ECE382N.23: Embedded System Design and Modeling

Lecture 9 – System-Level Synthesis

Andreas Gerstlauer
Electrical and Computer Engineering
University of Texas at Austin

gerstl@ece.utexas.edu

Lecture 9: Outline

- Exact methods
 - Integer linear programming (ILP)
- Constructive heuristics
 - Random mapping
 - · List schedulers
- Generic iterative DSE heuristics
 - Brute-force or random search
 - Simulated annealing
 - Evolutionary algorithms

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9

© 2024 A. Gerstlauer

2

Integer Linear Programming

- Linear expressions over integer variables

 - Cost function $C = \sum_{x_i \in X} a_i x_i \text{ with } a_i \in R, x_i \in N \quad (1)$ Constraints $\forall j \in J : \sum_{x_i \in X} b_{i,j} \ x_i \ge c_j \text{ with } b_{i,j}, c_j \in R \quad (2)$

Def.: The problem of minimizing (1) subject to the constraints (2) is called an integer linear programming (ILP) problem.

If all x_i are constrained to be either 0 or 1, the ILP problem said to be a **0/1 (or binary) integer linear programming problem**.

Source: L. Thiele

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9

© 2024 A. Gerstlauer

Integer Linear Program for Partitioning (1)

- Inputs
 - Tasks t_i , $1 \le i \le n$
 - Processors p_k , $1 \le k \le m$
 - Cost $c_{i,k}$, if task t_i is in processor p_k
- Binary variables $x_{i,k}$
 - $x_{i,k} = 1$: task t_i in block p_k
 - $x_{i,k} = 0$: task t_i not in block p_k
- Integer linear program:

$$\mathbf{x}_{i,k} \in \{0,1\} \quad 1 \le i \le n, 1 \le k \le m$$

$$\sum_{k=1}^{m} x_{i,k} = 1 \quad 1 \le i \le n$$

minimize
$$\sum_{k=1}^{m} \sum_{i=1}^{n} x_{i,k} \cdot c_{i,k} \quad 1 \le k \le m, 1 \le i \le n$$

Source: L. Thiele

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9

© 2024 A. Gerstlauer

Integer Linear Program for Partitioning (2)

Additional constraints

example: maximum number of h_k objects in block k

$$\sum_{i=1}^{n} x_{i,k} \le h_k \quad 1 \le k \le m$$

Popular approach

- Various additional constraints can be added
- If not solving to optimality, run times are acceptable and a solution with a guaranteed quality can be determined
- Can provide reference to provide optimality bounds of heuristic approaches
- Finding the right equations to model the constraints is an art... (but good starting point to understand a problem)
- Static scheduling can be integrated (SDFs)

Source: L. Thiele

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9

© 2024 A. Gerstlauer

Integer Linear Program for Scheduling

- Inputs
 - Task graph TG: tasks t_i , $1 \le i \le n$ with edges (t_i, t_i)
 - Discrete time window: $0 \le t < T_{max}$
- Decision variables
 - $s_{i,t} \in \{0,1\}$: task t_i executes at time t
- Constraints
 - $\sum_{t} s_{i,t} = 1, \quad 1 \le i \le n$ Single task execution:
 - Sequential task execution: $\sum_{i} s_{i,t} \le 1$, $0 \le t < T$
 - Task dependencies $t_i \rightarrow t_j$: $\sum_{l} t \cdot s_{j,t} \ge \sum_{l} t \cdot s_{i,t} + 1$

Start time of task t_i

Objective

• Minimize latency (task t_n is sink): minimize $\sum_t t \cdot s_{n,t}$

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9

© 2024 A. Gerstlauer

Integer Linear Program for Scheduling (2)

- Inputs
 - Task graph TG: tasks t_i , $1 \le i \le n$ with edges (t_i, t_i)
 - Execution time e_i of task t_i , $1 \le i \le n$
 - Discrete time window: $0 \le t < T_{max}$
- Decision variables
 - $s_{i,t} \in \{0,1\}$: task t_i starts execution at time t
- Constraints
 - Single task execution: $\sum_{t} s_{i,t} = 1, 1 \le i \le n$
 - Sequential task execution: $\sum_{i} \sum_{\tau=t-e_i+1}^{t} s_{i,\tau} \le 1$, $0 \le t < T$

Is task t_i executing at time t? \Rightarrow Did it start in t, t-1, ...?

- Task dependencies $t_i \rightarrow t_j$: $\sum_t t \cdot s_{i,t} \ge \sum_t t \cdot s_{i,t} + e_i$
- Objective
 - Minimize latency (task t_n is sink): minimize $\sum_t t \cdot s_{n,t} + e_n$

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9

© 2024 A. Gerstlauer

7

ILP for Partitioning & Scheduling (1)

- Inputs
 - Tasks t_i , $1 \le i \le n$, edges (t_i, t_i) , time window: $0 \le t < T_{max}$
 - Processors p_k , $1 \le k \le m$, cost $c_{i,k}$ if task t_i in processor p_k
 - Execution time $e_{i,k}$ of task t_i on processor p_k
- Decision variables
 - $x_{i,k} \in \{0,1\}$: task t_i mapped to processor p_k
 - $s_{i,t} \in \{0,1\}$: task t_i starts execution at time t
- Constraints
 - Unique task mapping: $\sum_k x_{i,k} = 1, \ 1 \le k \le m$
 - Single task execution: $\sum_{t} s_{i,t} = 1, \quad 1 \le i \le n$
 - Sequential task execution on each processor:

$$\sum_{i} \sum_{\tau=t-e_{i}}^{t} (x_{i,k} \cdot s_{i,\tau}) \cdot 1, \quad 0 \le t < T, \ 1 \le k \le m$$

- Task dependencies $t_i \rightarrow t_j$: $\sum_t t \cdot s_{j,t} \ge \sum_t t \cdot s_{i,t} + \sum_k x_{i,k} \cdot e_{i,k}$
- Objective Non-linear!
 - Weighted cost & latency: $\min w_1 \sum_k \sum_i x_{i,k} \cdot c_{i,k} + w_2 (\sum_t t \cdot s_{n,t} + \sum_k x_{n,k} \cdot e_n)$

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9

© 2024 A. Gerstlauer

8

ILP for Partitioning & Scheduling (2)

- Inputs
 - Tasks t_i , $1 \le i \le n$, edges (t_i, t_i) , time window: $0 \le t < T_{max}$
 - Processors p_k , $1 \le k \le m$, cost c_{ik} if task t_i in processor p_k
 - Execution time $e_{i,k}$ of task t_i on processor p_k
- **Decision variables**
 - s_{i,k,t} ∈ {0,1}: task t_i starts at time t on processor p_k
- **Constraints**
 - Single & unique task mapping: $\sum_{k} \sum_{i} s_{i,k,t} = 1$, $1 \le i \le n$
 - Sequential, non-overlapping execution on each processor: $\sum_{i} \sum_{\tau=t-e_{i,k}+1}^{t} s_{i,k,\tau} \le 1, \quad 0 \le t < T, \ 1 \le k \le m$
 - Task dependencies $t_i \rightarrow t_j$: $\sum_{k} \sum_{t} t \cdot s_{j,k,t} \ge \sum_{k} \sum_{t} t \cdot s_{i,k,t} + \sum_{k} \sum_{t} s_{i,k,t} \cdot e_{i,k}$

$$\sum_{k} \sum_{t} t \cdot s_{j,k,t} \ge \sum_{k} \sum_{t} t \cdot s_{i,k,t} + \sum_{k} \sum_{t} s_{i,k,t} \cdot e_{i,k}$$

- **Objective**
 - · Weighted cost & latency: minimize $w_1(\sum_k \sum_i \sum_t c_{i,k} \cdot s_{i,k,t}) + w_2(\sum_k \sum_t t \cdot s_{n,k,t} + \sum_k \sum_t s_{n,k,t} \cdot e_{n,k})$

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9

© 2024 A. Gerstlauer

Pipelined Scheduling

Allocation and partitioning

Resource sharing

Static scheduling

Throughput = 1 / Period

Latency = (End of the n-th exec. of sink) – (Start of the n-th exec. of source)

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9

© 2024 A. Gerstlauer

Pipelined Scheduling ILP

- Multi-objective cost function
 - Minimize: w_1 ·Throughput + w_2 ·Latency + w_3 ·Cost
- Decision variables
 - Actor to processor binding for time window (period)
 - · Actor start times within time window (period)
- Constraints
 - Execution precedence according to SDF semantics
 - Single & unique actor mapping
 - · Sequential execution on each processor
 - Stable periodic phase
- Optimize partition and schedule simultaneously
- Incorporate communication mapping

J. Lin, A. Srivasta, A. Gerstlauer, B. Evans, "Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems," ICASSP'11
J. Lin, A. Gerstlauer, B. Evans, "Communication-Aware Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems," JSPS'12

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9

© 2024 A. Gerstlauer

11

Lecture 9: Outline

- ✓ Exact methods
 - ✓ Integer linear programming (ILP)
- Constructive heuristics
 - Random mapping
 - List schedulers
- Generic iterative DSE heuristics
 - Brute-force or random search
 - Simulated annealing
 - Evolutionary algorithms

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9

© 2024 A. Gerstlauer

12

Constructive Methods – List Scheduling

- Greedy heuristic
 - Process graph in topology order (source to sink)
 - Process ready nodes in order of priority (criticality)
 - > List scheduling variants only differ in priority function
 - Highest level first (HLF), i.e. distance to the sink
 - Critical path, i.e. longest path to the sink
- Widely used scheduling heuristic
 - Operation scheduling in compilation & high-level synthesis
 - Hu's algorithm for uniform delay/resources (HLF, optimal)
 - · Iterative modulo scheduling for software pipelining
 - · Job-shop/multi-processor scheduling
 - Graham's algorithm (optimal online algorithm for ≤ 3 processors)
 - · Heterogeneous earliest-finish time first (HEFT)
 - Natural fit for minimizing makespan/latency
 - O(n) complexity

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9

© 2024 A. Gerstlauer

13

Constructive Methods – List Scheduling

```
1 = 0;
i = 0...n: p<sub>i</sub> ← Idle;
Ready ← Initial tasks (no dependencies);
while (!empty(Ready)) {
    forall p<sub>i</sub>: status(p<sub>i</sub>) == Idle {
        t = first(Ready, p<sub>i</sub>); // by priority
        p<sub>i</sub> ← (t, 1, 1 + exec_time(t));
}

l = min(l + 1, finish_time(p<sub>i</sub>));

forall p<sub>i</sub>: finish_time(p<sub>i</sub>) == 1 {
        Ready ← successors(current(p<sub>i</sub>));
        p<sub>i</sub> ← Idle;
}
```

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9

© 2024 A. Gerstlauer

14

Lecture 9: Outline

√ Exact methods

✓ Integer linear programming (ILP)

✓ Constructive heuristics

- ✓ Random mapping
- √ List schedulers

Generic iterative DSE heuristics

- · Brute-force or random search
- Simulated annealing
- Evolutionary algorithms

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9

© 2024 A. Gerstlauer

15

Iterative Methods

- Basic principle
 - Start with some initial configuration (e.g. random)
 - Repeatedly search neighborhood (similar configuration)
 - Select *neighbor* as candidate (make a *move*)
 - Evaluate fitness (cost function) of candidate
 - Accept candidate under some rule, select another neighbor
 - · Stop if quality is sufficient, no improvement, or end time

Ingredients

- Way to create an initial configuration
- Function to find a *neighbor* as next candidate (make *move*)
- · Cost function
 - Analytical or simulation
- Acceptance rule, stop criterion
- No other insight into problem needed

Source: L. Thiele

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9

© 2024 A. Gerstlauer

16

Iterative Improvement

- Greedy "hill climbing" approach
 - Always and only accept if cost is lower (fitness is higher)
 - Stop when no more neighbor (move) with lower cost
- Disadvantages
 - Can get trapped in local optimum as best result
 - Highly dependent on initial configuration
 - Generally no upper bound on iteration length
- How to cope with disadvantages?
 - Repeat with many different initial configurations
 - · Retain information gathered in previous runs
 - Use a more complex strategy to avoid local optima
 - Random moves & accept cost increase with probability > 0

Source: L. Thiele

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9

© 2024 A. Gerstlauer

17

Iterative Methods - Simulated Annealing

- From Physics
 - Metal and gas take on a minimal-energy state during cooling down (under certain constraints)
 - At each temperature, the system reaches a thermodynamic equilibrium
 - Temperature is decreased (sufficiently) slowly
 - Probability that a particle "jumps" to a higher-energy state:

$$P(e_i, e_{i+1}, T) = e^{\frac{e_i - e_{i+1}}{k_B T}}$$

- Application to combinatorial optimization
 - Energy = cost of a solution (cost function)
 - Can use simulation or any other evaluation/estimation model
 - Iteratively decrease temperature
 - In each temperature step, perform random moves until equilibrium
 - Increases in cost are accepted with certain probability (depending on cost difference and "temperature")

Source: L. Thiele

 ${\sf ECE382N.23: Embedded \ Sys \ Dsgn/Modeling, \ Lecture \ 9}$

© 2024 A. Gerstlauer

18

Iterative Methods - Simulated Annealing

```
temp = temp start;
cost = c(P);
while (Frozen() == FALSE) {
    while (Equilibrium() == FALSE) {
        P' = RandomMove(P);
        cost' = c(P');
        deltacost = cost' - cost;
         if (Accept(deltacost, temp) > random[0,1)) {
             P = P';
                                                           deltacost
             cost = cost';
                                                            k·temp
        }
                                 Accept(deltacost, temp) = e
    }
   temp = DecreaseTemp (temp);
}
                                                       Source: L. Thiele
ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9
                                          © 2024 A. Gerstlauer
```

Iterative Methods - Simulated Annealing

- Random moves: RandomMove (P)
 - Choose a random solution in the neighborhood of P
- Cooling Down: DecreaseTemp(), Frozen()
 - Initialize: temp start = 1.0
 - DecreaseTemp: temp = α temp (typical: $0.8 \le \alpha \le 0.99$)
 - Terminate (frozen): temp < temp min or no improvement
- Equilibrium: Equilibrium()
 - After defined number of iterations or when there is no more improvement
- Complexity
 - From exponential to constant, depending on the implementation of the cooling down/equilibrium functions
 - The longer the runtime, the better the quality of results

Source: L. Thiele

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer

Multi-Objective Exploration

- Multi-objective optimization (MOO)
 - Implementations are optimized with respect to many (conflicting) objectives
 - Several optimal solutions exist with different tradeoffs among properties
- Exact, constructive methods are prohibitive
 - · Large design space, dynamic behavior
- Iterative single-objective methods
 - · Only return a single solution
- Set-based iterative approaches
 - Randomized, problem independent (black box)
 - Often inspired by processes in nature (evolution, ant colonies, diffusion)

Source: C. Haubelt, J. Teich

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9

© 2024 A. Gerstlauer

21

Optimization Goals

- Find Pareto-optimal solutions (Pareto front)
- Or a good approximation (convergence, diversity)
- With a minimal number of iterations

Source: C. Haubelt, J. Teich

© 2024 A. Gerstlauer

25

Design Space Exploration (DSE)

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9

- Search space vs. decision space vs. design space
 - Encoding of decisions defines search space
 - Focus on observable decisions, hardcode unobservable ones
 - Functional & architecture constraints define decision space
 - Quickly prune & reject infeasible decisions
 - · Quality constraints restrict objective space
 - Invalid solutions outside of valid quality range

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9

© 2024 A. Gerstlauer

26

Evolutionary Algorithms (EAs)

Multi-objective evolutionary algorithms (MOEAs)

- Capable to explore the search space very fast, i.e., they can find some good solutions after a few iterations (generations)
- Explore high dimensional search spaces
- Can solve variety of problems (discrete, continuous, ...)
- Work on a population of individuals in parallel
- Black box optimization (generic evaluation model)

Fitness evaluation

- Simulation, analysis or hybrid
 - Tradeoff between accuracy and speed
- Hierarchical optimization
 - Combination with second-level optimization

Source: C. Haubelt, J. Teich

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9

© 2024 A. Gerstlauer

27

Lecture 9: Summary

- System-level synthesis & decision making
 - Formalization as a basis for automation
 - Partitioning (allocation, binding) & scheduling
- Classical HW/SW co-design approaches
 - Single processor + co-processors
- Multi-processor mapping heuristics
 - · ILPs, list scheduling, simulated annealing
- Design space exploration (DSE)
 - Multi-objective optimization, MOEAs
- Machine-learning based methods
 - ➤ Reinforcement learning (robotics, game play)

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9

© 2024 A. Gerstlauer

31