
Lab 1 Graphics, LCD, Timer and Interpreter Page 1.1

J. W. Valvano, A. Gerstlauer 1/6/2023

Lab 1 Graphics, LCD, ADC, Timer and Interpreter

Goals • Introduction to Tiva TM4C123 LaunchPad,
 • Interrupting serial port,
 • Graphics LCD driver,
 • Timer-triggered ADC driver,
 • Periodic interrupts using the timer,
 • Develop a command line interpreter.

Starter files Located at http://www.ece.utexas.edu/~valvano/arm/
 The following Keil 5 projects are included in ValvanoWareTM4C123v5.zip
 • ST7735_4C123
 • PeriodicSysTickInts_4C123
 • ADCSWTrigger_4C123
 • UARTInts_4C123 (includes FIFO code)
 • PeriodicTimer0AInts_4C123
 • RTOS_Lab1_Interpreter (starter project for Lab 1)

Data sheets (look for TM4C123 reference material on class website or Prof. Valvano’s website)
 • http://www.ece.utexas.edu/~gerstl/ece445m_s23/resources.html
 • http://www.ece.utexas.edu/~valvano/Datasheets/

Background

The overall goal of the class will be to develop a real-time operating system. In this lab, however, you will
familiarize yourself with the LaunchPad board, Vision development system and the TM4C123 ARM Cortex-M4
microcontroller. Most of the fundamental concepts in this lab should be review. Therefore, you will use this lab to
explore the details of the development environment.

Look ahead to the next couple of labs. How you design this lab will simplify how you use these programs in
subsequent labs. Do the lab in order. Do the preparation before coming to the first day of lab, do each step of the
procedure before checking out. Read the entire lab assignment before starting the procedure, so you can gather the
right data while you are doing the lab instead of at the end. Write the report the same day you finish checkout.
Everything will be fresh in your mind and your lab will still be working so you can take meaningful data.

An important design step occurs in writing the header file for a driver. It is in the header file that you define the
interfaces between software components. As part of the preparation in addition to the header files you will include
rough pseudo code with descriptions of their approach to what you plan to write in the C files. As part of the
preparation, you should have a plan of how you will complete the lab. The TA checks the preparation at the start of
lab. This way the TA has an opportunity to set you on the right track by looking at what you have thought of so far.

Simply put, develop a TM4C123 project with 1) an interpreter running via the UART link to the PC, 2) an LCD
that has two logically separate displays implemented on one physical display, 3) a periodic interrupt that maintains
time, and 4) an ADC device driver that collects data using a second periodic interrupt. There are a lot of
specifications outlined below, however, you are free to modify specifications as long as the above four components
are implemented and understood. Part of the preparation is for you to clarify exactly what you will implement.

I recommend you avoid using SysTick, Timer0, Timer1, Timer 2 and Timer3 in this lab because subsequent
labs will use these devices. Timer4 is used for the ADC task in the lab’s starter code, and I otherwise recommend
Timer5 or any of the wide timers (see WTimer0A.c included in the starter project) for this lab.

Prepreparation (do this individually)
0) Go to the ARM site to download the compiler to your laptop. Please get the newest compiler and install Keil
uVision 5.x from here: http://www.keil.com/demo/eval/arm.htm (set company to “University of Texas at Austin”
and devices to “TM4C123”). Download and install the Launchpad ICDI drivers from the TI website:
http://www.ti.com/tool/stellaris_icdi_drivers, and install the ICDI debug adapter support add-on for Keil (see
http://www.keil.com/support/docs/4196.htm). Finally, download and unzip the starter project files and board support
package from Prof. Valvano’s website: ValvanoWareTM4C123v5.zip.

Lab 1 Graphics, LCD, Timer and Interpreter Page 1.2

J. W. Valvano, A. Gerstlauer 1/6/2023

1) Please review the style guideline presented in style.pdf and c_and_h_files.pdf.

2) Search through the UARTInts_4C123 project to answer these questions about the UART port. The questions
for prepreparation are for you to become familiar with the code and hardware needed in the remainder of the lab.
They won’t be turned in, so you don’t have to write them down. However, if you feel more comfortable writing
them down so that you have something to reference when we do the checkout for preparation, feel free to do so.
a) This example used UART0. What lines of C code define which port will be used for the UART channel?
b) What lines of C code define the baud rate, parity, data bits and stop bits for the UART?
c) Which port pins do we use for the UART? Which pin transmits and which pin receives?
d) Look in the uart.c driver to find what low-level C code inputs one byte from the UART port.
e) Similarly, find the low-level C code that outputs one byte to the UART port.
f) Find in the project the interrupt vector table. In particular, how does the system set the ISR vector?
g) This code UART0_ICR_R = UART_ICR_TXIC; acknowledges a serial transmit interrupt. Explain how the

acknowledgement occurs in general for all devices and in specific for this device.
h) Look in the data sheet of the TM4C123 and determine the extent of hardware buffering of the UART channel.

For example, simple microcontrollers like the MSP432 only have a transmit data register and a transmit shift
register. So, the software can output two bytes before having to wait. The serial ports on the PC have 16 bytes
of buffering. So, the software can output 16 bytes before having to wait. The MSP432 only has a receive data
register and a receive shift register. This means the software must read the received data within 10 bit times
after the receive flag is set in order to prevent overrun. Is the TM4C123 like the MSP432 (allowing just two
bytes), or is it like the PC (having a larger hardware FIFO buffer)?

3) Search through the ST7735_4C123 project to answer these questions about the LCD interface
a) What synchronization method do we use for the low-level command writedata?
b) Explain the parameters of the function ST7735_DrawChar. I.e., how do you use this function?
c) Which port pins do we use for the LCD? Find the connection diagram needed to interface the LCD.
d) Specify which other device shares pins with the LCD.

4) Search through the PeriodicSysTickInts_4C123, and ST7735_4C123 projects to answer these
questions about the SysTick interrupts.
a) What C code defines the period of the SysTick interrupt?

b) Look at these projects PeriodicSysTickInts_4C123, and ST7735_4C123. How does the software
establish the bus frequency? Find the code that sets the SYSCTL_RCC and SYSCTL_RCC2 registers. Look
these two registers up in the data sheet. Look at these three projects to explain how the system clock is
established. We will be running at 80 MHz for most labs in the class.

c) Look up in the data sheet what condition causes this SysTick interrupt and how we acknowledge this
interrupt? In particular, what sets the COUNT flag in the NVIC_ST_CTRL_R and what clears it?

5) Look up the explicit sequence of events that occur as an interrupt is processed. Read section 2.5 in the TM4C123
data sheet (http://www.ti.com/lit/ds/symlink/tm4c123gh6pm.pdf). Look at the assembly code generated for an
interrupt service routine.
a) What is the first assembly instruction in the ISR? What is the last instruction?
b) How does the system save the prior context as it switches threads when an interrupt is triggered?
c) How does the system restore context as it switches back after executing the ISR?

Preparation (do this before your lab period)
1) Design an extended version of the device driver for the LCD so that there are two logically separate displays, one
display using the top half and one display for the bottom half. A template for the extended LCD device driver to be
used in this class is in the RTOS_Labs_common directory. This device driver will become part of your RTOS that
will be further developed in the following labs. Add the solution to the file RTOS_Labs_common/ST7735.c.
There should be at least 4 lines per display. The new command must have a prototype as follows:

 void ST7735_Message (int device, int line, char *string, int32_t value);

Lab 1 Graphics, LCD, Timer and Interpreter Page 1.3

J. W. Valvano, A. Gerstlauer 1/6/2023

where device specifies top or bottom, line specifies the line number (0 to 3), string is a pointer null
terminated ASCII string, and value is a number to display. You may add other functions as you wish. In this lab,
you may assume all public functions are called from the interpreter running as the main program; hence they need
not handle pre-emption and reentrancy. However, in the next lab you will add semaphores so your LCD driver can
be used by separate threads in a multi-thread environment. In labs 2 and beyond there will be multiple independent
main programs, each performing output to its own LCD. For the preparation, design and write your implementation
of ST7735_Message in the file ST7735.c. Your implementation will be debugged as part of the procedure.

2) Design a device driver for the ADC using software-triggered sampling. Sampling rates should vary from 100 to
10000 Hz, and data will be collected on any one of the ADC inputs ADC0 to ADC11. Feel free to use any existing
code, as long as you completely understand how it works. A template for the device driver to be used with the labs
in this class is in RTOS_Labs_common. The driver includes an ADC.h header file separating the public functions
from the private functions. All public functions begin with an ADC_. Design and write the implementation file
ADC.c for this driver. Your implementation will be debugged as part of the actual procedure. The driver provides
the following two public functions for use in later labs:

 // channelNum (0 to 11) specifies which pin is sampled with sequencer 3
 // software start
 // return with error 1, if channelNum>11,
 // otherwise initialize ADC and return 0 (success)
 int ADC_Init(uint32_t channelNum);

 // software start sequencer 3 and return 12 bit ADC result
 uint32_t ADC_In(void);

E.g., to take one sample from channel 0 using this driver, we can execute

 ADC_Init(0); // called once
 Data = ADC_In(); // called whenever you need a new sample

E.g., to sample PE0, Channel 3 at 10 Hz, we define first a background task to run at 10 Hz

 int32_t ADCdata,FilterOutput,Distance;
 void DAStask(void){
 PF1 ^= 0x02;
 ADCdata = ADC_In(); // channel set when calling ADC_Init
 PF1 ^= 0x02;
 FilterOutput = Median(ADCdata); // 3-wide median filter
 Distance = IRDistance_Convert(FilterOutput,0);
 FilterWork++; // calculation finished
 PF1 ^= 0x02;
 }

We then initialized both the ADC and a periodic timer

 int main(void){
 PLL_Init(Bus80MHz);
 UART_Init(); // serial I/O for interpreter
 ST7735_InitR(INITR_REDTAB); // LCD initialization
 LaunchPad_Init(); // debugging profile on PF1
 ADC_Init(3); // channel 3 is PE0
 Timer4A_Init(&DAStask,80000000/10,1); // 10 Hz sampling, priority=1
 OS_ClearMsTime(); // start a periodic interrupt to maintain time
 EnableInterrupts();
 while(1){
 Interpreter();
 }
 }

Lab 1 Graphics, LCD, Timer and Interpreter Page 1.4

J. W. Valvano, A. Gerstlauer 1/6/2023

3) The skeleton for the OS to be developed in this class is provided on the OS.h and OS.c files in
RTOS_Labs_common. As a first step in developing the OS, design and implement a basic timer driver and time
servicing routines of the OS. Add a periodic timer interrupt to your OS.c file and use it to maintain the elapsed
system time in ms. There are six 32-bit timers and six 64-bit timers you could use. Feel free to use any of the timers.
However, please understand the periodic timer software, because as you progress through the class, depending on
which features you use in your robot, you may have to move this time feature to another hardware timer. There is
one public function that will reset the counter to 0 and start the periodic interrupt.

 void OS_ClearMsTime(void);

A second public function will return the current global counter in ms.

 uint32_t OS_MsTime(void);

Design and write the implementation of these OS time service routines. Your implementation will be debugged as
part of the actual procedure.

Procedure (do this during your lab period)
1) Develop a main program that implements an interpreter that accepts commands over the serial port using
interrupting I/O. You use the interpreter to test the various features of the lab. You can think of an interpreter as
being similar to the Linux or Windows command line interface (shell), although your interpreter will be much
simpler. For example, your interpreter needs to accept commands like “lcd_top” (write to the top LCD screen),
“adc_in” (read a sample in from the hardcoded ADC channel and sequencer), etc. You could also just use
commands like “1” or “2” or “a”, etc., provided that a “help” command is provided to display what the commands
mean. For checkout, you must present one demo. By interfacing with the interpreter, we should be able to test that
your LED, ADC, UART, LCD and timer drivers all work. Implement commands that assist in debugging the LCD,
ADC and OS time for this lab. For example, we should be able to type something like “lcd_top 0 hello” to print to
the top LCD at line 0 the word hello. The interpreter accepts the command, parses it so that it can do the appropriate
logic, then calls the LCD driver to send the information over UART to the LCD screen. The exact command syntax
(names and arguments) are up to you, but the demo must demonstrate the functionality specified in this lab
document. Provide for numeric input, numeric output and ease of use. There is no need to implement tab-completion
or acceptance of backspace characters. For this lab, the interpreter will run in the main program as the only
foreground task. It will later run as one of the main OS tasks. We will add commands as the semester progresses so
make this interpreter flexible and extendable, because you will use it all semester as you add OS features. You can
even use it to test the autonomous racing robot in Lab 6.

Both input and output channels must interrupt. You will need two software FIFOs so that the operating system can
block and unblock threads performing serial I/O. The serial channel is implemented as part of the USB link. You
simply access the UART ports on the TM4C123 and run a terminal program like PuTTY or HyperTerminal to
interact with your system through the command interpreter. There are two potential approaches, and you should
choose the one you understand the best, because you will need to modify it in subsequent labs. The first option is to
access the UART (via FIFOs) directly. Alternatively, you are allowed to use the stdio library and remap the serial
stream to the UART. See the fputc/fgetc functions in the OS.c starter file.

2) Debug the LCD function ST7735_Message.

3) Debug the ADC functions ADC_Init and ADC_In. You may restrict your testing to one channel for the ADC,
but in subsequent labs multiple channels will be used at a time. In particular, your robot may employ four distance
sensors that utilize the ADC. Please limit the analog inputs to the ADC to 0 to 3.3V.

4) Debug the OS time routines OS_ClearMsTime and OS_MsTime. Look at disassembled code for your periodic
ISR. Count the number of assembly instructions required to run one instance of this timer ISR. Assuming each
assembly instruction is 2 bus cycles (25ns), approximate the overhead to maintain this time. I.e., let n be the number
of assembly instructions and 1-ms be the interrupt period, then the CPU utilization for this OS task is
 n*25ns/1ms

Lab 1 Graphics, LCD, Timer and Interpreter Page 1.5

J. W. Valvano, A. Gerstlauer 1/6/2023

5) Look at the dissembled code for one of the existing periodic interrupts, e.g., file Timer4A.c, included in the
RTOS_Lab1_Interpreter starter project. In particular, look at the code for executing the C line
(*PeriodicTask4)(); in the Timer4A interrupt handler. This is called a hook and it is essential for later labs
that you fully understand what this function call does and how it works (use of function pointers):

 void Timer4A_Handler(void){
 TIMER4_ICR_R = TIMER_ICR_TATOCINT; // acknowledge TIMER4A timeout
 (*PeriodicTask4)(); // execute user task
 }

6) Triple toggle technique. Run the RTOS_Lab1_Interpreter starter project and connect a scope or logic
analyzer to PF1. Notice there are three toggles of PF1 in the DAStask function. Toggling three times allow you to
measure both the time to execute the ISR, but also the time between executions. Using debugging instruments and a
scope or logic analyzer, measure the actual time required to run the timer ISR. Measure the CPU utilization for this
task, which is the time to execute ISR divided by time between executions.

Checkout (show this to the TA)
 You should be able to demonstrate to the TA the technique you used to measure the overhead of running one of
the periodic timer interrupt service routines. The successful completion of Lab 2 will depend on your knowledge of
how interrupts are processed and how the serial port driver uses its two FIFO queues. Be prepared for questions
addressing interrupts and the FIFO queue. Demonstrate each of the interpreter commands.

Deliverables (exact components of the lab report and lab submission)
A) Objectives (1/2 page maximum)
B) Hardware Design (none in this lab)
C) Software Design (software documentation in the report and check-in of all files into the submission repository)
 1) Low level LCD driver (ST7735.c and ST7735.h files)
 2) Low level ADC driver (ADC.c and ADC.h files)
 3) Low level timer driver (OS.c and OS.h files)
 4) High level main program (the interpreter)
D) Measurement Data
 1) Estimated time to run the OS periodic timer interrupt, CPU utilization
 2) Measured time to run the DAS periodic timer interrupt, CPU utilization
E) Analysis and Discussion (1 page maximum) This section will consist of explicit answers to these questions

1) What are the range, resolution, and precision of the ADC?
2) List the ways you can start the ADC conversion. Explain why you choose the way you did.
3) You can measure the time to run the periodic interrupt directly by setting a bit high at the start of the ISR

and clearing that bit at the end of the ISR. You could also calculate it indirectly by measuring the time
lost when running a simple main program that toggles an output pin. How did you measure it? Compare
and contrast your method to these two methods.

4) Divide the time to execute once instance of the ISR by the total instructions in the ISR it to get the
average time to execute an instruction. Compare this to the 12.5 ns system clock period (80 MHz).

5) What are the range, resolution, and precision of the SysTick timer? I.e., answer this question relative to
the NVIC_ST_CURRENT_R register in the Cortex M4 core peripherals.

Hints
1) It is appropriate to call existing software from the example files. You must, however, clearly document which
code is copied, which code is modified, and which code is original.

2) Even though you are allowed to copy-paste software, there should be no magic in this class. In other words, you
are responsible for understanding all the details of how your system runs.

Lab 1 Graphics, LCD, Timer and Interpreter Page 1.6

J. W. Valvano, A. Gerstlauer 1/6/2023

3) Read ahead into Labs 2 and 3 to see how these drivers will be used. In particular, look at the user program that
your Lab 2 RTOS will be running.

4) I suggest you use the starter project RTOS_Lab1_Interpreter for your Lab 1.

5) You can find this FIFO in the fifo.h file of the UARTInts project

#define AddIndexFifo(NAME,SIZE,TYPE, SUCCESS,FAIL) \
uint32_t volatile PutI ## NAME; \
uint32_t volatile GetI ## NAME; \
TYPE static Fifo ## NAME [SIZE]; \
void NAME ## Fifo_Init(void){ \
 PutI ## NAME= GetI ## NAME = 0; \
} \
int NAME ## Fifo_Put (TYPE data){ \
 if((PutI ## NAME - GetI ## NAME) & ~(SIZE-1)){ \
 return(FAIL); \
 } \
 Fifo ## NAME[PutI ## NAME &(SIZE-1)] = data; \
 PutI ## NAME ## ++; \
 return(SUCCESS); \
} \
int NAME ## Fifo_Get (TYPE *datapt){ \
 if(PutI ## NAME == GetI ## NAME){ \
 return(FAIL); \
 } \
 *datapt = Fifo ## NAME[GetI ## NAME &(SIZE-1)]; \
 GetI ## NAME ## ++; \
 return(SUCCESS); \
}

6) The TM4C123 has 8 UARTs. UART0 (PA1, PA0) is connected to the PC through the USB cable.

7) If your board has not arrived yet, see your TA immediately, because none of the labs in this class can be
performed in simulation. Simulation can only be used if you restrict your code to UART0 busy-wait, ADC0
software triggered busy-wait, and 32 bit periodic interrupts on Timer0, Timer1, Timer2 and Timer3.

8) If you have a LaunchPad, but no ST7735R LCD, you can perform Labs 1, 2, 3, 4 and 5 using any LCD (in
particular we have some Nokia5110 LCDs to lend). You will find Nokia software drivers in the inc folder.

9) If you don’t use stdio redirection to the UART for your interpreter, you can also redirect the standard output to
the LCD display (or later a file after Lab 4), e.g. to support printf() style debugging. You can possibly also
support different redirection targets via a global configuration switch/variable. The fputc/fgetc functions in the
provided OS.c starter code show an example of toggling between UART redirection and redirecting to a file
(needed for Lab 4).

