ECE382N.23: Embedded Sys Dsgn/Modeling

ECE382N.23:

Embedded System Design and Modeling

Cockrell School of Engineering

Lecture 9 — System-Level Synthesis

Andreas Gerstlauer
Electrical and Computer Engineering
University of Texas at Austin
gerstl@ece.utexas.edu

The University of Texas at Austin

Chandra Department of Electrical
and Computer Engineering

Lecture 9: Outline

 Exact methods

e Constructive heuristics
« Random mapping
» List schedulers

« Simulated annealing
 Evolutionary algorithms

* Integer linear programming (ILP)

» Generic iterative DSE heuristics
* Brute-force or random search

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9

© 2024 A. Gerstlauer

© 2024 A. Gerstlauer

Lecture 9

ECE382N.23: Embedded Sys Dsgn/Modeling

Integer Linear Programming

* Linear expressions over integer variables

- Cost function C= Zaixi witha, eR,x, e N (1)
x;eX
« Constraints VjeJ: Z;(bl.’j x; 2c;withd, .,c,eR (2)

Def.: The problem of minimizing (1) subject to the constraints
(2) is called an integer linear programming (ILP) problem.

If all x; are constrained to be either 0 or 1, the ILP problem said
to be a 0/1 (or binary) integer linear programming problem.

Source: L. Thiele
ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 3

Integer Linear Program for Partitioning (1)

* Inputs

 Taskst,1<i<n

* Processorsp,, 1 <k<m

« Costc;,, iftask ¢ is in processor p,
* Binary variables x;,

* x;; = 1: task ¢ in block p,

* x;; = 0: task ¢, not in block p;,

* Integer linear program:

xip €01} 1<i<n1<k<m
m

inkzl 1<i<n

k=1

m n

minimize Y ¥ X;;Cix 1<k<m,1<i<n
k=li=1
Source: L. Thiele
ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 4

© 2024 A. Gerstlauer

Lecture 9

ECE382N.23: Embedded Sys Dsgn/Modeling

Integer Linear Program for Partitioning (2)

» Additional constraints
+ example: maximum number of %, objects in block &

n
Zx,-’k Shk 1<k<m
=1

* Popular approach
» Various additional constraints can be added

+ If not solving to optimality, run times are acceptable and a
solution with a guaranteed quality can be determined

« Can provide reference to provide optimality bounds of
heuristic approaches

+ Finding the right equations to model the constraints is an
art... (but good starting point to understand a problem)

» Static scheduling can be integrated (SDFs)

Source: L. Thiele

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer

5

Integer Linear Program for Scheduling

* Inputs
* Task graph TG: tasks 7, 1 <i<n with edges (¢,
* Discrete time window: 0<¢<T,, .

* Decision variables
+ s5;,€ {0,1}: task ¢, executes at time ¢

e Constraints

+ Single task execution: 28, =1, 1<i<n
+ Sequential task execution: 8, <1, 0<t<T
« Task dependencies ¢, —: 2ils; 2y, b8, 1
- Objective Start time of task ¢

 Minimize latency (task ¢, is sink): minimize), ts,,

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 6

© 2024 A. Gerstlauer

Lecture 9

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 9

Integer Linear Program for Scheduling (2)

* Inputs
* Task graph TG: tasks 7, 1 <i<n with edges (¢,
* Execution time ¢, of task ¢, 1 <i<n
* Discrete time window: 0<¢<T,, .
+ Decision variables
+ s5;,€ {0,1}: task ¢, starts execution at time ¢
+ Constraints
+ Single task execution: 28, =1, 1<i<nm
+ Sequential task execution: ¥ 37, . 115;:<1, 0<¢<T
\—Y—}

Is task ¢, executing at time ¢ ? = Did it startin ¢, +-1, ... ?

 Task dependencies t,—t;: 3, t=s;, =3, ts;, + ¢
* Objective
+ Minimize latency (task ¢z, is sink): minimize), ts,, + ¢,

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 7

ILP for Partitioning & Scheduling (1)

* Inputs
+ Tasks, 1 <i<n, edges (¢,¢), time window: 0<7<T,,,
* Processors p,, 1 <k<m, cost ¢, if task ¢, in processor p,
* Execution time ¢, of task ¢, on processor p,
+ Decision variables
* x;; € {0,1}: task #, mapped to processor p,
+ s;, € {0,1}: task ¢ starts execution at time ¢
+ Constraints

* Unique task mapping: YuXp=1L 1<k<m
» Single task execution: Yi8s,=1, 1<i<n
» Sequential task execution on each _processor:
Yiiot—e ¥1, 0<t<T 1<k<m
« Task dependencies ¢, —1;: 2ulSi Z St DX e,

* Objective Non-linear!
+ Weighted cost & latency: min w; >, > x; ¢, TW,(O, £5,,, + D 5%, 10€,)

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 8

© 2024 A. Gerstlauer 4

ECE382N.23: Embedded Sys Dsgn/Modeling

ILP for Partitioning & Scheduling (2)

Inputs
« Tasks ¢, 1 <i<n, edges (1,1), time window: 0<¢<T,,,
 Processors p;, 1 <k<m, cost c,, iftask ¢, in processor p,
* Execution time ¢;, of task ¢, on processor p,
Decision variables
s; 1. € 10,1} task ¢; starts at time 7 on processor p,
Constraints
+ Single & unique task mapping: > ;> s;,, =1, 1<i<n
+ Sequential, non-overlapping execution on each processor:
ZlZT t— elk+1slk‘r<1 0<t<T 1<k<m
» Task dependencies ¢, —t;:
2idd USjpr Z 22 USipr + 2uds Siks Cik
Objective
+ Weighted cost & latency:
minimize w; (2 2 2 Cix Sine) T W Ui 2k Sks En)

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9

© 2024 A. Gerstlauer 9

Pipelined Scheduling

* Allocation and partitioning
* Resource sharing

. . ARM
» Static scheduling
* Plpe“nlng (‘ \Klatency \(-
| | | | | | | | | | [==1 T T T T T T T T T T T T T =
| | | | | | | | | | | | | | | | | | |
ARM 11 } : } 12 ‘ 13 51 ‘ 13 5l ‘ IS 53 I
FPGA | | | 2 EUERES - ENEHES FIENE D
mE 4L
| | | |

| S ©operiod 1 " period2 " 'period 3

startup phase stable periodic phase

Throughput =1/ Period
Latency = (End of the n-th exec. of sink) — (Start of the n-th exec. of source)

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9

© 2024 A. Gerstlauer 10

© 2024 A. Gerstlauer

Lecture 9

ECE382N.23: Embedded Sys Dsgn/Modeling

Pipelined Scheduling ILP

* Multi-objective cost function
* Minimize: w,-Throughput + w,-Latency + w-Cost

* Decision variables
+ Actor to processor binding for time window (period)
+ Actor start times within time window (period)

+ Constraints
» Execution precedence according to SDF semantics
+ Single & unique actor mapping
» Sequential execution on each processor
» Stable periodic phase

» Optimize partition and schedule simultaneously
> Incorporate communication mapping

J. Lin, A. Srivasta, A. Gerstlauer, B. Evans, "Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems,“ ICASSP’11

J. Lin, A. Gerstlauer, B. Evans, “Communication-Aware Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems,“ JSPS’12

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer

1"

Lecture 9: Outline

e Constructive heuristics
« Random mapping
» List schedulers

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer

© 2024 A. Gerstlauer

Lecture 9

ECE382N.23: Embedded Sys Dsgn/Modeling

Constructive Methods — List Scheduling

* Greedy heuristic
» Process graph in topology order (source to sink)
* Process ready nodes in order of priority (criticality)
» List scheduling variants only differ in priority function
— Highest level first (HLF), i.e. distance to the sink
— Critical path, i.e. longest path to the sink
* Widely used scheduling heuristic
* Operation scheduling in compilation & high-level synthesis
» Hu’s algorithm for uniform delay/resources (HLF, optimal)
* lterative modulo scheduling for software pipelining
* Job-shop/multi-processor scheduling
» Graham'’s algorithm (optimal online algorithm for < 3 processors)
* Heterogeneous earliest-finish time first (HEFT)
» Natural fit for minimizing makespan/latency
» O(n) complexity

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 13

Constructive Methods — List Scheduling

1 =20;
i = 0..n: p;, « Idle;
Ready « Initial tasks (no dependencies);
while (!empty (Ready)) {
forall p,: status(p;) == Idle {
t = first(Ready, p;); // by priority
p; « (£, 1, 1 + exec time(t));

}
1 =min(l + 1, finish time(p;)):
forall p;: finish time(p;) == 1 {
Ready « successors (current (p;));
}
}
ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 14

© 2024 A. Gerstlauer

Lecture 9

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 9

Lecture 9: Outline

* Generic iterative DSE heuristics
 Brute-force or random search
« Simulated annealing
 Evolutionary algorithms

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 15

Iterative Methods

* Basic principle
 Start with some initial configuration (e.g. random)

* Repeatedly search neighborhood (similar configuration)
— Select neighbor as candidate (make a move)

» Evaluate fitness (cost function) of candidate
— Accept candidate under some rule, select another neighbor

« Stop if quality is sufficient, no improvement, or end time

* Ingredients
» Way to create an initial configuration
» Function to find a neighbor as next candidate (make move)

» Cost function
— Analytical or simulation

» Acceptance rule, stop criterion
» No other insight into problem needed

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 16

Source: L. Thiele

© 2024 A. Gerstlauer 8

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 9

Iterative Improvement

* Greedy “hill climbing” approach
» Always and only accept if cost is lower (fitness is higher)
» Stop when no more neighbor (move) with lower cost

+ Disadvantages

» Can get trapped in local optimum as best result
— Highly dependent on initial configuration

* Generally no upper bound on iteration length

> How to cope with disadvantages?
* Repeat with many different initial configurations
» Retain information gathered in previous runs
* Use a more complex strategy to avoid local optima
» Random moves & accept cost increase with probability > 0

Source: L. Thiele

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 17

Iterative Methods - Simulated Annealing

* From Physics
* Metal and gas take on a minimal-energy state during
cooling down (under certain constraints)

— At each temperature, the system reaches a thermodynamic
equilibrium
— Temperature is decreased (sufficiently) slowly

» Probability that a particle “jumps” to a higher-energy state:
€ —Cit+l
P(ej,e;1.T)=e 87
» Application to combinatorial optimization
* Energy = cost of a solution (cost function)
— Can use simulation or any other evaluation/estimation model
* lteratively decrease temperature

— In each temperature step, perform random moves until equilibrium

— Increases in cost are accepted with certain probability
(depending on cost difference and “temperature”)

Source: L. Thiele

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 18

© 2024 A. Gerstlauer 9

ECE382N.23: Embedded Sys Dsgn/Modeling

Iterative Methods - Simulated Annealing

temp = temp start;

cost = c(P);
while (Frozen() == FALSE) {
while (Equilibrium() == FALSE) {
P’ = RandomMove (P) ;
cost’ = c(P");
deltacost = cost’ - cost;
if (Accept (deltacost, temp) > random([0,1)) {
P =P’y
cost = cost’; _&dmamt
} Accept(deltacost,temp)=e *1€"P
}
temp = DecreaseTemp (temp) ;
}
Source: L. Thiele
ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 19

Iterative Methods - Simulated Annealing

*+ Random moves: RandomMove (P)
» Choose a random solution in the neighborhood of P

* Cooling Down: DecreaseTemp (), Frozen ()
* Initialize: temp_start=1.0
* DecreaseTemp: temp = a *temp (typical: 0.8 < a <0.99)
+ Terminate (frozen): temp < temp_min or no improvement

* Equilibrium: Equilibrium()

» After defined number of iterations or when there is no more
improvement

» Complexity
+ From exponential to constant, depending on the
implementation of the cooling down/equilibrium functions
+ The longer the runtime, the better the quality of results

Source: L. Thiele

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 20

© 2024 A. Gerstlauer

Lecture 9

10

ECE382N.23: Embedded Sys Dsgn/Modeling

Multi-Objective Exploration

» Multi-objective optimization (MOO)
* Implementations are optimized with respect to many

(conflicting) objectives
» Several optimal solutions exist with different tradeoffs

among properties
Exact, constructive methods are prohibitive
» Large design space, dynamic behavior

Iterative single-objective methods
* Only return a single solution
> Set-based iterative approaches
» Randomized, problem independent (black box)

» Often inspired by processes in nature
(evolution, ant colonies, diffusion)

Source: C. Haubelt, J. Teich

21

© 2024 A. Gerstlauer

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9

Objective Space

LT _

latency
@

® ® e = i A4

&
o g

® 9
&

cost

Source: C. Haubelt, J. Teich
22

Lecture 9

© 2024 A. Gerstlauer

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9

© 2024 A. Gerstlauer

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 9

Pareto Dominance

dominates

objective 2

dominated @ @

%comparable

objective 1

Given: two decision vectors x, and x,
* Xy>>X, (strongly dominates) if Vi: fi(x¢)<fi(Xy)

* Xy>Xy (dominates) if Vi fi(x4)=fi(x0) A 3j: fi(xq)<fi(x,)
* X~Xy (indifferent) if Vi: fi(x4)=fi(x,)
* Xq]I%, (incomparable) if 3i,j: fi(xq)<fi(xz) A fi(x2)<f(x4)
Source: C. Haubelt, J. Teich
ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 23

Pareto Optimality

» Set of all solutions X

+ A decision vector x € X is said to be Pareto-optimal
ifAyeX:y>x

objective 2

Pareto front

objective 1
Source: C. Haubelt, J. Teich
ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 24

© 2024 A. Gerstlauer 12

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 9

Optimization Goals

Find Pareto-optimal solutions (Pareto front)
Or a good approximation (convergence, diversity)
With a minimal number of iterations

objective 2

objective 1

Source: C. Haubelt, J. Teich
© 2024 A. Gerstlauer 25

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9

Design Space Exploration (DSE)

nctional Constraints Non-Functional Constraints
|nfeaSible Invalid

o T

Evaluation
Encoding of ¢ and setting of

decisions unobservable
decisions

Search Space

Decision Space

Objective Space

Search space vs. decision space vs. design space
» Encoding of decisions defines search space
— Focus on observable decisions, hardcode unobservable ones

* Functional & architecture constraints define decision space
— Quickly prune & reject infeasible decisions

* Quality constraints restrict objective space
— Invalid solutions outside of valid quality range

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 26

© 2024 A. Gerstlauer 13

ECE382N.23: Embedded Sys Dsgn/Modeling

Evolutionary Algorithms (EAs)

» Multi-objective evolutionary algorithms (MOEAs)

+ Capable to explore the search space very fast, i.e., they
can find some good solutions after a few iterations
(generations)

+ Explore high dimensional search spaces

+ Can solve variety of problems (discrete, continuous, ...)
* Work on a population of individuals in parallel

+ Black box optimization (generic evaluation model)

* Fitness evaluation
+ Simulation, analysis or hybrid
— Tradeoff between accuracy and speed
* Hierarchical optimization
— Combination with second-level optimization

Source: C. Haubelt, J. Teich

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 27

Multi-Objective Evolutionary Algorithm

Init Population

Fitness

assignment

selection
]

Recombination

N° Problem Solved ©

Source: C. Haubelt, J. Teich

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 28

© 2024 A. Gerstlauer

Lecture 9

14

ECE382N.23: Embedded Sys Dsgn/Modeling

Fitness Selection

+ Pareto ranking

55— 1 . r T T t
st : :
[T : H
@i H 4
45F i _
L TN
62,
. H é «
................ .
:t)\lf' 4 ‘i Pt i
S
3s} : I
B L TP
i
3f :
3
L3
25 \ . . , , , . , Sees
0 o1 02 03 04 05 06 07 08 09 1

f1(x)

Source: C. Haubelt, J. Teich

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 29
Recombination
MOEA
Crossover
Model

Optimized
solutions

Source: C. Haubelt, J. Teich

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 30

© 2024 A. Gerstlauer

Lecture 9

15

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 9

Lecture 9: Summary

+ System-level synthesis & decision making
* Formalization as a basis for automation
+ Partitioning (allocation, binding) & scheduling

» Classical HW/SW co-design approaches
» Single processor + Co-processors

* Multi-processor mapping heuristics
* ILPs, list scheduling, simulated annealing

» Design space exploration (DSE)
» Multi-objective optimization, MOEAs

» Machine-learning based methods
» Reinforcement learning (robotics, game play)

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 31

© 2024 A. Gerstlauer 16

