
EE382M.20
SOC Design

HW Accelerators
and

Co-Processors

Mark McDermott

Fall 2018

Motivation for HW Acceleration

§ OPs/$ or OPs/Joule
– Exploit problem specific parallelism,

at thread and instructions level
– Custom operational units or

“instructions” match the set of
operations needed for the algorithm
(replace multiple instructions with
one), custom word width arithmetic,
etc.

– Remove overhead of instruction
storage and fetch, ALU multiplexing

210/5/18

Wawrzynek, 2013

Co-Processors, Reconfigurable Architectures
and Custom ISAs

Tightly Coupled Coprocessors

§ Integrated with processor control logic
– Task typically completes in a few cycles
– Small amounts of data
– Processor stalls waiting for the coprocessor
– Communication with coprocessor typically via registers and dedicated

control signals

10/5/18 4

Loosely-Coupled Coprocessors

§ Loosely-Coupled Coprocessors
– Used for larger tasks than is the case for tightly-coupled coprocessors
– Task runs in parallel with main processor
– May take many cycles per task
– Large amounts of data that coprocessor may access independent of main

processor
– May or may not use the standard coprocessor interface

10/5/18 5

https://www.xilinx.com/support/documentation/application_notes/xapp1170-zynq-hls.pdf

Accelerator Coherency Port (ACP)

§ Accelerator coherency port (ACP) is a 64-bit AXI slave interface

on the SCU that provides an asynchronous cache-coherent access

point directly from the PL to the Cortex-A9 MP-Core processor

subsystem.

§ A range of system PL masters can use this interface to access the

caches and the memory subsystem exactly the way the APU

processors do to simplify software, increase overall system

performance, or improve power consumption.

610/5/18

ACP Usage

§ The ACP provides a low latency path between the PS and the

accelerators implemented in the PL when compared with a legacy

cache flushing and loading scheme. Steps that must take place in

an example of a PL-based accelerator are as follows:

1. The CPU prepares input data for the accelerator within its local cache

space.

2. The CPU sends a message to the accelerator using one of the general

purpose AXI master interfaces to the PL.

3. The accelerator fetches the data through the ACP, processes the data, and

returns the result through the ACP.

4. The accelerator sets a flag by writing to a known location to indicate that

the data processing is complete. Status of this flag can be polled by the

processor

710/5/18

ACP Caveats

§ NOTE: When compared to a tightly-coupled coprocessor, ACP
access latencies are relatively long. Therefore, ACP is not
recommended for fine-grained instruction level acceleration.

§ For coarse-grain acceleration such as video frame-level
processing, ACP does not have a clear advantage over traditional
memory-mapped PL acceleration because the transaction
overhead is small relative to the transaction time, and might
potentially cause undesirable cache thrashing.

§ ACP is therefore optimal for medium-grain acceleration, such as
block-level crypto accelerator and video macro-block level
processing.

810/5/18

Performance-Driven ISA Extensions

§ Adding instructions that do more work per cycle
– Shift-add: replace two instructions with one (e.g., multiply by 5)
– Multiply-add: replace two instructions with one (x := c + a ´́ b)
– Multiply-accumulate: reduce round-off error (s := s + a ´́ b)
– Conditional copy: to avoid some branches (e.g., in if-then-else)

§ Sub-word parallelism (for multimedia applications)
– Intel MMX: multimedia extension
– 64-bit registers can hold multiple integer operands
– Intel SSE: Streaming SIMD extension
– 128-bit registers can hold several floating-point operands

Slide 910/5/18

Intel MMX ISA Extension

Slide 1010/5/18

Class Instruction Vector Op type Function or results

Copy

Register copy 32 bits Integer register «MMX register

Parallel pack 4, 2 Saturate Convert to narrower elements

Parallel unpack low 8, 4, 2 Merge lower halves of 2 vectors

Parallel unpack high 8, 4, 2 Merge upper halves of 2 vectors

Arithmetic

Parallel add 8, 4, 2 Wrap/Saturate# Add; inhibit carry at boundaries

Parallel subtract 8, 4, 2 Wrap/Saturate# Subtract with carry inhibition

Parallel multiply low 4 Multiply, keep the 4 low halves

Parallel multiply high 4 Multiply, keep the 4 high halves

Parallel multiply-add 4 Multiply, add adjacent products*

Parallel compare equal 8, 4, 2 All 1s where equal, else all 0s

Parallel compare greater 8, 4, 2 All 1s where greater, else all 0s

Shift

Parallel left shift logical 4, 2, 1 Shift left, respect boundaries

Parallel right shift logical 4, 2, 1 Shift right, respect boundaries

Parallel right shift arith 4, 2 Arith shift within each (half)word

Logic

Parallel AND 1 Bitwise dest¬ (src1) Ù (src2)

Parallel ANDNOT 1 Bitwise dest¬ (src1) Ù (src2)¢

Parallel OR 1 Bitwise dest¬ (src1) Ú (src2)

Parallel XOR 1 Bitwise dest¬ (src1) Å (src2)

Memory
access

Parallel load MMX reg 32 or 64 bits Address given in integer register

Parallel store MMX reg 32 or 64 bit Address given in integer register

Control Empty FP tag bits Required for compatibility$

MMX Multiplication and Multiply-Add

Slide 1110/5/18

a

(a) Parallel multiply low (b) Parallel multiply-add

b d e

e f g h

s t u v

e ´ h
d ´ g

b ´ f
a ´ e

z v

y u

x t

w s

a b d e

e f g h

s + t u + v

e ´ h
d ´ g

b ´ f
a ´ e

v

u

t

s

add add

MMX Parallel Comparisons

Slide 1210/5/18

14

(a) Parallel compare equal (b) Parallel compare greater

3 58 66

79 1 58 65

0 0 0

5 12 3 32

12 3 22

5 12 6 9

12 5 90 17 8
65 535
(all 1s)

0 0 0 0 0

255
(all 1s)

Custom ISA: HC12 Fuzzy Logic Acceleration
§ Native fuzzy instructions:
– MEM; evaluate membership functions
– REV; rule evaluation: IF a is x THEN b is y
– WAV; weighted averaging

§ Additional related instructions
– MINA (place smaller of two unsigned 8-bit

values in accumulator A)
– EMIND (place smaller of two unsigned 16-

bit values in accumulator D)
– MAXM (place larger of two unsigned 8-bit

values in memory)
– EMAXM (place larger of two unsigned 16-

bit values in memory)
– TBL (table lookup and interpolate)
– ETBL (extended table lookup and

interpolate)
– EMACS (extended multiply and accumulate

signed 16-bit by 16-bit to 32-bit)
– EDIV (extended divide)

15,000 times faster than HC11
1310/5/18

Reconfigurable Architectures

10/5/18 14

Taxonomy of Reconfigurable Architectures

15

RECONFIGURABLE ARCHITECTURES
(R-SOC)

FINE GRAIN
(FPGA)

MULTI GRANULARITY
(Heterogeneous)

COARSE GRAIN
(Systolic)

Processor +
Coprocessor

Tile-Based
Architecture

Coarse Grain
Coprocessor

Fine Grain
Coprocessor

Island
Topology

Hierarchical
Topology

Linear
Topology

Hierarchical
Topology

Mesh
Topology

Chameleon
REMARC
Morphosys

Pleiades
Garp
FIPSOC
Triscend E5
Triscend A7
Xilinx Virtex-II Pro
Altera Excalibur
Atmel FPSIC
Tensislica

Xilinx Virtex
Xilinx Spartran
Atmel AT40K
Lattice ispXPGA

Altera Stratix
Altera Apex
Altera Cyclone

Systolic Ring
RaPiD
PipeRench

DART
FPFA

RAW
CHESS
MATRIX
KressArray
Systolix Pulsedsp

aSoC
E-FPFA

10/5/18

Customizable ISA: Cadence/Tensilica Xtensa

§ 32-bit ALU
§ 1 or 2 Load/Store Model
§ Registers
– 32-bit general purpose register file
– 32-bit program counter
– 16 optional 1-bit Boolean registers
– 16 optional 32-bit floating point registers
– 4 optional 32-bit MAC16 data registers
– Optional Vectra LX DSP registers

§ General Purpose AR Register File
– 32 or 64 registers
– Instructions have access through “sliding window” of 16 registers. Window

can rotate by 4, 8, or 12 registers
– Register window reduces code size by limiting number of bits for the address

and eliminated the need to save and restore register files

1610/5/18

Hardware Acceleration

Common HW Acceleration Applications

§ Graphics
§ Data Compression/Decompression
§ Data Streaming: Audio/Video Encoding/Decoding, Network, I/O
§ Image sensing and processing
§ Logic Simulation
§ Data Encryption: RSA, DES, AES
§ FFT, DCT, EXP, LOG, …
§ Neuronal Networks
§ Neuromorphic

10/5/18 18

Decision Tree: When do you use a hardware accelerator?

1910/5/18

Can an existing algorithm be implemented using existing ISA?

Can a new algorithm be devised to solve problem using existing ISA?

Can API be modified to expose necessary functionality or make it easier to exploit?

Can the datapath be modified to better support algorithm, without breaking others?

Can ISA be modified to better support algorithm?

Can HW accelerator be added as a co-processor instruction

Easy

Hard

Hardware Acceleration

§ Ad hoc interface to controlling processor
– Accelerator registers are memory-mapped
– Bus-based, FIFO, or register data interfaces
– Uses DMA for high speed transfers

§ Typically, the processor transfers data to the accelerator, issues a
go command, and then collects result data later.
– Polled or interrupt-based interface

§ Accelerator may have its own path to/from memory
§ Often fixed function but can be microcoded for programmability

10/5/18 20

Hardware Accelerator Topologies
Accelerator appears as a device on a bus

Accelerator is tightly coupled into the processor memory system

2110/5/18

CPU-Accelerator Interface Example

2210/5/18

ARM Core

Accelerator

AXI

Block
RAM

PL

Slave I/C

DDR
Controller

PS

D
D

R

§ AXI
– 32 bit Bus
– Access to DRAM data &

programmable logic fabric
– 1/2 CPU frequency
– Big penalty if bus is busy during

first attempt to access bus

§ AHB (AMBA High Speed Bus)
– 64 bit bus
– Runs at CPU clock frequency
– Access to DDR Controller to

provide addresses to SDRAMBus
First Access

Pipelined
Access Arbitration

Read Write Read Write

ARM à I/C 2 2 2 2

I/Cà AXI 8 8 3 3 5

AHB à DDRC 4 4 4 4

DDRC à DRAM 8 9 3 3 5

AXI ↔ BRAM 20 20 8 8 12

BRAM ↔ ACC 2 2 2 2

6

5

2

1 3 4

1

2

3

4

5

6

Four Programmers Models of Accelerator Design

2310/5/18

Base - HW I/F only
No OS Service (in simple
embedded systems)

OS service – Accelerator accessed
as a user space memory mapped
I/O device

Virtualized Device with
OS scheduling support

CPU Accelerator

Application

OS

CPU Accelerator

Application

CPU Accelerator

Application

OS

mmap()

CPU Accelerator

Application

OS

dev() driver

Hybrid Hardware/Software Execution Model

2410/5/18

§ Hardware Accelerator as a Kernel Module
– Seamless integration of hardware

accelerators into the Linux software stack for
use by mainstream applications

– The KM approach enables transparent
interchange of software and hardware
components

§ Application level execution model
– Compiler deep analysis and transformations

generate CPU code, hardware library stubs
and synthesized components

– FPGA bitmaps as hardware counterpart to
existing software modules.

– Same dynamic linking library interfaces and
stubs apply to both software and hardware
implementation

§ OS resource management
– Services (API) for allocation, partial

reconfiguration, saving and restoring the
status, and monitoring

– Multiprogramming scheduler can pre-fetch
hardware accelerators in time for next use

– Control the access to the new hardware to
ensure trust under private or shared use

CPU
FPGA
accele-
rators

memory

devices

Linux OS

Linker/Loader

Application

DLL

O
S m

odules

Compiler analysis/transformations

Synthesis

Soft object
Hard object

User level function or device driver:

Source code

Resource manager

Compile
Time

User
Runtime

Kernel
Runtime

Human designed
hardware

Hardware Accelerator Interface: Interrupts or Polling?

§ Polling interfaces usually require the processor to read a
memory-mapped register to determine the state of the
accelerator.
– Can the accelerator accept new input data?
– Is the accelerator done with its current task?
– Has the accelerator generated an error condition?

§ Polling interfaces offer minimal latency between the setting of a
condition on the accelerator and its
discovery by the controlling processor.
– But processor isn’t doing useful work while it polls…

10/5/18 25

Hardware Accelerator Interface: Interrupts or Polling?

§ Interrupt-based interfaces allow the accelerator to signal
conditions to the controlling processor.
– Interrupt latency is longer than is achievable via the polling method.
– But the processor can more easily proceed with other work while the

accelerator is busy with a task.

§ Interrupts more efficient for coarse grained parallelism (i.e.,
larger tasks with looser and less frequent synchronization
requirements)

§ Interrupts may not work for real-time control tasks with tight
schedules

10/5/18 26

Zedboard Interrupt latency measurement results

2710/5/18

1

10

100

1000

10000

100000

0 500 1000 1500 2000 2500 3000

La
te

cy
 (m

ic
ro

-s
ec

s)

Number of Samples (NOTE: each sample is 10,000 interrupts)

MAX

MIN

MAX: 43333 μsecsNote: heavy CPU load

3 Million Samples

AXI

Typical CPU àà Accelerator Transaction

2810/5/18

Application Operating System Hardware

Tim
e ààopen(/dev/accel); /* only once*/

…
/* construct macroblocks */
macroblock = …
syscall(¯oblock,

num_blocks)
…

…
/* macroblock now has
transformed data */
…

Data copy

Flush Cache Range

Setup DMA Transfer

Poll

DMA
Controller

Setup DMA Transfer

Invalidate Cache Range

Memory

AXI

Accelerator
(Executing)

AXI

Data Copy

Memory
AXI

DMA
Controller

AXI

Memory
AXI

Memory
AXI

Enable Accelerator
Access for
Application

ARM

ARM

ARM

ARM

ARM

ARM

ARM

Device Driver Access Cost

2910/5/18

Accelerator Speedup

§ Assume loop is executed n times.
Speedup = n(tCPU - taccel)

= n(tCPU - (tin + texec + tout))

§ Compare accelerated system to non-accelerated system:

Page: 30

Single-threaded vs Multi-threading

§ One critical factor is the available parallelism in the application:
– Single-threaded/blocking: CPU waits for accelerator;
– Multithreaded/non-blocking: CPU continues to execute along with

accelerator.

§ For multithread, CPU must have some useful work to do while
accelerators perform some tasks.
– Software environment must also support multi- threading.

§ Blocking: CPU waits for the accelerator call to complete.

Page: 31G. Khan

P2

P1

A1

P3

P4

P2

P1

A1

P3

P4

Acceler ator

Determining total execution time

Page: 32G. Khan

Acceler ator

Single Threaded CPU:
Count execution time of

component processes

Multi-Threaded CPU:
Find longest path execution

time of component
processes

P2, P3 are independent
After P1, CPU starts P3
P2 depends on A1

The bus interface may provide mechanisms for accelerators to
tell the CPU of required cache changes…

Caching Issues with Accelerators

§ Main memory provides the primary data transfer mechanism to
the accelerator.

§ Programs must ensure that caching does not invalidate main
memory data.
– CPU reads location S.
– Accelerator writes location S.
– CPU writes location S.
• BAD – Program will not see proper value of S stored in the cache

10/5/18 33

Synchronization and Memory

§ As with cache, main memory writes to shared memory may cause
invalidation (memory incoherence).
– CPU reads location S
– Accelerator writes S
– CPU writes S

§ Many CPU buses implement test-and-set atomic operations that
the accelerator can use to implement a semaphore. This can
serve as a highly efficient means of synchronizing inter-process
Communications (IPC)

10/5/18 34

Logic Simulation Acceleration

10/5/18 35

Page 36

Metrics

§ Performance:

– 400 – 600X faster than SW

simulator

– 400K Evaluations/Sec

– I/O speed: 100 MB/sec

§ Simulation algorithm

– 2-Pass event driven, selective

trace

• Evaluation pass

• Update pass

§ Supported functions:

– Logic Verification

• Delay assigned per element

• Delay assigned per pin type

• 4 value logic

• 16 value logic

– Rise and Fall delays

– Setup and Hold time analysis

– Minimum pulse width detection

– Worst case analysis

– Wire delay

– Transmission gates

– Fault simulation

– Behavioral simulation

10/5/18 36

Simulation Processing Memory

3710/5/18

768 Bits wide

High Level Block Diagram

3810/5/18

Detailed Block Diagram

3910/5/18

Final observations

§ 2 hours to compile 64K gate design
– No incremental compile

§ 75 I/O pins
§ 500+ observation points
§ 30 minutes to download compiled

descriptors to accelerator
§ 11 seconds to simulate 2000 µSec of

sim-time
§ 3-4 hours to unload accelerator data
– Pins & observation points

§ Only marginally faster than SW
simulation
– Amdahl’s Law at work….

4010/5/18

