
ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 9

© 2024 A. Gerstlauer 1

ECE382N.23:
Embedded System Design and Modeling

Andreas Gerstlauer
Electrical and Computer Engineering

University of Texas at Austin
gerstl@ece.utexas.edu

Lecture 9 – System-Level Synthesis

Lecture 9: Outline

• Exact methods

• Integer linear programming (ILP)

• Constructive heuristics

• Random mapping

• List schedulers

• Generic iterative DSE heuristics

• Brute-force or random search

• Simulated annealing

• Evolutionary algorithms

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 2

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 9

© 2024 A. Gerstlauer 2

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 3

Integer Linear Programming

Def.: The problem of minimizing (1) subject to the constraints
(2) is called an integer linear programming (ILP) problem.

If all xi are constrained to be either 0 or 1, the ILP problem said
to be a 0/1 (or binary) integer linear programming problem.

)1(,with NxRaxaC i
Xx

iii

i

)2(,with: ,, RcbcxbJj
Xx

jjijiji

i

• Linear expressions over integer variables

• Cost function

• Constraints

Source: L. Thiele

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 4

Integer Linear Program for Partitioning (1)

• Inputs
• Tasks ti, 1 ≤ i ≤ n
• Processors pk, 1 ≤ k ≤ m
• Cost ci,k , if task ti is in processor pk

• Binary variables xi,k
• xi,k = 1: task ti in block pk

• xi,k = 0: task ti not in block pk

• Integer linear program:

nimkcx

nix

mknix

m

k

n

i
kiki

m

k
ki

ki

1,1minimize

11

1,11,0

1 1
,,

1
,

,

Source: L. Thiele

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 9

© 2024 A. Gerstlauer 3

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 5

Integer Linear Program for Partitioning (2)

• Additional constraints
• example: maximum number of hk objects in block k

• Popular approach
• Various additional constraints can be added
• If not solving to optimality, run times are acceptable and a

solution with a guaranteed quality can be determined
• Can provide reference to provide optimality bounds of

heuristic approaches
• Finding the right equations to model the constraints is an

art… (but good starting point to understand a problem)
 Static scheduling can be integrated (SDFs)

mkhx
n

i
kki

1

1
,

Source: L. Thiele

Integer Linear Program for Scheduling

• Inputs

• Task graph TG: tasks ti, 1 ≤ i ≤ n with edges (ti,tj)

• Discrete time window: 0 ≤ t < Tmax

• Decision variables

• si,t ∈ {0,1}: task ti executes at time t

• Constraints

• Single task execution: ∑t si,t = 1, 1 ≤ i ≤ n

• Sequential task execution: ∑i si,t ≤ 1, 0 ≤ t < T

• Task dependencies ti →tj : ∑t t∙sj,t ≥ ∑t t∙si,t + 1

• Objective

• Minimize latency (task tn is sink): minimize ∑t t∙sn,t

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 6

Start time of task ti

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 9

© 2024 A. Gerstlauer 4

Integer Linear Program for Scheduling (2)

• Inputs

• Task graph TG: tasks ti, 1 ≤ i ≤ n with edges (ti,tj)

• Execution time ei of task ti, 1 ≤ i ≤ n

• Discrete time window: 0 ≤ t < Tmax

• Decision variables

• si,t ∈ {0,1}: task ti starts execution at time t

• Constraints

• Single task execution: ∑t si,t = 1, 1 ≤ i ≤ n

• Sequential task execution: ∑ ∑ 𝑠,ఛ
௧
ఛୀ௧ିାଵ ≤ 1 , 0 ≤ t < T

• Task dependencies ti →tj : ∑t t∙sj,t ≥ ∑t t∙si,t + ei

• Objective

• Minimize latency (task tn is sink): minimize ∑t t∙sn,t + en

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 7

Is task ti executing at time t ? Did it start in t, t-1, … ?

ILP for Partitioning & Scheduling (1)

• Inputs

• Tasks ti, 1 ≤ i ≤ n, edges (ti,tj), time window: 0 ≤ t < Tmax

• Processors pk, 1 ≤ k ≤ m, cost ci,k if task ti in processor pk

• Execution time ei,k of task ti on processor pk

• Decision variables

• xi,k ∈ {0,1}: task ti mapped to processor pk

• si,t ∈ {0,1}: task ti starts execution at time t

• Constraints

• Unique task mapping: ∑k xi,k = 1, 1 ≤ k ≤ m

• Single task execution: ∑t si,t = 1, 1 ≤ i ≤ n

• Sequential task execution on each processor:
∑ ∑ 𝑥,∙𝑠,ఛ

௧
ఛୀ௧ିାଵ ≤ 1 , 0 ≤ t < T, 1 ≤ k ≤ m

• Task dependencies ti →tj : ∑t t∙sj,t ≥ ∑t t∙si,t + ∑k xi,k∙ei,k

• Objective

• Weighted cost & latency: min w1 ∑k ∑i xi,k∙ci,k +w2(∑t t∙sn,t + ∑k xn,k∙en)

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 8

Non-linear!

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 9

© 2024 A. Gerstlauer 5

ILP for Partitioning & Scheduling (2)

• Inputs
• Tasks ti, 1 ≤ i ≤ n, edges (ti,tj), time window: 0 ≤ t < Tmax

• Processors pk, 1 ≤ k ≤ m, cost ci,k if task ti in processor pk

• Execution time ei,k of task ti on processor pk

• Decision variables
• si,k,t ∈ {0,1}: task ti starts at time t on processor pk

• Constraints
• Single & unique task mapping: ∑k∑t si,k,t = 1, 1 ≤ i ≤ n
• Sequential, non-overlapping execution on each processor:

∑ ∑ 𝑠,,ఛ
௧
ఛୀ௧ି,ೖାଵ ≤ 1 , 0 ≤ t < T, 1 ≤ k ≤ m

• Task dependencies ti →tj :
∑k∑t t∙sj,k,t ≥ ∑k∑t t∙si,k,t + ∑k∑t si,k,t ∙ei,k

• Objective
• Weighted cost & latency:

minimize w1(∑k ∑i ∑t ci,k ∙si,k,t) + w2(∑k∑t t∙sn,k,t+∑k∑t sn,k,t ∙en,k)

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 9

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 10

• Allocation and partitioning
• Resource sharing

• Static scheduling
• Pipelining

Throughput = 1 / Period
Latency = (End of the n-th exec. of sink) – (Start of the n-th exec. of source)

Pipelined Scheduling

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 9

© 2024 A. Gerstlauer 6

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 11

Pipelined Scheduling ILP

• Multi-objective cost function
• Minimize: w1·Throughput + w2·Latency + w3·Cost

• Decision variables
• Actor to processor binding for time window (period)
• Actor start times within time window (period)

• Constraints
• Execution precedence according to SDF semantics
• Single & unique actor mapping
• Sequential execution on each processor
• Stable periodic phase

 Optimize partition and schedule simultaneously
 Incorporate communication mapping

J. Lin, A. Srivasta, A. Gerstlauer, B. Evans, "Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems,“ ICASSP’11

J. Lin, A. Gerstlauer, B. Evans, “Communication-Aware Heterogeneous Multiprocessor Mapping for Real-time Streaming Systems,“ JSPS’12

Lecture 9: Outline

 Exact methods

 Integer linear programming (ILP)

• Constructive heuristics

• Random mapping

• List schedulers

• Generic iterative DSE heuristics

• Brute-force or random search

• Simulated annealing

• Evolutionary algorithms

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 12

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 9

© 2024 A. Gerstlauer 7

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 13

Constructive Methods – List Scheduling
• Greedy heuristic

• Process graph in topology order (source to sink)

• Process ready nodes in order of priority (criticality)

 List scheduling variants only differ in priority function
– Highest level first (HLF), i.e. distance to the sink

– Critical path, i.e. longest path to the sink

• Widely used scheduling heuristic

• Operation scheduling in compilation & high-level synthesis
• Hu’s algorithm for uniform delay/resources (HLF, optimal)

• Iterative modulo scheduling for software pipelining

• Job-shop/multi-processor scheduling
• Graham’s algorithm (optimal online algorithm for ≤ 3 processors)

• Heterogeneous earliest-finish time first (HEFT)

 Natural fit for minimizing makespan/latency
 O(n) complexity

Constructive Methods – List Scheduling

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 14

l = 0;

i = 0…n: pi ← Idle;

Ready ← Initial tasks (no dependencies);
while (!empty(Ready)) {

forall pi: status(pi) == Idle {

t = first(Ready, pi); // by priority

pi ← (t, l, l + exec_time(t));

}

l = min(l + 1, finish_time(pi));

forall pi: finish_time(pi) == l {

Ready ← successors(current(pi));
pi ← Idle;

}

}

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 9

© 2024 A. Gerstlauer 8

Lecture 9: Outline

 Exact methods

 Integer linear programming (ILP)

 Constructive heuristics

Random mapping

List schedulers

• Generic iterative DSE heuristics

• Brute-force or random search

• Simulated annealing

• Evolutionary algorithms

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 15

Iterative Methods
• Basic principle

• Start with some initial configuration (e.g. random)

• Repeatedly search neighborhood (similar configuration)
– Select neighbor as candidate (make a move)

• Evaluate fitness (cost function) of candidate
– Accept candidate under some rule, select another neighbor

• Stop if quality is sufficient, no improvement, or end time

• Ingredients

• Way to create an initial configuration

• Function to find a neighbor as next candidate (make move)

• Cost function
– Analytical or simulation

• Acceptance rule, stop criterion

 No other insight into problem needed
ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 16

Source: L. Thiele

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 9

© 2024 A. Gerstlauer 9

Iterative Improvement

• Greedy “hill climbing” approach

• Always and only accept if cost is lower (fitness is higher)

• Stop when no more neighbor (move) with lower cost

• Disadvantages

• Can get trapped in local optimum as best result
– Highly dependent on initial configuration

• Generally no upper bound on iteration length

 How to cope with disadvantages?

• Repeat with many different initial configurations

• Retain information gathered in previous runs

• Use a more complex strategy to avoid local optima

 Random moves & accept cost increase with probability > 0

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 17

Source: L. Thiele

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 18

Iterative Methods - Simulated Annealing

• From Physics
• Metal and gas take on a minimal-energy state during

cooling down (under certain constraints)
– At each temperature, the system reaches a thermodynamic

equilibrium
– Temperature is decreased (sufficiently) slowly

• Probability that a particle “jumps” to a higher-energy state:

• Application to combinatorial optimization
• Energy = cost of a solution (cost function)

– Can use simulation or any other evaluation/estimation model

• Iteratively decrease temperature
– In each temperature step, perform random moves until equilibrium
– Increases in cost are accepted with certain probability

(depending on cost difference and “temperature”)

Tk

ee

ii
B

ii

eTeeP

1

),,(1

Source: L. Thiele

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 9

© 2024 A. Gerstlauer 10

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 19

Iterative Methods - Simulated Annealing

temp = temp_start;

cost = c(P);

while (Frozen() == FALSE) {

while (Equilibrium() == FALSE) {

P’ = RandomMove(P);

cost’ = c(P’);

deltacost = cost’ - cost;

if (Accept(deltacost, temp) > random[0,1)) {

P = P’;

cost = cost’;

}

}

temp = DecreaseTemp (temp);

}

tempk

deltacost

etempdeltacost

),Accept(

Source: L. Thiele

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 20

Iterative Methods - Simulated Annealing

• Random moves: RandomMove(P)
• Choose a random solution in the neighborhood of P

• Cooling Down: DecreaseTemp(), Frozen()
• Initialize: temp_start = 1.0
• DecreaseTemp: temp = a • temp (typical: 0.8 a 0.99)
• Terminate (frozen): temp < temp_min or no improvement

• Equilibrium: Equilibrium()

• After defined number of iterations or when there is no more
improvement

 Complexity

• From exponential to constant, depending on the
implementation of the cooling down/equilibrium functions

• The longer the runtime, the better the quality of results
Source: L. Thiele

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 9

© 2024 A. Gerstlauer 11

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 21

Multi-Objective Exploration

• Multi-objective optimization (MOO)
• Implementations are optimized with respect to many

(conflicting) objectives
• Several optimal solutions exist with different tradeoffs

among properties

• Exact, constructive methods are prohibitive
• Large design space, dynamic behavior

• Iterative single-objective methods
• Only return a single solution

 Set-based iterative approaches
 Randomized, problem independent (black box)
 Often inspired by processes in nature

(evolution, ant colonies, diffusion)
Source: C. Haubelt, J. Teich

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 22

Objective Space

la
te

nc
y

cost

Source: C. Haubelt, J. Teich

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 9

© 2024 A. Gerstlauer 12

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 23

incomparable

incomparable

is
dominated

dominates

Pareto Dominance

• Given: two decision vectors x1 and x2

• x1≻≻x2 (strongly dominates) if ∀i: fi(x1)<fi(x2)
• x1≻x2 (dominates) if ∀i: fi(x1)≤fi(x2) ∧ ∃j: fj(x1)<fj(x2)
• x1~x2 (indifferent) if ∀i: fi(x1)=fi(x2)
• x1||x2 (incomparable) if ∃i,j: fi(x1)<fi(x2) ∧ fj(x2)<fj(x1)

ob
je

ct
iv

e
 2

objective 1

Source: C. Haubelt, J. Teich

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 24

Pareto Optimality

• Set of all solutions X

• A decision vector x ∊ X is said to be Pareto-optimal
if ∄y ∊ X: y ≻ x

ob
je

ct
iv

e
2

objective 1

Pareto front

Source: C. Haubelt, J. Teich

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 9

© 2024 A. Gerstlauer 13

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 25

Optimization Goals

• Find Pareto-optimal solutions (Pareto front)

• Or a good approximation (convergence, diversity)

• With a minimal number of iterations

ob
je

ct
iv

e
2

objective 1
Source: C. Haubelt, J. Teich

Design Space Exploration (DSE)

• Search space vs. decision space vs. design space

• Encoding of decisions defines search space
– Focus on observable decisions, hardcode unobservable ones

• Functional & architecture constraints define decision space
– Quickly prune & reject infeasible decisions

• Quality constraints restrict objective space
– Invalid solutions outside of valid quality range

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 26

Valid Region

Feasible Region

Search Space Decision Space Objective Space

decisions

Decoding
and setting of
unobservable

Functional Constraints Non-Functional Constraints

Evaluation

Encoding of
decisions

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 9

© 2024 A. Gerstlauer 14

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 27

Evolutionary Algorithms (EAs)

• Multi-objective evolutionary algorithms (MOEAs)

• Capable to explore the search space very fast, i.e., they
can find some good solutions after a few iterations
(generations)

• Explore high dimensional search spaces

• Can solve variety of problems (discrete, continuous, …)

• Work on a population of individuals in parallel

• Black box optimization (generic evaluation model)

• Fitness evaluation

• Simulation, analysis or hybrid
– Tradeoff between accuracy and speed

• Hierarchical optimization
– Combination with second-level optimization

Source: C. Haubelt, J. Teich

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 28

Init Population

Fitness
assignment

selection

Recombination

Begin

End ?No Problem Solved

Multi-Objective Evolutionary Algorithm

x1

x2

x2

x1

f(x1,x2)

Source: C. Haubelt, J. Teich

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 9

© 2024 A. Gerstlauer 15

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 29

Fitness Selection

1

2 3
4

• Pareto ranking

Source: C. Haubelt, J. Teich

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 30

Recombination

Optimized
solutions
Optimized
solutions

MOEAMOEA

Crossover

Mutation

ModelModel

Source: C. Haubelt, J. Teich

ECE382N.23: Embedded Sys Dsgn/Modeling Lecture 9

© 2024 A. Gerstlauer 16

ECE382N.23: Embedded Sys Dsgn/Modeling, Lecture 9 © 2024 A. Gerstlauer 31

Lecture 9: Summary

• System-level synthesis & decision making
• Formalization as a basis for automation
• Partitioning (allocation, binding) & scheduling

• Classical HW/SW co-design approaches
• Single processor + co-processors

• Multi-processor mapping heuristics
• ILPs, list scheduling, simulated annealing

• Design space exploration (DSE)
• Multi-objective optimization, MOEAs

 Machine-learning based methods
Reinforcement learning (robotics, game play)

