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Absence of Global Clock

■ Different processes may have different notions of time

I invented AIDS cure!

Who did it first?

Patent Officer

I invented AIDS cure!

Earth Mars

Problem: How do we order events on different processes?
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Absence of Shared Memory

■ A process does not know current state of other processes

Bob

Harry

What is Harry doing
at present?

0

Problem: How do we obtain a coherent view of the system?
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When is it possible to order two events?

Three cases:

1. Events executed on the same process:

■ if e and f are events on the same process and e

occurred before f , then e happened-before f

2. Communication events of the same message:
■ if e is the send event of a message and f is the receive

event of the same message, then e happened-before f

3. Events related by transitivity:
■ if event e happened-before event g and event g

happened-before event f , then e happened-before f
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Happened-Before Relation

■ Happened-before relation is denoted by →

■ Illustration:

g h i

a b c

d e f
P2

P3

P1

◆ Events on the same process:
examples: a → b, a → c, d → f

◆ Events of the same message:
examples: b → e, f → i

◆ Transitivity:
examples: a → e, a → i, e → i
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■ Concurrency relation is not transitive:
example: a ‖ d and d ‖ c but a ∦ c
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Different Kinds of Clocks

■ Logical Clocks
◆ used to totally order all events

■ Vector Clocks
◆ used to track happened-before relation

■ Matrix Clocks
◆ used to track what other processes know about other

processes

■ Direct Dependency Clocks
◆ used to track direct causal dependencies
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Logical Clock

■ Implements the notion of virtual time

■ Can be used to totally order all events

■ Assigns timestamp to each event in a way that is
consistent with the happened-before relation:

e → f ⇒ C(e) < C(f)

C(e): timestamp for event e

C(f): timestamp for event f
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Implementing Logical Clock

■ Each process has a local scalar clock, initialized to zero
◆ Ci denotes the local clock of process Pi

■ Action depends on the type of the event:

■ Protocol for process Pi:

◆ On executing an interval event:
Ci := Ci + 1

◆ On sending a message m:
Ci := Ci + 1
piggyback Ci on m

◆ On receiving a message m:
let tm be the timestamp piggybacked on m

Ci := max{Ci, tm} + 1
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Limitation of Logical Clock

■ Logical clock cannot be used to determine whether two
events are concurrent

e ‖ f does not imply C(e) = C(f)
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Vector Clock

■ Captures the happened-before relation

■ Assigns timestamp to each event such that:

e → f ⇐⇒ C(e) < C(f)

C(e): timestamp for event e

C(f): timestamp for event f
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Comparing Two Vectors

■ Vectors are compared component-wise:

◆ Equality:

V = V ′ iff 〈∀i : V [i] = V ′[i]〉

◆ Less Than:

V < V ′ iff 〈∀i : V [i] ≤ V ′[i]〉 ∧ 〈∃i : V [i] < V ′[i]〉





1

2

0



 <





2

3

1



 and





2

1

1



 <





2

3

4



 but





1

2

1



 6<





2

1

3







Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 14/44

Comparing Two Vectors

■ Vectors are compared component-wise:

◆ Equality:

V = V ′ iff 〈∀i : V [i] = V ′[i]〉

◆ Less Than:

V < V ′ iff 〈∀i : V [i] ≤ V ′[i]〉 ∧ 〈∃i : V [i] < V ′[i]〉





1

2

0



 <





2

3

1



 and





2

1

1



 <





2

3

4



 but





1

2

1



 6<





2

1

3







Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 14/44

Comparing Two Vectors

■ Vectors are compared component-wise:

◆ Equality:

V = V ′ iff 〈∀i : V [i] = V ′[i]〉

◆ Less Than:

V < V ′ iff 〈∀i : V [i] ≤ V ′[i]〉 ∧ 〈∃i : V [i] < V ′[i]〉





1

2

0



 <





2

3

1



 and





2

1

1



 <





2

3

4



 but





1

2

1



 6<





2

1

3







Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 14/44

Comparing Two Vectors

■ Vectors are compared component-wise:

◆ Equality:

V = V ′ iff 〈∀i : V [i] = V ′[i]〉

◆ Less Than:

V < V ′ iff 〈∀i : V [i] ≤ V ′[i]〉 ∧ 〈∃i : V [i] < V ′[i]〉





1

2

0



 <





2

3

1



 and





2

1

1



 <





2

3

4



 but





1

2

1



 6<





2

1

3







Inherent Limitations

Ordering of Events

Abstract Clocks

❖ Different Kinds of Clocks

❖ Logical Clock

❖ Implementing Logical Clock

❖ Implementing Logical Clock:

An Illustration
❖ Limitation of Logical Clock

❖ Vector Clock

❖ Comparing Two Vectors

❖ Implementing Vector Clock

❖ Implementing Vector Clock:

An Illustration
❖ Properties of Vector Clock

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 15/44

Implementing Vector Clock

■ Each process has a local vector clock
◆ Ci denotes the local clock of process Pi

■ Action depends on the type of the event:

■ Protocol for process Pi:

◆ On executing an interval event:
Ci[i] := Ci[i] + 1

◆ On sending a message m:
Ci[i] := Ci[i] + 1
piggyback Ci on m

◆ On receiving a message m:
let tm be the timestamp piggybacked on m

∀k Ci[k] := max{Ci[k], tm[k]}
Ci[i] := Ci[i] + 1
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Properties of Vector Clock

■ How many comparisons are needed to determine whether
an event e happened-before another event f?

◆ As many as N integers may need to be compared in the
worst case, where N is the number of processes

◆ Suppose e and f occurred on processes Pi and Pj

e → f

if and only if

(i = j) ∧ (C(e)[i] < C(f)[i])
∨

(i 6= j) ∧ (C(e)[i] ≤ C(f)[i])
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Ordering of Messages

■ For many applications, messages should be delivered in
certain order to be interpreted meaningfully

■ Example:

m1: Have you seen the movie “Shrek”?

m2: Yes I have and I liked it

Bob

Alice

Tom

◆ m2 cannot be interpreted until m1 has been received
◆ Tom receives m2 before m1: an undesriable behavior
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Useful Notations

■ For a message m:
◆ src(m): source process of m

◆ dst(m): destination process of m

◆ snd(m): send event of m

◆ rcv(m): send event of m

e

m

dst(m)

f

rcv(m)

snd(m)src(m)

Pi

Pj
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Causal Delivery of Messages

■ A message w causally precedes a message m if
snd(w) → snd(m)

■ An execution of a distributed system is said to be causally
ordered if the following holds for every message m:

every message that causally precedes m and is
destined for the same process as m is delivered
before m

Mathematically, for every message w:

(snd(w) → snd(m)) ∧ (dst(w) = dst(m))

⇒

rcv(w) → rcv(m)
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A Causally Ordered Delivery Protocol

■ Proposed by Birman, Schiper and Stephenson (BSS)

■ Assumption:

◆ communication is broadcast based: a process sends a
message to every other process

■ Each process maintains a vector with one entry for each
process:

◆ let Vi denote the vector for process Pi

◆ the jth entry of Vi refers to the number of messages that
have been broadcast by process Pj that Pi knows of
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The BSS Protocol

■ Protocol for process Pi:

◆ On broadcasting a message m:
piggyback Vi on m

Vi[i] := Vi[i] + 1

◆ On arrival of a message m from process Pj :
let Vm be the vector piggybacked on m

deliver m once Vi ≥ Vm

◆ On delivery of a message m sent by process Pj :

Vi[j] := Vi[j] + 1
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The BSS Protocol: An Illustration
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The BSS Protocol: An Illustration
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Another Causally Ordered Delivery Protocol

■ Proposed by Schiper, Eggli and Sandoz (SES)

■ Assumption:

◆ communication is point-to-point
◆ processes are using vector clock algorithm

■ To determine whether a message has arrived out of causal
order:

◆ let Vm denote the vector timestamp of message m

◆ let Vi denote the vector clock of process Pi

Does there exist a message w that causally
precedes m and destined for Pi such that Vi 6> Vw?
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When to Deliver a Message?

■ A message m destined for process Pi can be delivered if:

◆ for every message w that causally precedes m and
destined for Pi:

Vi > Vw

or, equivalently

◆ let past(m, j) denote the set of all messages that
causally precede m and are destined for process Pj :

Vi > max
w∈past(m,i)

{Vw}
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The SES Protocol

■ Each process maintains a list of tuples with at most one
tuple for every other process

◆ let DLi denote the list for process Pi

■ The list is piggybacked on every message a process sends

◆ let DLm denote the list for message m

■ if past(m, j) = ∅, then DLm does not contain a tuple
for process Pj

■ Otherwise, the tuple for process Pj is given by:

(j, max
w∈past(m,j)

{Vw})
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The SES Protocol (Continued)

■ Protocol for process Pi:

◆ On sending a message m to process Pj :
piggyback DLi on m

remove entry for Pj from DLi, if any
add (j, Vm) to DLi

◆ On arrival of a message m from process Pj :
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State of a Distributed System

■ State of a distributed system is a collection of states of all
its processes and channels:

◆ a process state is given by the values of all variables on
the process

◆ a channel state is given by the set of messages in transit
in the channel

■ can be determined by examining states of the two
processes it connects

■ State of a process is called local state or local snapshot

◆ the textbook refers to local state as cut event

◆ cut event is not same as event

■ State of a distributed system is called global state or global
snapshot
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Events and Local States

■ Processes change their states by executing events

■ Example:

P2

y = 3y = 2y = 1

P1

x = 0 x = 2 x = 3

a b

dc

◆ Process P1 changes its state from x = 0 to x = 2 on
executing event a

◆ Process P2 changes its state from y = 2 to y = 3 on
executing event d
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When is a Global State Meaningful?

■ Example:

P2

y = 3y = 2y = 1

P1

x = 0 x = 2 x = 3

a b

dc

◆ Is it possible for x to be 0 and y to be 3 at the same time?

◆ Does {s, x} form a meaningful global state?
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When is a Global State Meaningful?

■ Example:

P2

y = 3y = 2y = 1

P1

a bs t u

dc xwv

x = 0 x = 2 x = 3

◆ Is it possible for x to be 0 and y to be 3 at the same time?

◆ Does {s, x} form a meaningful global state?
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Revisiting Happened-Before Relation

■ Typically, happened-before relation is defined on events

■ The relation can be extended to local states as follows:

◆ let s be a local state of process Pi

◆ let t be a local state of process Pj

◆ s → t if there exist events e and f such that:
1. Pi executed e after s,

2. Pj executed f before t, and

3. e → f
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A Consistent Global State

■ For a global state G, let G[i] refer to the local state of
process Pi in G

■ A global state G is meaningful or consistent if

∀i, j : i 6= j : G[i] ‖ G[j]
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A Consistent Global State

■ For a global state G, let G[i] refer to the local state of
process Pi in G

■ A global state G is meaningful or consistent if

∀i, j : i 6= j : (G[i] 9 G[j]) ∧ (G[j] 9 G[i])

∀i, j : i 6= j : G[i] ‖ G[j]
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Recording a Consistent Global Snapshot

■ Proposed by Chandy and Lamport (CL)

■ Assumptions and Features:

◆ channels satisfy first-in-first-out (FIFO) property
◆ channels are not required to be bidirectional
◆ communication topology may not be fully connected

■ Messages exchanged by the underlying computation
(whose snapshot is being recorded) are called application
messages

■ Messages exchanged by the snapshot algorithm are called
control messages
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The CL Protocol

■ Initially: all processes are colored blue

■ Eventually: all processes become red

■ On changing color from blue to red:
record local snapshot
send a marker message along all outgoing channels

■ On receiving marker message along incoming channel C:
if color is blue then

change color from blue to red
endif
record state of channel C as application messages

received along C since turning red

■ Any process can initiate the snapshot protocol by
spontaneously changing its color from blue to red
◆ there can be multiple initiators of the snapshot protocol
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The CL Protocol (Continued)

■ Global Snapshot: local snapshots of processes just after
they turn red

■ In-Transit Messages: blue application messages received
by processes after they have turned red

■ Why is the global snapshot consistent?
◆ Assume an application message has the same color as

its sender
◆ Can a blue process receive a red application message?
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The CL Protocol (Continued)
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The CL Protocol (Continued)

■ Global Snapshot: local snapshots of processes just after
they turn red

■ In-Transit Messages: blue application messages received
by processes after they have turned red

■ Why is the global snapshot consistent?

◆ Assume an application message has the same color as
its sender

◆ Can a blue process receive a red application message?
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The CL Protocol (Continued)

■ Global Snapshot: local snapshots of processes just after
they turn red

■ In-Transit Messages: blue application messages received
by processes after they have turned red

■ Why is the global snapshot consistent?
◆ Assume an application message has the same color as

its sender

◆ Can a blue process receive a red application message?
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The CL Protocol (Continued)

■ Global Snapshot: local snapshots of processes just after
they turn red

■ In-Transit Messages: blue application messages received
by processes after they have turned red

■ Why is the global snapshot consistent?
◆ Assume an application message has the same color as

its sender
◆ Can a blue process receive a red application message?



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 37/44

The CL Protocol: An Illustration

■ Three processes: P1, P2 and P3

■ Five channels: C1,2, C1,3, C2,1, C2,3 and C3,1

P1

P2
P3

C2,3

C1,2

C2,1

C1,3

C3,1
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The CL Protocol: An Illustration (Continued)
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m5

m2

P1

P2

P3

1. All processes are blue

m3

m1

m4

m5

m2

P1

P2

P3

1. P1 receives the marker message along C3,1

2. P1 records the state of C3,1 as {m2, m3}



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

❖ State of a Distributed System

❖ Events and Local States

❖ When is a Global State

Meaningful?
❖ Revisiting Happened-Before

Relation
❖ A Consistent Global State

❖ Recording a Consistent

Global Snapshot
❖ The CL Protocol

❖ The CL Protocol (Continued)

❖ The CL Protocol: An

Illustration
❖ The CL Protocol: An

Illustration (Continued)

Monitoring a Distributed

System

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 38/44

The CL Protocol: An Illustration (Continued)
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1. P1 turns red
2. P1 sends a marker message along C1,2 and C1,3
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1. P1 receives the marker message along C3,1

2. P1 records the state of C3,1 as {m2, m3}
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The CL Protocol: An Illustration (Continued)
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1. P2 receives the marker message along C1,2 and turns red
2. P2 sends a marker message along C2,1 and C2,3

3. P2 records the state of C1,2 as ∅
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1. P1 receives the marker message along C3,1

2. P1 records the state of C3,1 as {m2, m3}
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The CL Protocol: An Illustration (Continued)
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1. P3 receives the marker message along C1,3 and turns red
2. P3 sends a marker message along C3,1

3. P3 records the state of C1,3 as ∅
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1. P1 receives the marker message along C3,1

2. P1 records the state of C3,1 as {m2, m3}
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The CL Protocol: An Illustration (Continued)
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1. P1 receives the marker message along C2,1

2. P1 records the state of C2,1 as {m4, m5}
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The CL Protocol: An Illustration (Continued)
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The CL Protocol: An Illustration (Continued)
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A Subclass of Distributed Computation

■ Many distributed computations obey the following
paradigm:

◆ A process is either in active state or passive state
◆ A process can send an application message only when

it is active
◆ An active process can become passive at any time
◆ A passive process, on receiving an application

message, becomes active

■ Intuitively:

◆ if a process is active, then it is doing some work
◆ if process is passive, then it is idle
◆ an active process uses an application message to send

a part of its work to another process
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a part of its work to another process



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 39/44

A Subclass of Distributed Computation

■ Many distributed computations obey the following
paradigm:

◆ A process is either in active state or passive state
◆ A process can send an application message only when

it is active
◆ An active process can become passive at any time
◆ A passive process, on receiving an application

message, becomes active

■ Intuitively:

◆ if a process is active, then it is doing some work
◆ if process is passive, then it is idle
◆ an active process uses an application message to send

a part of its work to another process



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 40/44

Distributed Computation: An Illustration

�����

P2

P3

P1

P2

P3

P1

m1

m2

m3

m4



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 40/44

Distributed Computation: An Illustration

�����

P2

P3

P1

m1

P2

P3

P1

m1

m2

m3

m4



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 40/44

Distributed Computation: An Illustration

�����

�����

P2

P3

P1

m1

P2

P3

P1

m1

m2

m3

m4



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 40/44

Distributed Computation: An Illustration

�����

�����

P2

P3

P1

m1

m2

P2

P3

P1

m1

m2

m3

m4



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 40/44

Distributed Computation: An Illustration

�����

�����

����������

P2

P3

P1

m1

m2

P2

P3

P1

m1

m2

m3

m4



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 40/44

Distributed Computation: An Illustration

�����

�����

����������

P2

P3

P1

m1

m2

m3

P2

P3

P1

m1

m2

m3

m4



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 40/44

Distributed Computation: An Illustration

�����

�����

����������

P2

P3

P1

m1

m2

m3

m4

P2

P3

P1

m1

m2

m3

m4



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 40/44

Distributed Computation: An Illustration

�����

�����

����� �����		�



P2

P3

P1

m1

m2

m3

m4

P2

P3

P1

m1

m2

m3

m4



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 40/44

Distributed Computation: An Illustration

�����

����� �����

����� 		�


�����

���

P2

P3

P1

m1

m2

m3

m4

P2

P3

P1

m1

m2

m3

m4



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 40/44

Distributed Computation: An Illustration

�����

����� �����

����� 		�

 �����

���

�����

P2

P3

P1

m1

m2

m3

m4



Inherent Limitations

Ordering of Events

Abstract Clocks

Ordering of Messages

State of a Distributed System

Monitoring a Distributed

System

❖ A Subclass of Distributed

Computation
❖ Distributed Computation: An

Illustration
❖ Termination Detection

❖ Huang’s Algorithm

❖ Huang’s Algorithm

(Continued)
❖ Huang’s Algorithm: An

Illustration

Department of Computer Science, The University of Texas at Dallas CS 6378: Advanced Operating Systems – Chapter 5: Theoretical Foundations Slide 41/44

Termination Detection

■ To detect if the computation has finished doing all the work

◆ all processes have become passive, and
◆ all channels have become empty

■ Different types of computations:

◆ diffusing: only one process is active in the beginning
◆ non-diffusing: any subset of processes can be active in

the beginning
■ no process knows which processes are active and

which processes are passive
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Huang’s Algorithm

■ Assumption: computation is diffusing

◆ the initially active process is called the coordinator
■ coordinator is responsible for detecting termination

■ Initially:

◆ coordinator has a weight of 1
◆ all other processes have a weight of 0

■ Invariants:

◆ total amount of weight in the system is 1
◆ a non-coordinator process has a non-zero weight if and

only if it is active
◆ a channel has a non-zero weight if and only if it is

non-empty
■ weight of a channel is the sum of the weight of all its

messages
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Huang’s Algorithm (Continued)

■ Actions:

◆ On sending an application message:
■ send half of its weight along with the message

◆ On receiving an application message:
■ add the weight of the message to the current weight

◆ On becoming passive:
■ send the current weight to the coodrinator

■ Coordinator announces termination once:

◆ it has become passive and
◆ it has collected all the weight
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