Absence of Shared Memory
	Absence of Shared Memory
	Absence of Shared Memory


	Ordering of Events
	When is it possible to order two events?
	When is it possible to order two events?
	When is it possible to order two events?
	When is it possible to order two events?
	When is it possible to order two events?
	When is it possible to order two events?

	Happened-Before Relation
	Happened-Before Relation
	Happened-Before Relation
	Happened-Before Relation
	Happened-Before Relation

	Concurrent Events
	Concurrent Events
	Concurrent Events
	Concurrent Events
	Concurrent Events


	Abstract Clocks
	Different Kinds of Clocks
	Different Kinds of Clocks
	Different Kinds of Clocks
	Different Kinds of Clocks

	Logical Clock
	Logical Clock
	Logical Clock

	Implementing Logical Clock
	Implementing Logical Clock
	Implementing Logical Clock
	Implementing Logical Clock
	Implementing Logical Clock
	Implementing Logical Clock

	Implementing Logical Clock: An Illustration
	Implementing Logical Clock: An Illustration
	Implementing Logical Clock: An Illustration
	Implementing Logical Clock: An Illustration
	Implementing Logical Clock: An Illustration

	Limitation of Logical Clock
	Limitation of Logical Clock

	Vector Clock
	Vector Clock

	Comparing Two Vectors
	Comparing Two Vectors
	Comparing Two Vectors
	Comparing Two Vectors

	Implementing Vector Clock
	Implementing Vector Clock
	Implementing Vector Clock
	Implementing Vector Clock
	Implementing Vector Clock
	Implementing Vector Clock

	Implementing Vector Clock: An Illustration
	Implementing Vector Clock: An Illustration
	Implementing Vector Clock: An Illustration
	Implementing Vector Clock: An Illustration
	Implementing Vector Clock: An Illustration

	Properties of Vector Clock
	Properties of Vector Clock
	Properties of Vector Clock
	Properties of Vector Clock
	Properties of Vector Clock
	Properties of Vector Clock


	Ordering of Messages
	Ordering of Messages
	Ordering of Messages

	Useful Notations
	Causal Delivery of Messages
	Causal Delivery of Messages
	Causal Delivery of Messages

	A Causally Ordered Delivery Protocol
	A Causally Ordered Delivery Protocol
	A Causally Ordered Delivery Protocol

	The BSS Protocol
	The BSS Protocol
	The BSS Protocol
	The BSS Protocol

	The BSS Protocol: An Illustration
	The BSS Protocol: An Illustration
	The BSS Protocol: An Illustration
	The BSS Protocol: An Illustration
	The BSS Protocol: An Illustration
	The BSS Protocol: An Illustration
	The BSS Protocol: An Illustration
	The BSS Protocol: An Illustration

	Another Causally Ordered Delivery Protocol
	Another Causally Ordered Delivery Protocol
	Another Causally Ordered Delivery Protocol
	Another Causally Ordered Delivery Protocol
	Another Causally Ordered Delivery Protocol

	When to Deliver a Message?
	When to Deliver a Message?
	When to Deliver a Message?
	When to Deliver a Message?

	The SES Protocol
	The SES Protocol
	The SES Protocol
	The SES Protocol

	The SES Protocol (Continued)
	The SES Protocol (Continued)
	The SES Protocol (Continued)
	The SES Protocol (Continued)

	The SES Protocol: An Illustration
	The SES Protocol: An Illustration
	The SES Protocol: An Illustration
	The SES Protocol: An Illustration
	The SES Protocol: An Illustration
	The SES Protocol: An Illustration
	The SES Protocol: An Illustration


	State of a Distributed System
	State of a Distributed System
	State of a Distributed System
	State of a Distributed System
	State of a Distributed System
	State of a Distributed System
	State of a Distributed System

	Events and Local States
	Events and Local States
	Events and Local States
	Events and Local States

	When is a Global State Meaningful?
	When is a Global State Meaningful?
	When is a Global State Meaningful?

	Revisiting Happened-Before Relation
	Revisiting Happened-Before Relation
	Revisiting Happened-Before Relation
	Revisiting Happened-Before Relation
	Revisiting Happened-Before Relation
	Revisiting Happened-Before Relation
	Revisiting Happened-Before Relation
	Revisiting Happened-Before Relation

	A Consistent Global State
	A Consistent Global State
	A Consistent Global State

	Recording a Consistent Global Snapshot
	Recording a Consistent Global Snapshot
	Recording a Consistent Global Snapshot
	Recording a Consistent Global Snapshot
	Recording a Consistent Global Snapshot
	Recording a Consistent Global Snapshot

	The CL Protocol
	The CL Protocol
	The CL Protocol
	The CL Protocol
	The CL Protocol
	The CL Protocol

	The CL Protocol (Continued)
	The CL Protocol (Continued)
	The CL Protocol (Continued)
	The CL Protocol (Continued)
	The CL Protocol (Continued)

	The CL Protocol: An Illustration
	The CL Protocol: An Illustration (Continued)
	The CL Protocol: An Illustration (Continued)
	The CL Protocol: An Illustration (Continued)
	The CL Protocol: An Illustration (Continued)
	The CL Protocol: An Illustration (Continued)
	The CL Protocol: An Illustration (Continued)
	The CL Protocol: An Illustration (Continued)


	Monitoring a Distributed System
	A Subclass of Distributed Computation
	A Subclass of Distributed Computation
	A Subclass of Distributed Computation
	A Subclass of Distributed Computation
	A Subclass of Distributed Computation
	A Subclass of Distributed Computation
	A Subclass of Distributed Computation
	A Subclass of Distributed Computation
	A Subclass of Distributed Computation

	Distributed Computation: An Illustration
	Distributed Computation: An Illustration
	Distributed Computation: An Illustration
	Distributed Computation: An Illustration
	Distributed Computation: An Illustration
	Distributed Computation: An Illustration
	Distributed Computation: An Illustration
	Distributed Computation: An Illustration
	Distributed Computation: An Illustration
	Distributed Computation: An Illustration

	Termination Detection
	Termination Detection
	Termination Detection
	Termination Detection
	Termination Detection
	Termination Detection
	Termination Detection

	Huang's Algorithm
	Huang's Algorithm
	Huang's Algorithm
	Huang's Algorithm
	Huang's Algorithm
	Huang's Algorithm
	Huang's Algorithm
	Huang's Algorithm
	Huang's Algorithm
	Huang's Algorithm
	Huang's Algorithm

	Huang's Algorithm (Continued)
	Huang's Algorithm (Continued)
	Huang's Algorithm (Continued)
	Huang's Algorithm (Continued)
	Huang's Algorithm (Continued)
	Huang's Algorithm (Continued)
	Huang's Algorithm (Continued)
	Huang's Algorithm (Continued)
	Huang's Algorithm (Continued)
	Huang's Algorithm (Continued)

	Huang's Algorithm: An Illustration
	Huang's Algorithm: An Illustration
	Huang's Algorithm: An Illustration
	Huang's Algorithm: An Illustration
	Huang's Algorithm: An Illustration
	Huang's Algorithm: An Illustration
	Huang's Algorithm: An Illustration
	Huang's Algorithm: An Illustration
	Huang's Algorithm: An Illustration
	Huang's Algorithm: An Illustration



