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Motivation for HW Acceleration

§ OPs/$ or OPs/Joule
– Exploit problem specific parallelism, 

at thread and instructions level
– Custom operational units or 

“instructions” match the set of 
operations needed for the algorithm 
(replace multiple instructions with 
one), custom word width arithmetic, 
etc.

– Remove overhead of instruction 
storage and fetch, ALU multiplexing
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Co-Processors, Reconfigurable Architectures 
and Custom ISAs



Tightly Coupled Coprocessors

§ Integrated with processor control logic
– Task typically completes in a few cycles
– Small amounts of data
– Processor stalls waiting for the coprocessor
– Communication with coprocessor typically via registers and dedicated 

control signals
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Loosely-Coupled Coprocessors

§ Loosely-Coupled Coprocessors
– Used for larger tasks than is the case for tightly-coupled coprocessors
– Task runs in parallel with main processor
– May take many cycles per task
– Large amounts of data that coprocessor may access independent of main 

processor
– May or may not use the standard coprocessor interface
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Accelerator Coherency Port (ACP)

§ Accelerator coherency port (ACP) is a 64-bit AXI slave interface 

on the SCU that provides an asynchronous cache-coherent access 

point directly from the PL to the Cortex-A9 MP-Core processor 

subsystem. 

§ A range of system PL masters can use this interface to access the 

caches and the memory subsystem exactly the way the APU 

processors do to simplify software, increase overall system 

performance, or improve power consumption. 
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ACP Usage

§ The ACP provides a low latency path between the PS and the 

accelerators implemented in the PL when compared with a legacy 

cache flushing and loading scheme. Steps that must take place in 

an example of a PL-based accelerator are as follows:

1. The CPU prepares input data for the accelerator within its local cache 

space.

2. The CPU sends a message to the accelerator using one of the general 

purpose AXI master interfaces to the PL.

3. The accelerator fetches the data through the ACP, processes the data, and 

returns the result through the ACP.

4. The accelerator sets a flag by writing to a known location to indicate that 

the data processing is complete. Status of this flag can be polled by the 

processor
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ACP Caveats

§ NOTE: When compared to a tightly-coupled coprocessor, ACP 
access latencies are relatively long. Therefore, ACP is not 
recommended for fine-grained instruction level acceleration.

§ For coarse-grain acceleration such as video frame-level 
processing, ACP does not have a clear advantage over traditional 
memory-mapped PL acceleration because the transaction 
overhead is small relative to the transaction time, and might 
potentially cause undesirable cache thrashing. 

§ ACP is therefore optimal for medium-grain acceleration, such as 
block-level crypto accelerator and video macro-block level 
processing.
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Performance-Driven ISA Extensions

§ Adding instructions that do more work per cycle
– Shift-add: replace two instructions with one (e.g., multiply by 5)
– Multiply-add: replace two instructions with one (x := c + a ´́ b)
– Multiply-accumulate: reduce round-off error (s := s + a ´́ b)
– Conditional copy: to avoid some branches (e.g., in if-then-else)

§ Sub-word parallelism (for multimedia applications)
– Intel MMX: multimedia extension
– 64-bit registers can hold multiple integer operands
– Intel SSE: Streaming SIMD extension
– 128-bit registers can hold several floating-point operands
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Intel MMX ISA Extension
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Class Instruction Vector Op type Function or results

Copy

Register copy 32 bits Integer register «MMX register

Parallel pack 4, 2 Saturate Convert to narrower elements

Parallel unpack low 8, 4, 2 Merge lower halves of 2 vectors

Parallel unpack high 8, 4, 2 Merge upper halves of 2 vectors

Arithmetic

Parallel add 8, 4, 2 Wrap/Saturate# Add; inhibit carry at boundaries

Parallel subtract 8, 4, 2 Wrap/Saturate# Subtract with carry inhibition

Parallel multiply low 4 Multiply, keep the 4 low halves

Parallel multiply high 4 Multiply, keep the 4 high halves

Parallel multiply-add 4 Multiply, add adjacent products*

Parallel compare equal 8, 4, 2     All 1s where equal, else all 0s

Parallel compare greater 8, 4, 2     All 1s where greater, else all 0s

Shift

Parallel left shift logical 4, 2, 1 Shift left, respect boundaries

Parallel right shift logical 4, 2, 1 Shift right, respect boundaries

Parallel right shift arith 4, 2 Arith shift within each (half)word

Logic

Parallel AND 1 Bitwise dest¬ (src1) Ù (src2)

Parallel ANDNOT 1 Bitwise dest¬ (src1) Ù (src2)¢

Parallel OR 1 Bitwise dest¬ (src1) Ú (src2)

Parallel XOR 1 Bitwise dest¬ (src1) Å (src2)

Memory
access

Parallel load MMX reg 32 or 64 bits Address given in integer register

Parallel store MMX reg 32 or 64 bit Address given in integer register

Control Empty FP tag bits Required for compatibility$



MMX Multiplication and Multiply-Add
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MMX Parallel Comparisons
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Custom ISA: HC12 Fuzzy Logic Acceleration
§ Native fuzzy instructions:
– MEM; evaluate membership functions
– REV; rule evaluation:   IF a is x THEN b is y
– WAV; weighted averaging

§ Additional related instructions
– MINA (place smaller of two unsigned 8-bit 

values in accumulator A)
– EMIND (place smaller of two unsigned 16-

bit values in accumulator D)
– MAXM (place larger of two unsigned 8-bit 

values in memory)
– EMAXM (place larger of two unsigned 16-

bit values in memory)
– TBL (table lookup and interpolate)
– ETBL (extended table lookup and 

interpolate)
– EMACS (extended multiply and accumulate 

signed 16-bit by 16-bit to 32-bit)
– EDIV (extended divide)

15,000 times faster than HC11
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Reconfigurable Architectures
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Taxonomy of Reconfigurable Architectures

15

RECONFIGURABLE ARCHITECTURES
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Customizable ISA: Cadence/Tensilica Xtensa

§ 32-bit ALU
§ 1 or 2 Load/Store Model
§ Registers
– 32-bit general purpose register file
– 32-bit program counter
– 16 optional 1-bit Boolean registers
– 16 optional 32-bit floating point registers
– 4 optional 32-bit MAC16 data registers
– Optional Vectra LX DSP registers

§ General Purpose AR Register File
– 32 or 64 registers
– Instructions have access through “sliding window” of 16 registers. Window 

can rotate by 4, 8, or 12 registers
– Register window reduces code size by limiting number of bits for the address 

and eliminated the need to save and restore register files
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Hardware Acceleration



Common HW Acceleration Applications

§ Graphics
§ Data Compression/Decompression
§ Data Streaming: Audio/Video Encoding/Decoding, Network, I/O
§ Image sensing and processing
§ Logic Simulation
§ Data Encryption:  RSA, DES, AES
§ FFT, DCT, EXP, LOG, …
§ Neuronal Networks
§ Neuromorphic
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Decision Tree:  When do you use a hardware accelerator?
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Can an existing algorithm be implemented using existing ISA?

Can a new algorithm be devised to solve problem using existing ISA?

Can API be modified to expose necessary functionality or make it easier to exploit?

Can the datapath be modified to better support algorithm, without breaking others?

Can ISA be modified to better support algorithm?

Can HW accelerator be added as a co-processor instruction

Easy

Hard



Hardware Acceleration

§ Ad hoc interface to controlling processor
– Accelerator registers are memory-mapped
– Bus-based, FIFO, or register data interfaces
– Uses DMA for high speed transfers

§ Typically, the processor transfers data to the accelerator, issues a 
go command, and then collects result data later.
– Polled or interrupt-based interface

§ Accelerator may have its own path to/from memory
§ Often fixed function but can be microcoded for programmability
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Hardware Accelerator Topologies
Accelerator appears as a device on a bus

Accelerator is tightly coupled into the processor memory system
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CPU-Accelerator Interface Example
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ARM Core
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Block
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PS
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§ AXI
– 32 bit Bus
– Access to DRAM data & 

programmable logic fabric
– 1/2 CPU frequency
– Big penalty if bus is busy during 

first attempt to access bus

§ AHB (AMBA High Speed Bus)
– 64 bit bus
– Runs at CPU clock frequency
– Access to DDR Controller to 

provide addresses to SDRAMBus
First Access

Pipelined 
Access Arbitration

Read Write Read Write

ARM à I/C 2 2 2 2

I/Cà AXI 8 8 3 3 5

AHB à DDRC 4 4 4 4

DDRC à DRAM 8 9 3 3 5

AXI ↔ BRAM 20 20 8 8 12

BRAM ↔ ACC 2 2 2 2
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Four Programmers Models of Accelerator Design
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Base - HW I/F only
No OS Service (in simple 
embedded systems)

OS service – Accelerator accessed 
as a user space memory mapped 
I/O device

Virtualized Device with
OS scheduling support

CPU Accelerator

Application

OS

CPU Accelerator

Application

CPU Accelerator

Application
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mmap()

CPU Accelerator

Application
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Hybrid Hardware/Software Execution Model
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§ Hardware Accelerator as a Kernel Module
– Seamless integration of hardware 

accelerators into the Linux software stack for 
use by mainstream applications

– The KM approach enables transparent 
interchange of software and hardware 
components

§ Application level execution model
– Compiler deep analysis and transformations 

generate CPU code, hardware library stubs 
and synthesized components

– FPGA bitmaps as hardware counterpart to 
existing software modules.

– Same dynamic linking library interfaces and 
stubs apply to both software and hardware 
implementation

§ OS resource management
– Services (API) for allocation, partial 

reconfiguration, saving and restoring the 
status, and monitoring

– Multiprogramming scheduler can pre-fetch 
hardware accelerators in time for next use

– Control the access to the new hardware to 
ensure trust under private or shared use

CPU
FPGA
accele-
rators

memory

devices

Linux OS

Linker/Loader

Application

DLL

O
S m

odules

Compiler analysis/transformations

Synthesis

Soft object
Hard object
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Source code
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Compile 
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User        
Runtime
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Human designed
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Hardware Accelerator Interface: Interrupts or Polling?

§ Polling interfaces usually require the processor to read a 
memory-mapped register to determine the state of the 
accelerator.
– Can the accelerator accept new input data?
– Is the accelerator done with its current task?
– Has the accelerator generated an error condition?

§ Polling interfaces offer minimal latency between the setting of a 
condition on the accelerator and its 
discovery by the controlling processor.
– But processor isn’t doing useful work while it polls…

10/5/18 25



Hardware Accelerator Interface: Interrupts or Polling?

§ Interrupt-based interfaces allow the accelerator to signal 
conditions to the controlling processor.
– Interrupt latency is longer than is achievable via the polling method.
– But the processor can more easily proceed with other work while the 

accelerator is busy with a task.

§ Interrupts more efficient for coarse grained parallelism (i.e., 
larger tasks with looser and less frequent synchronization 
requirements)

§ Interrupts may not work for real-time control tasks with tight 
schedules
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Zedboard Interrupt latency measurement results
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AXI

Typical CPU àà Accelerator Transaction
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Application Operating System Hardware

Tim
e   ààopen(/dev/accel); /* only once*/

… 
/* construct macroblocks */
macroblock = …
syscall(&macroblock, 

num_blocks)
…

… 
/* macroblock now has 
transformed data */
…

Data copy
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Device Driver Access Cost
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Accelerator Speedup

§ Assume loop is executed n times.
Speedup = n(tCPU - taccel)

= n(tCPU - (tin + texec + tout))

§ Compare accelerated system to non-accelerated system:
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Single-threaded vs Multi-threading

§ One critical factor is the available parallelism in the application:
– Single-threaded/blocking: CPU waits for accelerator;
– Multithreaded/non-blocking: CPU continues to execute along with 

accelerator.

§ For multithread, CPU must have some useful work to do while 
accelerators perform some tasks.
– Software environment must also support multi- threading.

§ Blocking: CPU waits for the accelerator call to complete.
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P2

P1

A1

P3

P4

P2

P1

A1

P3

P4

Acceler ator

Determining total execution time
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Acceler ator

Single Threaded CPU:
Count execution time of 

component processes

Multi-Threaded CPU:
Find longest path execution 

time of component 
processes

P2, P3 are independent
After P1, CPU starts P3
P2 depends on A1 



The bus interface may provide mechanisms for accelerators to 
tell the CPU of required cache changes… 

Caching Issues with Accelerators

§ Main memory provides the primary data transfer mechanism to 
the accelerator.

§ Programs must ensure that caching does not invalidate main 
memory data.
– CPU reads location S.
– Accelerator writes location S.
– CPU writes location S.
• BAD – Program will not see proper value of S stored in the cache
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Synchronization and Memory

§ As with cache, main memory writes to shared memory may cause 
invalidation (memory incoherence).
– CPU reads location S
– Accelerator writes S
– CPU writes S

§ Many CPU buses implement test-and-set atomic operations that 
the accelerator can use to implement a semaphore.  This can 
serve as a highly efficient means of synchronizing inter-process 
Communications (IPC)
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Logic Simulation Acceleration
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Metrics 

§ Performance:

– 400 – 600X faster than SW 

simulator

– 400K Evaluations/Sec

– I/O speed: 100 MB/sec

§ Simulation algorithm

– 2-Pass event driven, selective 

trace

• Evaluation pass

• Update pass

§ Supported functions:

– Logic Verification

• Delay assigned per element

• Delay assigned per pin type

• 4 value logic

• 16 value logic

– Rise and Fall delays

– Setup and Hold time analysis

– Minimum pulse width detection

– Worst case analysis

– Wire delay

– Transmission gates

– Fault simulation

– Behavioral simulation
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Simulation Processing Memory
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768 Bits wide



High Level Block Diagram
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Detailed Block Diagram
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Final observations

§ 2 hours to compile 64K gate design
– No incremental compile

§ 75 I/O pins
§ 500+ observation points
§ 30 minutes to download compiled 

descriptors to accelerator
§ 11 seconds to simulate 2000 µSec of 

sim-time
§ 3-4 hours to unload accelerator data
– Pins & observation points

§ Only marginally faster than SW 
simulation
– Amdahl’s Law at work….
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