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Background

* Runtime management
+ Dynamic optimization opportunities
« Examples: frequency scaling, cache partitioning,
prefetcher throttling, task scheduling
* Most existing solutions are reactive

* Proactive management
» Map future workload behavior into an action

* Unlocks optimization opportunities

— We observe it can improve IPC gains by 1.5x with
prefetcher selection

— Up to 45% energy savings with heterogeneous task
schedulingjroeder21

* Requires accurately predicting the future
» Machine learning (ML) is a promising approach
» Workload forecasting
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Proactive Runtime Management
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Workload Forecasting

+ Workload behaviors are repetitive
» Learn from the past to predict the future

* Long-term predictions
» Phases are periods of similar behavior
* Detect phases and learn phase patterns
» Phase classification and prediction

* Short-term predictions
» Short-term variations within phases
» Regression and time series forecasting
» Short-term workload forecasting

» Only studied separately

Snippet of CPI trace

Long-term

Short-term
patterns
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Phase-Aware Workload Forecasting

* Forecasting models struggle to predict long-term patterns

* Long-term phase classification and prediction

> Phase-aware workload forecasting
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Questions?
NEXT: LONG-TERM PREDICTIONS

E. S. Alcorta 7

Long-Term Predictions

* Phase classification
+ Find periods of execution with similar behaviors U;: hardware counters
* Requires selecting inputs and clustering method

Ue
» Hardware counters as inputs lﬂWﬁW‘
> Explore clustering methods ‘A_J_A_A_NL_J_J ‘_. Phase
predictor, ¥

* Phase prediction J ‘ ] a Besi
» Learns patterns between phases Phase J
» Foretells future phases

» Explore prediction strategies

a: phase labels
> Best combination?

E. S. Alcorta 8




9/17/2024

Phase Classification Models

Classifier | Inputs Description Hyperparameters
table Braneh-instrptrs— | +Incremental clustering *Distance
[Sembrant 1] | HW counters sLeader-follower algorithm *Threshold
pcakmeans | HW counters olterative clustering *Dimensionality
[Khanna '12] *Reduce dimensionality with PCA «# of clusters
*Cluster new dimensions with K-Means
gmm Annotated-branches-| +lterative clustering *# of clusters
[Chiu *18] HW counters +Assumes gaussian models distribution in clusters
*Considers cluster variance in addition to the mean
2kmeans | HW counters *Two-level iterative clustering *Window size

[Khoshbakht “17]

sLevel 1: clusters each sample with k-means
*Level 2: clusters frequency vectors of fixed-size
windows of 15t level clusters with k-means

# of clusters

E. S. Alcorta

Phase Prediction Models

Prediction strategy Description Inputs Previous | Proposed
models models
Window-based prediction | Determine the * History of phases Decision LSTM,
phase ID of an * History of pre- trees SVM
upcoming fixed classified data [Chiu*18]
size window of
samples
Phase Next phase | Predict the phase |<History of phase GHT LSTM,
change prediction | ID of the next transitions [Zhang "15] SVM
prediction phase transition
Phase Predict the *History of durations of | Linear SVM, MLP,
duration duration of the all phases adaptive LR, LV
prediction current (target) *History of durations of | filter
phase the target phase [Srinivasan "13]

LV: last value.

MLP: multi-layer perceptron

E. S. Alcorta
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Long-Term Models Study

What is the best combination?

* Phase classifiers and predictors have only been studied in specific combinations in prior
work

Does the classifier find long-term phases?

Can the phase predictor learn the generated phase patterns?

Methodology

» Evaluate all combinations of phase classification and prediction
» Error-frequency product (EFP)
— Penalize prediction error and high transition frequency

E. S. Alcorta 11

Experimental Setup

» Data collection * Implementation
 Platform: Intel i9-9900K » Variable of interest: CPI
» Workloads  Train-test split: 70%-30%

— SPEC CPU 2017 (single and multi- . Hyperparameter tuning with
core experiments) training set
— Parsec 3.0 (multi-core
experiments)
» Performance monitoring
counters:

— L2 misses, main memory accesses,
mis-predicted branches, retired FP
operations

* Period: 10 ms

E. S. Alcorta 12
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Single Core Results
Error-Frequency Product (Iower is better)
Window Predictor Phase Phase change with M Phase change wit
[or listv |lswn ] [iv [0 16
0.211 0.226 0.302 0.194 0.201 0.186 0.188 5 5 3 5 12
10 4
g 3
6
4
2
M phase change piedieliztivedelsnd SVM phasepridietitioreditwest EFP
» 2kmeans is the best classifier for 13 out of 15 predictors, gmm is the best for the
other 2
» Key difference: two-level clustering
» Worst classifier: table, worst predictor: GHT
» ML-based models are better than table-based (ML generalizes better)
E. S. Alcorta 13
Multi-Core Phases
* How would you design the models to classify and predict multi-core
phases?
E. S. Alcorta 14
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Multi-core Phase Classification

« Counter traces per core in multi-core platform

* N traces, (U, ..., Uy,), ONE per core
+ Should phases be global (G) for all cores or local (L) for each core?
» Should local classifiers share (L-S) cluster centers?

* Multi-core settings for phase classification
* G: a classifier, 8,, outputs one system-wide phase for all cores per timestep, a;

* L:aclassifier per core with its own parameters, 8, , outputs phases for its core, ay,;, 1 <n <N

* L-S: L classifiers share trainable parameters p, i.e., p, =p

Global Local ’
U1,t . UN,t U Ii't
T (2] (]
' I
a; 1t ant
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Multi-core Phase Prediction

* Global phases
* Use a global (G) predictor, i, that predicts system-wide phases, a;,,

* Local phases
* Use a local (L) predictor per core, 1, , that predicts phases for one core, a1k
» Account for other cores activity with a distributed (D) predictor
» Support shared variants, for local L-S and distributed D-S

Global Local Distributed
Ull,t T UII,t alt Ulllt al,t UN,t aN,f (Ul,t' ey UN’t)(OlLt, ey aNlt)
Yy ¥, Y, ¥, Y,
] ' ' ' '
Atk Aie+k - Ont+k A+l - ANtk
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Multi-core Evaluation

* Multi-core combinations: (classification, prediction)
* (G, G), (L, L), (L, D), (L-S, L-S), (L-S, D-S)
* Phase classifiers
* 2kmeans was best in combination with phase prediction
— Has a filtering step with an extra level of clustering
— Windows for its frequency vectors caused high variance within phases
» gmm was best in isolation
— Add a filtering step
— fgmm
* Phase predictors
+ Phase change prediction struggled to learn multi-threaded patterns a2z
* Window-based prediction: DT and LSTM close winners in single-core evaluation

E. S. Alcorta 17

Multi-core Phase Prediction Results

B (2kmeans, DT) (fgmm, DT)
B (2kmeans, LSTM) mm (fgmm, LSTM)
1.0-
- —-—
- p—
0.8 _ = — = m = —
=l -
Tos
5
;d 0.4
0.2
0.0-
(G, G) (L L) (L, D) (L-S, L-S) (L-S, D-S)

(Classification, Phase Prediction)

* (L-S, L-S) with (fgmm, LSTM) has the best average accuracy
* Local phases are better than global
» G, G tends to have the lowest accuracy
» Sharing trainable parameters helps prediction accuracy
* L-S and D-S predictors have higher accuracy than their L and D counterparts
+ Both DT and LSTM with fgmm have consistently higher accuracy than 2kmeans
* LSTMis better than DT

E. S. Alcorta 18
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Questions?
NEXT: SHORT-TERM PREDICTIONS

E. S. Alcorta 19

Short-Term Predictions

* Phase prediction overlooks short-term variations

* Forecast workload metrics
+ Time series forecasting

» Struggle to predict long-term effects
[mmn JM,LMML

> Phase-aware forecasting W “r‘
Ewmww WWW wwww

E. S. Alcorta 20
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Basic Forecasting

* Workload forecasting formulation

Oes1r oo Yerr) = My (Ui_pyq, -, Up)

U,: vector of hardware counters at time ¢t

* y,: counter variable of interest, e.g., CPI, attime t

Ye+it prediction of y,,; made at time ¢t

+ m,,: model function with given model parameters w, e.g., ML model
h: input history size

k: forecast horizon

E. S. Alcorta 21

Phase-Aware Forecasting

 Overview
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Phase-Aware Forecasting
1. Phase classification and separation
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Phase-Aware Forecasting
2. Phase-based forecasting
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Phase-Aware Forecasting

3. Phase prediction and forecast reconstruction
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Forecasting Models

* Support Vector Machines (SVM)
* Minimizes an error bound instead of residuals
+ Commonly used with non-linear transformations
* Long-Short Term Memory (LSTM)
* Recurrent neural network
» Popular for handling time-dependent data
* Dynamic Linear Model (DLM)*
+ Dynamically regressive
» State-space model representation similar to Kalman filter

* Matrix Profile (MP)*

+ Finds a subsequence in time series history closest to the most recent window

» Predicts history repeats exactly the same

* Not used for CPU workload forecasting in the past

E. S. Alcorta
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Experimental Setup

» Data collection
« SPEC CPU 2017
» Parsec-3.0 (multi-core experiments)
» Variable of interest: CPI

+ Case study

» Oracle phase classification and
prediction

» Phase-unaware vs phase-aware

* Train-test Sp"t: 70%-30% Single- Samples | No. of | Avg. Phase repetition
threaded phases | ph. behavior
A benchmarks length
+ Data preprocessing for SVM and 9 -
LSTM cactuBSSN 202,179 |5 167 abrupt transitions
« PCA mcf 52,673 5 599 hard to predict
* Median filter nab 170,251 |5 231 uniform pattern
perlbench 16,462 1 - single execution
e Metrics: xz 126,669 |4 7,037 | long phases
* Mean absolute percentage error (MAPE)
» Average MAPE (AMAPE) across
forecasts horizon
E. S. Alcorta 27
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Case Study

Abrupt workload changes;

+ MAPE. EEEDLM mSsvMm ELSTM

most error reduction with PA MAPE., gesDLM-PA 22225V M-PA %2 STM-PA @@2aMP-PA

v

100%

EsMP

-PA reduced
error by 14%

5 Uniform long- and short-term M across
© patterns; still room for improvement v benchmarks and
Q
0 models
()] A
O 10%
w . All -PA reduced
% error across
<E[ benchmarks
Hard to predict short- Voo thhaatsi"sthm”gh
1% term patterns; least . e o P
impact with PA N repetl_tl phases; still
phases; no ir ositive impact
cactuBSSN mcf nab perlbench Xz mean
Best: Best: Best: Best: Best: Best on Best phase
MP-PA LSTM-PA | | MP-PA LSTM/ LSTM-PA | | average: unaware:
LSTM-P LSTM-P, SVM
E. S. Alcorta 29

Multi-Core Workload Forecasting

* How would you design multi-core workload forecasting models?

E. S. Alcorta
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Multi-Core Phase-Based Forecasting

* Phase-based models with per-core counter traces
» Global (G): one model per global phase outputs per-core forecasts
» Local (L): one model per local phase per core outputs its core’s forecasts
 Distributed (D): local models that access other cores’ hardware counters

» Shared (L-S, D-S): models of the same phase share trainable parameters across cores

Global Local Distributed

Uy = Une Uit Un,t Ul',t>'“<ull\l,t
Vl,c,tl' ...VN,C,tI' Vl,c,t', VN,c.tg Vl.C,t', VN;CIi

K v v v ¥ v

My, 1 My, Mp, my, ) Mp,
l I l 1 l vy l v I I
Zycti+k -+ ZN,ctr+k Z1,ctr+k ZN,ctr+k Z1,ct1+k ZN,ctr+k
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Multi-Core Phase-Based Forecasting Results

I (2kmeans, LSTM) mm (fgmm, LSTM) mm (single phase, LSTM)

B (2kmeans, SVM) (fgmm, SVM) (single phase, SVM)
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(G, G) (L, L) (L, D) (L-S, L-S) (L-S, D-S)

(Classification, Forecasting)

» Best phase-based is L,L with fgmm and LSTM and average forecast error of 21%

« Best phase-unaware is also L with average forecast error of 29.8%

* Phase-based (2kmeans and fgmm) models outperform phase-unaware (single phase)
» Phase specialized forecasts are more accurate

* Local forecasting (L and L-S) is generally better than distributed (D, and D-S) and global (G)
> No need to access hardware counters across cores

* LSTMyields lower forecasting error than SVM with an exception for single-phase L-S

« Not significant difference between fgmm and 2kmeans

E. S. Alcorta
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Multi-core Phase-aware Forecasting Results

B (2kmeans, Window-based) mm (fgmm, Window-based)
B (2kmeans, Oracle) mmm (fgmm, Oracle)
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(L-S, L-S, L-S)
(L-S, L-S, D-S)
(L-S, D-S, L-S)
(L-S, D-S, D-S)

(Classification, Prediction, Forecasting)
+ Best phase-aware: (L, L, L) with fgmm, LSTM window-based phase prediction and
LSTM phase-based forecasting with 22.3% average forecast error
» Other with very close accuracy require accessing data from other cores (sharing parameters)
» AMAPE improved from 29.8% to 22.3% on average over phase-unaware

E. S. Alcorta
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Summary

* Workload forecasting
* Model dynamic workload behaviors
» Guides proactive runtime management
* ML-based forecasting improves accuracy
» Long-term workload phases pose a challenge for basic forecasting

+ Phase-aware workload forecasting
» Combine short-term forecasting with long-term phase prediction
+ Evaluate multiple combinations
» Best multi-core combination (L, L, L) with fgmm, window-based LSTM and phase-based
LSTM
» Reduces forecast error by 12% and 7% on single-core and multi-core experiments,
respectively

E. S. Alcorta
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Questions?
NEXT: FUTURE WORK

E. S. Alcorta 35

Workload Forecasting Future Work

+ What assumptions need to be addressed to polish workload
forecasting work?
* Implementation in hardware vs software
» Optimizing model inference latency
» Reduce training time and/or training set size

* What can you use workload forecasting for?
* Release data set
» Combine with runtime management applications

E. S. Alcorta 36
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Proactive Runtime Management

Heterogeneous Scheduling

» Decide where to schedule tasks in a heterogeneous platform

* Cross-platform performance estimations

» Task migration cost
Prefetcher Selection

» Decide when to enable/disable prefetchers

+ Combine with workload forecasting
Power Management

» Dynamic voltage frequency scaling (DVFS)

* Minimize power without compromising performance
Cache reconfiguration

* Turn off cache lines

» Partition cache ways across cores

Big CPU

V

Medium CPU

v

Little CPU

E. S. Alcorta
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