
System-on-Chip (SoC) Design
EE382M.20, Fall 2018

Homework #1
Assigned: September 4, 2018
Due: September 20, 2018

Instructions:

• Please submit your solutions via Canvas. Submissions should include a single PDF with
the writeup and single Zip or Tar archive for source code.

• You may discuss the problems with your classmates but make sure to submit your own
independent and individual solutions.

Problem 1: Convolutional Neural Networks (50 points)
CNNs uses convolution operations primarily to extract features from the input image. We use
this exercise to get familiar with how convolutions work. A convolution is done by multiplying a
pixel’s and its neighboring pixels color value by a filter/kernel matrix. Consider a 3x3 image and
a 2x2 kernel weight matrix, whose pixels and elements are shown below:

Then, the convolution of the 3x3 image and the 2x2 kernel can be computed as shown below:

x00

* =

x00*w00 +
x01*w01 +
x10*w10 +
x11*w11

x01 x02

x10 x11 x12

x20 x21 x22

w00 w01

w10 w11

x00

* =

x00*w00 +
x01*w01 +
x10*w10 +
x11*w11

x01 x02

x10 x11 x12

x20 x21 x22

w00 w01

w10 w11

x01*w00 +
x02*w01 +
x11*w10 +
x12*w11

x00 x01 x02

x10 x11 x12

x20 x21 x22

w00 w01

w10 w11

x00

* =

x00*w00 +
x01*w01 +
x10*w10 +
x11*w11

x01 x02

x10 x11 x12

x20 x21 x22

w00 w01

w10 w11

x00

* =

x00*w00 +
x01*w01 +
x10*w10 +
x11*w11

x01 x02

x10 x11 x12

x20 x21 x22

w00 w01

w10 w11

x01*w00 +
x02*w01 +
x11*w10 +
x12*w11

x10*w00 +
x11*w01 +
x20*w10 +
x21*w11

x01*w00 +
x02*w01 +
x11*w10 +
x12*w11

x10*w00 +
x11*w01 +
x20*w10 +
x21*w11

x11*w00 +
x12*w01 +
x21*w10 +
x22*w11

Take a moment to understand how the computation above is being done. We slide the 2x2 kernel
matrix over our 3x3 image by a 1 pixel stride, and for every position, we compute the
elementwise dot product to get a single element of the output matrix. Note that the 2×2 filter
matrix “sees” only a part of the input image in each stride.

a) Now given the following concrete image and kernel matrix, calculate the convolution result:

b) As discussed in class, such a convolution operation is usually done by transforming it into a

general matrix-matrix multiplication (GEMM). Show how this transformation and re-
arrangement is performed on the example in a). What would be the matrix A and matrix B to
be multiplied? Explain and draw figures as necessary.

c) Now assume that we have a cache with 120 bytes capacity, where each cache line is 8 bytes
and each element of a matrix corresponds to a unique cache line. The cache is initially empty
and uses an LRU for replacement policy with write-back. Given the following matrices:

1 0 5

2 1 3

0 5 4

1 3

4 1 *

Calculate the cache hit rate of the following two different matrix multiply algorithms. You
can assume that variables i, j and k are stored in registers:

gemmA: for (int i=0; i< M ; i++)

for(int j=0; j< N; j++)
 for(int k=0; k < K; k++)
 C[i][j] += A[i][k] * B[k][j]

gemmB: for (int j=0; j< N ; j++)

for(int i=0; i< M; i++)
 for(int k=0; k < K; k++)
 C[i][j] += A[i][k] * B[k][j]

Explain the behavior and your observations. Can you improve the above code to increase the
cache hit rate further?

Problem 2: SystemC (50 points)
To work with and develop code in SystemC, log into one of the ECE Department’s LRC
machines (see http://www.ece.utexas.edu/it/remote-linux) and setup the SystemC environment as
follows:

• [t]csh:
setenv SYSTEMC /usr/local/packages/systemc-2.3.1
setenv LD_LIBRARY_PATH $SYSTEMC/lib-linux

• [ba]sh:
export SYSTEMC=/usr/local/packages/systemc-2.3.1
export LD_LIBRARY_PATH=$SYSTEMC/lib-linux

You can then access the SystemC installation by referring to the ‘$SYSTEMC’ variable.

d) Get the attached Hello example running: Unpack the archive, change into the Hello-1

subdirectory, compile the example by running ‘make’ and using your favorite debugger
(e.g., using ddd as a graphical frontend for gdb), walk through the behavior of the example.

b) Create a for-loop in the process to output the "Hello" message 10 times in bursts with a

random delay between messages evenly distributed from 50 to 90 ns.

c) Create two sub-modules, Generate and Monitor, connected by a channel ch1. Create two

variants of the design where the sub-modules are connected by a sc_fifo<string> or a
sc_signal<char>. You will need an output port and an input port on each sub-module.
Instantiate them inside Hello. Move the loop into the Generate module, but have it write to
the output port. Have the Monitor display values that show up on the input port.

1 2 3

4 5 6

7 8 9
*

1 1 2

0 9 1

0 1 5

0 0 2

0 2 1

1 1 4

A B

=

C

M

K N

http://www.ece.utexas.edu/it/remote-linux

Sources for the Hello example are available at

http://www.ece.utexas.edu/~gerstl/ee382m_f18/hw/hw1.zip

 n

Hello top1

Generate gen1 Monitor mon1

ch1

#ifndef Hello_h
#define Hello_h
#include <systemc>
SC_MODULE(Hello) {
 SC_CTOR(Hello);
 void end_of_elaboration(void);
 void Hello_thread(void);
 ~Hello(void);
};
#endif

#include "Hello.h"
#include <iostream>
using namespace std;
using namespace sc_core;
void Hello::Hello(sc_module_name nm)
: sc_module(nm) {
 cout << "Constructing "
 << name() << endl;
 SC_HAS_PROCESS(Hello);
 SC_THREAD(Hello_thread);
}
void Hello::end_of_elaboration(void) {
 cout << "End of elaboration" <<
endl;
}
void Hello::Hello_thread(void) {
 cout << "Hello World!" << endl;
}
Hello::~Hello(void) {
 cout << "Destroy " << name() <<
endl;
}

#include "Hello.h"
#include <iostream>
using namespace std;
using namespace sc_core;
int sc_main(void) {
 Hello top_i("top_i");
 cout << "Starting" << endl;
 sc_start();
 cout << "Exiting" << endl;
 return 0;
}

Hello.h

main.h

Hello.cp

http://www.ece.utexas.edu/%7Egerstl/ee382m_f18/hw/hw1.zip

	Problem 1: Convolutional Neural Networks (50 points)
	Problem 2: SystemC (50 points)

