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Lecture 2: Outline

• System specification
• Specification modeling
• Formal models

• Models of Computation (MoCs)

• Concurrency & communication

• Process- and dataflow-based models

• State-based models
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System Specification

• “Golden” reference model

• First model/input description in the design flow

• All implementations derived from and compared to this one

• System-level “programming” model

• High abstraction level

• No premature HW/SW implementation assumptions

• Unrestricted exploration of design space

• Formal for analysis & synthesis

• Verification & implementation (system “compilation”)

 Executable

• Simulate for functional validation

 Pure behavior: functional, no absolute timing

• No structural or implementation information

(Engineering) Models vs. Reality

• “You can’t strike oil by drilling through a map” [Golob’68]

• Yet, maps are incredibly useful

• “All models are wrong, some are useful” [Box’76]

• Abstraction of reality

 We can make definitive statements about models from 
which we can infer properties of system realizations 
[Kopetz]

 Validity of inference depends on model fidelity

 Always approximate

 Assertions about (predicted) properties are always 
assertions about a model of the system 

 Never truly properties of the final implemented system
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Source: E. Lee, CEDA Keynote, DAC’13.
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Formal Model of a Design

• Most tools and designers describe the behavior of a 
design as a relation between a set of inputs and a set of 
outputs

• This relation may be informal, even expressed in natural 
language 

• Such informal, ambiguous specifications may result in 
unnecessary redesigns…

• A formal model of a design should consist of the following 
components:

• Functional specification

• Set of properties

• Set of performance indices

• Set of constraints on performance indices

Source: M. Jacome, UT Austin.

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 2 © 2024 A. Gerstlauer 6

Formal Model of a Design (2)

• A functional specification, given as a set of explicit or implicit relations 
which involve inputs, outputs and possibly internal (state) information

• A set of properties that the design must satisfy

• A set of performance indices that evaluate the quality of the design in 
terms of cost, reliability, speed, size, etc.

• A set of constraints on performance indices, specified as a set of 
inequalities

Fully characterizes the operation of a systemFully characterizes the operation of a system

Bound the cost of a systemBound the cost of a system

Redundant: in a properly constructed system, the functional specification satisfies
these properties. Yet properties  are simpler / more abstract compared to the 
functional specification. 

Redundant: in a properly constructed system, the functional specification satisfies
these properties. Yet properties  are simpler / more abstract compared to the 
functional specification. 

Source: M. Jacome, UT Austin.
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Properties

• A property is an assertion about the behavior, rather than 
a description of the behavior

• It is an abstraction of the behavior along a particular axis

• Examples:

• Liveness property: when designing a network protocol, one 
may require that the design never deadlocks

• Fairness property: when designing a network protocol, one 
may require that any request will eventually be satisfied

• Can include other non-functional requirements

• Timeliness: guarantees about meeting deadlines in the 
worst case (real-time)

The above properties do not completely specify the behavior of the 
protocol, they are instead properties we require the protocol to have

Source: M. Jacome, UT Austin.
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Properties & Models

• Properties can be classified in three groups:

1. Properties that are inherent to the model (i.e., that can be 
shown formally to hold for all specifications described 
using that model) 

2. Properties that can be verified syntactically for a given 
specification (i.e., that can be shown to hold with a simple, 
usually polynomial-time analysis of the specification)

3. Properties that must be verified semantically for a given 
specification (i.e., that can be shown to hold by executing, 
at least implicitly, the specification for all inputs that can 
occur)

Source: M. Jacome, UT Austin.
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Model Validation

• By construction

• property is inherent 

• By verification

• property is provable syntactically

• By simulation

• check behavior for all inputs

• By intuition

• property is true, I just know it is…

better be higher
in this list…

Source: M. Jacome, UT Austin.

Model Validation Example

• Determinate Behavior Property: the fact that the output of 
a system depends only on its inputs and not on some 
internal, hidden choice

• Any design described by a dataflow network is 
determinate, and hence this property is inherent (that is, 
need not be checked)

• If the design is represented by a network of FSMs, 
determinacy can be assessed by inspection of the state 
transition function, and hence the property can be verified 
syntactically

• In the discrete event models embodied in Verilog and 
VHDL determinacy is difficult to prove, it must be checked 
by exhaustive simulation, and thus the property requires 
semantic verification
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Source: M. Jacome, UT Austin.
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Lecture 2: Outline

 System specification
Essential issues
Specification modeling guidelines
Formal models

• Models of Computation (MoCs)

• Models for reactive systems

• Concurrency & communication
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Models of Computation (MoCs)

• A MoC is a framework in which to express what actions 
must be taken to complete a computation
• Objects and their relationships
• Basic semantics of computation & communication
• Vs. concrete languages (many-to-many relation)

• MoCs need to 
• Be powerful/expressive enough for the application domain
• Have appropriate synthesis and validation semantics

• Why different models?
• Different models  different properties
• Analyzability vs. expressiveness
• Existing programming models are poor match

 Domain-specific models & languages (DSLs)
Source: M. Jacome, UT Austin.
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System-Level MoCs

• Consider essential aspects of systems
• Concurrency
• Communication & synchronization
• Order/time
• Heterogeneity

• Classify models based on
• How to specify behavior (computation)
• How to specify communication
• Implementability
• Composability
• Availability of tools for validation and synthesis

Source: M. Jacome, UT Austin.
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Cyber-Physical Systems (CPS)

• Not transformative

• Output = F(Input)
 Procedural/batch processing

• But reactive

• Continuous interaction with environment
 Sense and act on the physical world

 Concurrency and time

Transformative
System

Input Output

Reactive
System

Inputs Outputs
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Models of Time (Order)

• Untimed

• Partial order based on causality only
– No ordering in time, explicit dependencies only

 Free of implementation (purely behavioral)

• Logical

• Discrete time, partial order
– Discrete instants of time (time tags t0 < t1 < ... tk < ... ), nothing in between

– Unspecified interleaving of events with same time tag

 Freedom of implementation

• Physical

• Continuous time, total order
– Physical components naturally interleaved in (very fine) time
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 Simulation & execution, Design languages

 Specification & programming, Models of computation

Differential equations, Hybrid models
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Concurrency
• Events/actions happening “at the same time”

• Undefined, unspecified or unknown order
– Implementation will determine actual interleaving

• Communication/synchronization establishes order
• Partial order, causal dependencies

– Behavior/functionality

• Fundamental issues: communication semantics
 Non-determinism, causality loops
 Deadlocks

f()

f()

f()
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Determinism

• Deterministic: same inputs always produce same results

• Random: probability of certain behavior

• Non-deterministic: undefined behavior (for some inputs)

• Undefined execution order 
– Statement evaluation in imperative languages: f(a++, a++)

– Process & thread race conditions:

 Can be desired or undesired

 How to ensure correctness?
 Many possible behaviors, large verification space

 Simulator will pick one behavior,  not sufficient for verification

 But: over-specification?
 Leave freedom of implementation choice (concurrency)

x = a;
y = b;

a = 1;
b = 2;

x = ?, y = ? 
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Deadlocks

• Circular chain of 2 or more processes which each hold a 
shared resource that the next one is waiting for

• Circular dependency through shared resources

 Prevent chain by using the same precedence

 Use timeouts (and retry), but: livelock

 Dependency can be created when resources are shared

 Side effects, e.g. when blocking on filled queues/buffers

m2.lock();
m1.lock();
…
m1.unlock();
m2.unlock();

m1.lock();
m2.lock();
…
m2.unlock();
m1.unlock();
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MoC Examples

• Programming models
• Imperative [C] or declarative [Lisp, Prolog]
 Transformative not reactive, no concurrency

• Parallel programming models
• Threads/processes, multi-tasking/-threading [any (RT)OS]
 Non-determinism, race conditions, deadlocks
 Best effort only, incomprehensible to humans/tools [Lee’06]

• Control and logic design
• Finite state machines (FSMs), synchronous reactive (SR)
 Synchronous, fine granularity of concurrency

• Hardware description languages (HDLs)
• Discrete event (DE)
 Global time, simulation but not synthesis
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MoCs for System Specification

• Process-based models

• Kahn Process Networks (KPNs)

• (Synchronous) Dataflow models ((S)DF)

• Directed Acyclic Task Graphs (DAGs)

• …

• State-based models

• Finite State Machines (FSMs)

• Hierarchical, Concurrent State Machines (HCFSMs)  

• Petri Nets

• …
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Process-Based Models 

 Data flow
 Data processing w/ communication & synchronization

• Set of processes/threads
• Execute in parallel

– Concurrent composition

• Each process is sequential
– Imperative program

• Inter-process communication
• Shared memory model 

– Synchronization: critical section/mutex, monitor, …

• Message-passing model
– Queues, but data losses, deadlocks

 Traditional thread models are poor match 
 Best effort, no correctness guarantees
 Race conditions, deadlocks, non-determinism

Producer

Consumer

Process1 Process2
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Kahn Process Network (KPN) [Kahn74]

• C-like processes communicating via FIFO channels
• Unbounded, uni-directional, point-to-point queues 

– Sender (send()) never blocks
– Receiver (wait()) blocks until data available

 Deterministic
• Behavior does not depend on scheduling strategy
• Focus on causality, not order (implementation 

independent)

P1 P3

P2 P4



ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 2

© 2024 A. Gerstlauer 12

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 2 © 2024 A. Gerstlauer 23

Kahn Process Network (KPN) (2)

• Determinism

• Process can’t peek into channels and can only wait on one 
channel at a time

• Output data produced by a process does not depend on 
the order of its inputs

 Terminates on global deadlock
 All process blocked on receive() (or have otherwise ended)

• Formal mathematical representation

• Process = continuous function mapping input to output 
streams

• Turing-complete, undecidable (in finite time)

• Terminates (deadlocks)?

• Can run in bounded buffers (memory)?
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KPN Scheduling

• Scheduling determines memory requirements

• Data-driven scheduling

• Run processes whenever they are ready:

Always emit tokens

Only consumes 
tokens from P1

Tokens will 
accumulate 

here

P1

P2

P3

Source: S. Edwards. “Languages for Digital Embedded Systems”, Kluwer 2000.
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Demand-Driven Scheduling

• Only run a process whose outputs are being solicited

• Synchronous, unbuffered message-passing

• However...

Always 
consume 

tokens

Always 
produce 
tokens

P1

P2

P3

P4

Source: S. Edwards. “Languages for Digital Embedded Systems”, Kluwer 2000.
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KPN Scheduling

• Inherent tradeoffs
• Completeness

• Run processes as long as they are ready
 Might require unbounded memory

• Boundedness
• Block senders when reaching buffer limits
 Potentially incomplete, artificial deadlocks and early termination

 Data driven: completeness over boundedness
 Demand driven: boundedness over completeness and 

even non-termination

 Hybrid approach [Parks95]
• Start with smallest bounded buffers
• Schedule with blocking send() until artificial deadlock

– At least one process blocked on send()

• Increase size of smallest blocked buffer and continue
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Parks’ Algorithm

• Start with buffer size 1

• Run P1

P1

P2

P3

P4

Source: S. Edwards. “Languages for Digital Embedded Systems”, Kluwer 2000.

• Start with buffer size 1

• Run P1, P2

• Start with buffer size 1

• Run P1, P2, P3

• Start with buffer size 1

• Run P1, P2, P3, P4
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Parks’ Algorithm

• P2 blocked 

• Run P1, P3, P1, … indefinitely

P1

P2

P3

P4

Source: S. Edwards. “Languages for Digital Embedded Systems”, Kluwer 2000.
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Parks’ Algorithm

• But …

P1

P2

P3

P4
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Kahn Process Networks (KPN)

• Difficult to implement right

• Size of infinite FIFOs in limited physical memory?

• Dynamic memory allocation, dependent on schedule

• Dynamic scheduling & context switching 

• Boundedness vs. completeness vs. non-termination 
(deadlocks), are undecidable, depend on runtime schedule

• Message-passing communication [MPI, Unix pipes]

• How to model non-determinism? (e.g. merge process)

• Parks’ algorithm

• Bounded over complete (non-terminating) execution

 Does not find every complete, bounded schedule [Geilen03]

 Does not guarantee minimum memory usage

 Deadlock detection?



ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 2

© 2024 A. Gerstlauer 16

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 2 © 2024 A. Gerstlauer 31

Dynamic Dataflow [Dennis74]

• Breaking processes down into network of actors
• Atomic blocks of computation, executed when firing

– Functional, no side effects, no state: outputs purely a function of inputs

• Fire when required number of input tokens are available
– Consume & produce number of tokens on input(s) & output(s)

 Separate computation & communication/synchronization
 Actors (units of computation) & tokens (units of communication)

 Dataflow graph (DFG)

 Firing rules dynamically chosen based on token patterns
 Deterministic, but still undecidable, still Turing-complete…

f1() f3()f2()

f4()
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Synchronous Dataflow (SDF) [Lee86]

• Fixed number of tokens per firing
• Consume fixed number of inputs

– Single firing rule with fixed wildcard patterns

• Produce fixed number of outputs

 Can be scheduled statically
 Flow of data through system does not depend on values

 Find a repeated sequence of firings
 Run actors in proportion to their rates
 Fixed buffer sizes, no under- or over-flow

a cb

d

1 2 1
2

2

2 1 8

1

2
Initialization
 Delay
 Prevent deadlock

Actors are stateless
 Explicit self-loop 

to model state
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SDF Scheduling (1)

• Solve system of linear rate equations
• Balance equations per arc

– 2a = b
– 2b = c
– b   = d
– 2d = c

 4a = 2b = c = 2d

• Inconsistent systems
– Only solvable by setting rates to zero
– Would otherwise (if scheduled dynamically) accumulate tokens

• Underconstrained systems
– Disjoint, independent parts of a design

 Compute repetitions vector
 Linear-time depth-first graph traversal algorithm

a cb

d

1 2 1
2

2

2 1 8

1

2
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SDF Scheduling (2)

• Periodically schedule actors in proportion to their rates
• Smallest integer solution

– 4a = 2b = c = 2d
 a = 1, b = 2, c = 4, d = 2  

• Symbolically simulate one iteration 
of graph until back to initial state

– Admissible iff no deadlock
– Repeatedly execute this schedule
 adbccdbcc = a(2db(2c))
 a(2db)(4c)

 Periodic admissible sequential scheduling (PASS)
 Single processor: memory requirements (buffer size) vs. code size

• a(2db(2c)): 2 token slots on each arc for total of 8 token buffers
• a(2db)(4c): 12 token buffers
 Single appearance schedule & looped code generation 

 Periodic admissible parallel scheduling (PAPS)
 Multi-processor: latency/throughput vs. buffer sizes

a cb

d

1 2 1
2

2

2 1 8

1

2
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SDF Scheduling (3)

• Precedence graph

• Homogeneous SDF (HSDF) conversion
– All rates are 1, each node represents one actor instance/firing

 Scheduling = graph traversal

 Worst-case exponential complexity

• Number of nodes in HSDF vs. SDF
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a0

c0

b0

d0

b1

d1

c1 c2 c3

a cb
1 m 1 m
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Process-Based MoCs

HSDF

SDF

CSDF

BDF

DDF

KPN

RPN

RPN Reactive Process Network

KPN Kahn Process Network

DDF Dynamic Dataflow

BDF Boolean Dataflow

CSDF Cyclo-Static Dataflow

SDF Synchronous Dataflow

HSDF Homogeneous SDF

Yellow: Turing complete

Source: T. Basten, MoCC 2008.
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Dataflow Variants

• Dynamic dataflow extensions
• Modal models

– Reactive process networks (RPN) [Geilen’04]
– Parameterized dataflow (PDF) [Bhattacharya’01]
– Heterochronous dataflow (HDF) [Lee’05]
– Scenario-aware dataflow (SADF) [Theelen’06]
 Parameter changes between iterations driven by state machine model

• Dataflow & actor languages
– Various languages w/ extensions [CAL, …]
– Structured dataflow w/ branching [LabView’s G language]
– Deterministic peeking, teleport/bypass messages [StreamIt]

• Timed dataflow extensions
• Time synchronous dataflow (TSDF) [Agilent ADS]

– Fixed sampling/execution rates on arcs and actors

• Hybrid continuous-discrete time models
– Discrete models as piecewise constant continuous signals [Simulink]
– Sampling at discrete/continuous interfaces [SystemC-AMS]
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Task Graphs

• HSDF models without back-edges/cycles 

• Directed acyclic graphs (DAGs)

• Task-level parallelism

• Actors/nodes are tasks

• Imperative functions

 Widely-used in system design

• DAG scheduling in cluster,
cloud & super-computing 
[Apache Spark]

• ML deployment & compilers
[TensorFlow, Apache TVM, …]
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a b

c

hgf

d e

Source

Sink
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Process Calculi

• Rendezvous-style, synchronous communication
• Communicating Sequential Processes (CSP) [Hoare78]
• Calculus of Communicating Systems (CCS) [Milner80]
 Restricted interactions

 Formal, mathematical framework: process algebra
• Algebra = <objects, operations, axioms>

– Objects: processes {P, Q, …}, channels {a, b, …}
– Composition operators: parallel (P║Q), prefix/sequential (a→P), 

choice (P+Q)
– Axioms: indemnity (Ø║P = P), commutativity (P+Q=Q+P, P║Q = Q║P)

Manipulate processes by manipulating expressions

 Parallel programming languages
 CSP-based [Occam/Transputer, Handle-C]

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 2 © 2024 A. Gerstlauer 40

Lecture 2: Summary

• System & application specification

• „Golden“ input to design flow

• Models of Computation (MoCs)

• Formally express behavior

• Tradeoffs between analyzability vs. expressiveness

• Process-based models

• Task-level parallelism, dataflow driven

• State-based models

• Focus on control flow within single process/thread

• Synchronous, operation-level concurrency


