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Lecture 2: Outline

+ System specification
 Specification modeling
* Formal models

* Models of Computation (MoCs)
« Concurrency & communication
» Process- and dataflow-based models
» State-based models
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System Specification

+ “Golden” reference model
 First model/input description in the design flow
« All implementations derived from and compared to this one
+ System-level “programming” model
* High abstraction level
* No premature HW/SW implementation assumptions
» Unrestricted exploration of design space
* Formal for analysis & synthesis
+ Verification & implementation (system “compilation”)

» Executable
« Simulate for functional validation

» Pure behavior: functional, no absolute timing
* No structural or implementation information
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(Engineering) Models vs. Reality

* “You can’t strike oil by drilling through a map” [Golob’68]
* Yet, maps are incredibly useful

« “All models are wrong, some are useful” [Box’76]
» Abstraction of reality

> We can make definitive statements about models from
which we can infer properties of system realizations
[Kopetz]

» Validity of inference depends on model fidelity
» Always approximate

> Assertions about (predicted) properties are always
assertions about a model of the system

» Never truly properties of the final implemented system

Source: E. Lee, CEDA Keynote, DAC’13.
ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 2 © 2024 A. Gerstlauer 4

© 2024 A. Gerstlauer 2



ECE382N.23: Embedded Sys Dsgn/Modeling

Formal Model of a Design

* Most tools and designers describe the behavior of a
design as a relation between a set of inputs and a set of
outputs

+ This relation may be informal, even expressed in natural
language

» Such informal, ambiguous specifications may result in
unnecessary redesigns...

+ A formal model of a design should consist of the following
components:

» Functional specification

» Set of properties

» Set of performance indices

» Set of constraints on performance indices

Source: M. Jacome, UT Austin.
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Formal Model of a Design (2)

* A functional specification, given as a set of explicit or implicit relations
which involve inputs, outputs and possibly internal (state) information

Fully characterizes the operation of a system
« A set of properties that the design must satisfy

Redundant: in a properly constructed system, the functional specification satisfies
these properties. Yet properties are simpler / more abstract compared to the
functional specification.

« A set of performance indices that evaluate the quality of the design in
terms of cost, reliability, speed, size, etc.

* A set of constraints on performance indices, specified as a set of
inequalities

Bound the cost of a system

Source: M. Jacome, UT Austin.
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Properties

» A property is an assertion about the behavior, rather than
a description of the behavior

+ Itis an abstraction of the behavior along a particular axis

+ Examples:
» Liveness property: when designing a network protocol, one
may require that the design never deadlocks

* Fairness property: when designing a network protocol, one
may require that any request will eventually be satisfied

The above properties do not completely specity the behavior of the
protocol, they are instead properties we require the protocol to have

* Can include other non-functional requirements

+ Timeliness: guarantees about meeting deadlines in the
worst case (real-time)

Source: M. Jacome, UT Austin.
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Properties & Models

* Properties can be classified in three groups:

1. Properties that are inherent to the model (i.e., that can be
shown formally to hold for all specifications described
using that model)

2. Properties that can be verified syntactically for a given
specification (i.e., that can be shown to hold with a simple,
usually polynomial-time analysis of the specification)

3. Properties that must be verified semantically for a given
specification (i.e., that can be shown to hold by executing,
at least implicitly, the specification for all inputs that can
occur)

Source: M. Jacome, UT Austin.
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Model Validation

* By construction
* property is inherent
« By verification
* property is provable syntactically
* By simulation
» check behavior for all inputs
* By intuition
* property is true, | just know it is...

better be higher
in this list...

Source: M. Jacome, UT Austin.
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Model Validation Example

» Determinate Behavior Property: the fact that the output of
a system depends only on its inputs and not on some
internal, hidden choice

* Any design described by a dataflow network is
determinate, and hence this property is inherent (that is,
need not be checked)

* If the design is represented by a network of FSMs,
determinacy can be assessed by inspection of the state
transition function, and hence the property can be verified
syntactically

* In the discrete event models embodied in Verilog and
VHDL determinacy is difficult to prove, it must be checked
by exhaustive simulation, and thus the property requires
semantic verification

Source: M. Jacome, UT Austin.
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Lecture 2: Outline

* Models of Computation (MoCs)
» Models for reactive systems
« Concurrency & communication
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Models of Computation (MoCs)

* A MoC is a framework in which to express what actions
must be taken to complete a computation

* Objects and their relationships
» Basic semantics of computation & communication
* Vs. concrete languages (many-to-many relation)

* MoCs need to
» Be powerful/expressive enough for the application domain
* Have appropriate synthesis and validation semantics

* Why different models?
» Different models = different properties
* Analyzability vs. expressiveness
+ Existing programming models are poor match

» Domain-specific models & languages (DSLs)
Source: M. Jacome, UT Austin.
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System-Level MoCs

+ Consider essential aspects of systems
« Concurrency
« Communication & synchronization
* Order/time
* Heterogeneity

» Classify models based on
» How to specify behavior (computation)
* How to specify communication
* Implementability
» Composability
+ Availability of tools for validation and synthesis

Source: M. Jacome, UT Austin.
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Cyber-Physical Systems (CPS)

* Not transformative

Input Transformative Output
—» —
System

* Output = F(Input)
» Procedural/batch processing

 But reactive

— — — > — —

Reactive > — — Outputs

Inputs — — —
System .

— — —

» Continuous interaction with environment
» Sense and act on the physical world

» Concurrency and time
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Models of Time (Order)

Untimed

+ Partial order based on causality only
— No ordering in time, explicit dependencies only
» Free of implementation (purely behavioral)
» Specification & programming, Models of computation

Logical
» Discrete time, partial order

— Discrete instants of time (time tags t, < t; < t, <), nothing in between

— Unspecified interleaving of events with same time tag
» Freedom of implementation
» Simulation & execution, Design languages

Physical

« Continuous time, total order

— Physical components naturally interleaved in (very fine) time
» Differential equations, Hybrid models
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Concurrency

Events/actions happening “at the same time”

* Undefined, unspecified or unknown order
— Implementation will determine actual interleaving
Communication/synchronization establishes order

» Partial order, causal dependencies
— Behavior/functionality

f()
f()

f()

Fundamental issues: communication semantics
» Non-determinism, causality loops
» Deadlocks
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Determinism

* Deterministic: same inputs always produce same results
* Random: probability of certain behavior
* Non-deterministic: undefined behavior (for some inputs)

+ Undefined execution order
— Statement evaluation in imperative languages: f (a++, a++)

a; a
b; b

X=?,y=7?

— Process & thread race conditions:

/_
KOX
I
[}
N =

|

» Can be desired or undesired

» How to ensure correctness?
» Many possible behaviors, large verification space
» Simulator will pick one behavior, not sufficient for verification

» But: over-specification?
» Leave freedom of implementation choice (concurrency)
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Deadlocks

» Circular chain of 2 or more processes which each hold a
shared resource that the next one is waiting for

» Circular dependency through shared resources

ml.lock(); .lock () ;
m2.lock () ; .lock();

m2.unlock () ; .unlock () ;
ml.unlock() ; .unlock () ;

» Prevent chain by using the same precedence
» Use timeouts (and retry), but: livelock

» Dependency can be created when resources are shared
» Side effects, e.g. when blocking on filled queues/buffers
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MoC Examples

* Programming models
* Imperative [C] or declarative [Lisp, Prolog]
» Transformative not reactive, no concurrency

Parallel programming models

» Threads/processes, multi-tasking/-threading [any (RT)OS]
» Non-determinism, race conditions, deadlocks

» Best effort only, incomprehensible to humans/tools [Lee’06]

+ Control and logic design
* Finite state machines (FSMs), synchronous reactive (SR)
» Synchronous, fine granularity of concurrency

« Hardware description languages (HDLs)
» Discrete event (DE)
» Global time, simulation but not synthesis
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MoCs for System Specification

* Process-based models
» Kahn Process Networks (KPNs)
* (Synchronous) Dataflow models ((S)DF)
* Directed Acyclic Task Graphs (DAGs)

+ State-based models
* Finite State Machines (FSMs)
* Hierarchical, Concurrent State Machines (HCFSMs)
 Petri Nets
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Process-Based Models

> Data flow
» Data processing w/ communication & synchronization

Process1 J LProcessZ} ------

» Set of processes/threads
* Execute in parallel
— Concurrent composition

« Each process is sequential
— Imperative program

* Inter-process communication

* Shared memory model Producer
— Synchronization: critical section/mutex, monitor, ...
* Message-passing model ]
— Queues, but data losses, deadlocks
L Consumer
» Traditional thread models are poor match
- J
» Best effort, no correctness guarantees
» Race conditions, deadlocks, non-determinism
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Kahn Process Network (KPN) [Kahn74]

+ C-like processes communicating via FIFO channels

* Unbounded, uni-directional, point-to-point queues
— Sender (send () ) never blocks
— Receiver (wait () ) blocks until data available

)

N

/

> Deterministic

* Behavior does not depend on scheduling strategy

* Focus on causality, not order (implementation
independent)
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Kahn Process Network (KPN) (2)

e Determinism
channel at a time

the order of its inputs
» Terminates on global deadlock

* Formal mathematical representation

streams

» Terminates (deadlocks)?
» Can run in bounded buffers (memory)?

* Process can’t peek into channels and can only wait on one

» Output data produced by a process does not depend on

» All process blocked on receive () (or have otherwise ended)

* Process = continuous function mapping input to output

+ Turing-complete, undecidable (in finite time)
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KPN Scheduling

+ Data-driven scheduling
* Run processes whenever they are ready:

P1

* Scheduling determines memory requirements

Only consumes
tokens from P1

\ Tokens will

accumulate

Always emit tokens

Source: S. Edwards. “Languages for Digital Embedded Systems”, Kluwer 2000.
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Demand-Driven Scheduling

* Only run a process whose outputs are being solicited
» Synchronous, unbuffered message-passing
+ However...

P1

Always
consume
, tokens
Always
BN produce
tokens
Source: S. Edwards. “Languages for Digital Embedded Systems”, Kluwer 2000.
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KPN Scheduling

* Inherent tradeoffs

+ Completeness
* Run processes as long as they are ready
» Might require unbounded memory

+ Boundedness
» Block senders when reaching buffer limits
» Potentially incomplete, artificial deadlocks and early termination

» Data driven: completeness over boundedness

» Demand driven: boundedness over completeness and
even non-termination

» Hybrid approach [Parks95]
» Start with smallest bounded buffers

» Schedule with blocking send () until artificial deadlock
— At least one process blocked on send ()

* Increase size of smallest blocked buffer and continue
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Parks’ Algorithm

« Start with buffer size 1
* Run P1, P2, P3, P4

P1 > P3

P2 { P4

Source: S. Edwards. “Languages for Digital Embedded Systems”, Kluwer 2000.
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Parks’ Algorithm

* P2 blocked
* Run P1, P3, P1, ... indefinitely

P1 > P3

P2 { P4

Source: S. Edwards. “Languages for Digital Embedded Systems”, Kluwer 2000.
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Parks’ Algorithm
* But...
P1 > P3
P2 ] P4
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Kahn Process Networks (KPN)

 Difficult to implement right
» Size of infinite FIFOs in limited physical memory?
* Dynamic memory allocation, dependent on schedule
* Dynamic scheduling & context switching

* Boundedness vs. completeness vs. non-termination
(deadlocks), are undecidable, depend on runtime schedule

* Message-passing communication [MPI, Unix pipes]
* How to model non-determinism? (e.g. merge process)

» Parks’ algorithm
» Bounded over complete (non-terminating) execution
» Does not find every complete, bounded schedule [Geilen03]
» Does not guarantee minimum memory usage
» Deadlock detection?
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Dynamic Dataflow [Dennis74]

+ Breaking processes down into network of actors

» Atomic blocks of computation, executed when firing
— Functional, no side effects, no state: outputs purely a function of inputs

» Fire when required number of input tokens are available
— Consume & produce number of tokens on input(s) & output(s)

» Separate computation & communication/synchronization
» Actors (units of computation) & tokens (units of communication)

» Dataflow graph (DFG)
f1() @ @

» Firing rules dynamically chosen based on token patterns
» Deterministic, but still undecidable, still Turing-complete...
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Synchronous Dataflow (SDF) [Lee86]

* Fixed number of tokens per firing

* Consume fixed number of inputs A T
— Single firing rule with fixed wildcard patterns ctors ar,e _State ess
> Explicit self-loop

* Produce fixed number of outputs to model state

(a)
T\ 2 1

Initialization
» Delay
> Prevent deadlock

» Can be scheduled statically

» Flow of data through system does not depend on values
> Find a repeated sequence of firings

» Run actors in proportion to their rates

» Fixed buffer sizes, no under- or over-flow
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SDF Scheduling (1)

» Solve system of linear rate equations

» Balance equations per arc
— 2a=b

()
_ob=c N2
- b =d
- 2d=c¢

»4a=2b=c=2d

* Inconsistent systems
— Only solvable by setting rates to zero
— Would otherwise (if scheduled dynamically) accumulate tokens

* Underconstrained systems
— Disjoint, independent parts of a design

» Compute repetitions vector
» Linear-time depth-first graph traversal algorithm
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SDF Scheduling (2)

* Periodically schedule actors in proportion to their rates

» Smallest integer solution
—4a=2b=c=2d

a
>a=1,b=2c=4d=2 12

+ Symbolically simulate one iteration
of graph until back to initial state
— Admissible iff no deadlock
— Repeatedly execute this schedule
» adbccdbee = a(2db(2c))
> a(2db)(4c)

» Periodic admissible sequential scheduling (PASS)

» Single processor: memory requirements (buffer size) vs. code size
* a(2db(2c)): 2 token slots on each arc for total of 8 token buffers
* a(2db)(4c): 12 token buffers
» Single appearance schedule & looped code generation

» Periodic admissible parallel scheduling (PAPS)

» Multi-processor: latency/throughput vs. buffer sizes
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SDF Scheduling (3)

* Precedence graph

* Homogeneous SDF (HSDF) conversion
— All rates are 1, each node represents one actor instancef/firing

» Scheduling = graph traversal

> Worst-case exponential complexity m
» Number of nodes in HSDF vs. SDF 1 ’"1 '"
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Process-Based MoCs

Yellow: Turing complete

RPN Reactive Process Network
KPN Kahn Process Network
DDF Dynamic Dataflow

BDF Boolean Dataflow

CSDF Cyclo-Static Dataflow
SDF Synchronous Dataflow
HSDF Homogeneous SDF

Source: T. Basten, MoCC 2008.
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Dataflow Variants

* Dynamic dataflow extensions

* Modal models

— Reactive process networks (RPN) [Geilen’04]

— Parameterized dataflow (PDF) [Bhattacharya’01]

— Heterochronous dataflow (HDF) [Lee’05]

— Scenario-aware dataflow (SADF) [Theelen’06]

» Parameter changes between iterations driven by state machine model
+ Dataflow & actor languages

— Various languages w/ extensions [CAL, ...]

— Structured dataflow w/ branching [LabView’s G language]
— Deterministic peeking, teleport/bypass messages [Streamlt]

+ Timed dataflow extensions
+ Time synchronous dataflow (TSDF) [Agilent ADS]
— Fixed sampling/execution rates on arcs and actors

* Hybrid continuous-discrete time models
— Discrete models as piecewise constant continuous signals [Simulink]
— Sampling at discrete/continuous interfaces [SystemC-AMS]
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Task Graphs

« HSDF models without back-edges/cycles
» Directed acyclic graphs (DAGs)
+ Task-level parallelism @
» Actors/nodes are tasks
b
* Imperative functions @ @

> Widely-used in system design @ @ @

* DAG scheduling in cluster,
cloud & super-computing

[Apache Spark] @ @ @

* ML deployment & compilers

[TensorFlow, Apache TVM, ...]
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Process Calculi

* Rendezvous-style, synchronous communication
« Communicating Sequential Processes (CSP) [Hoare78]
» Calculus of Communicating Systems (CCS) [Milner80]
» Restricted interactions

» Formal, mathematical framework: process algebra

+ Algebra = <objects, operations, axioms>
— Objects: processes {P, Q, ...}, channels {a, b, ...}

— Composition operators: parallel (P|| Q), prefix/sequential (a—P),
choice (P+Q)
— Axioms: indemnity (@ || P = P), commutativity (P+Q=Q+P, P||Q = Q||P)

» Manipulate processes by manipulating expressions

» Parallel programming languages
» CSP-based [Occam/Transputer, Handle-C]
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Lecture 2: Summary

« System & application specification
+ ,Golden® input to design flow

Models of Computation (MoCs)
* Formally express behavior
» Tradeoffs between analyzability vs. expressiveness

* Process-based models
» Task-level parallelism, dataflow driven

State-based models
» Focus on control flow within single process/thread
» Synchronous, operation-level concurrency
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