EE382M.20: System-on-Chip (SoC) Design Lecture 12

EE382M.20:
System-on-Chip (SoC) Design

Lecture 12 — Operation Scheduling
Source: G. De Micheli, Integrated Systems Center, EPFL
“Synthesis and Optimization of Digital Circuits”, McGraw Hill, 2001.
Additional sources:

Notes by Kia Bazargan,
Notes by Rajesh Gupta, UCSD,

Andreas Gerstlauer
Electrical and Computer Engineering
University of Texas at Austin
gerstl@ece.utexas.edu

The University of Texas at Austin

Electrical and Computer Engineering
Cockrell School of Engineering

Lecture 12: QOutline

The scheduling problem
+ Case analysis

* Unconstrained scheduling
* ASAP and ALAP schedules

* Resource constrained (RC) scheduling
 List scheduling

* Time constrained (TC) scheduling
» Force-directed scheduling

* Advanced scheduling problems
+ Chaining
+ Pipelining

EE382M.20: SoC Design, Lecture 12 © G. De Micheli 2

© 2018 A. Gerstlauer 1

EE382M.20: System-on-Chip (SoC) Design

Scheduling

« Circuit model:
» Sequencing graph
» Cycle-time is given
» Operation delays expressed in cycles

* Scheduling:
» Determine the start times for the operations

+ Satisfying all the sequencing (timing and resource)
constraint

* Goal:
» Determine area/latency trade-off

EE382M.20: SoC Design, Lecture 12 © G. De Micheli

Example

No
/4NOPk

Zf i?é

Q’ 0 ¢ Gy
50

S~ ,g<
(NoP)

EE382M.20: SoC Design, Lecture 12 © G. De Micheli

© 2018 A. Gerstlauer

Lecture 12

EE382M.20: System-on-Chip (SoC) Design Lecture 12

Operation Scheduling

* Input:
+ Sequencing graph G(V, E), with n vertices
» Cycletime t
* Operation delays D = {d;: i=0..n}
* Output:
« Schedule ¢ determines start time ¢, of operation v,.
 Latency A =1, —¢,.
Goal: determine area / latency tradeoff
+ Classes:
* Non-hierarchical and unconstrained
» Latency constrained
* Resource constrained
+ Hierarchical

EE382M.20: SoC Design, Lecture 12 ©R. Gupta 5

Simplest Method

* All operations have bounded delays

« All delays arein cycles:
+ Cycle-time is given

 No constraints — no bounds on area

* Goal:
* Minimize latency

EE382M.20: SoC Design, Lecture 12 © G. De Micheli 6

© 2018 A. Gerstlauer 3

EE382M.20: System-on-Chip (SoC) Design

Min Latency Unconstrained Scheduling

« Simplest case: no constraints, find min latency

* Given set of vertices V, delays D and a partial order > on
operations E,

+ find an integer labeling of operations ¢: V = Z* such that:
© =00
. tith+dj V(vj,vl-)eE
« and A=t,—t,is minimum

» Solvable in polynomial time
» Bounds on latency for resource constrained problems
» ASAP algorithm used: topological order

EE382M.20: SoC Design, Lecture 12 ©R. Gupta

ASAP Schedules

« Schedule vy at ty=0
* While (v, not scheduled)
- Select v; with all scheduled predecessors

- Schedule v; at #; = max {tj+dj}, Vi being a predecessor of v,

* Return t, '@
' F ® ®
> ¥ 9 90
s e/ /S
-
R
EE382M.20: SoC Design, Lecture 12 ©R. Gupta

© 2018 A. Gerstlauer

Lecture 12

EE382M.20: System-on-Chip (SoC) Design Lecture 12

ALAP Schedules

* Schedule v, at t =l
* While (vg not scheduled)
+ Select v; with all scheduled successors

 Schedule v; at ¢, = min {tj-dj}, v; being a succecessor of v;
Qop
' &

©9 9
i G 06
5

W, N

EE382M.20: SoC Design, Lecture 12 ©R. Gupta 9

Remarks

 ALAP solves a latency-constrained problem
+ Latency bound can be set to latency computed by ASAP
algorithm

« Mobility
» Defined for each operation
» Difference between ALAP and ASAP schedule

> Slack on the start time

EE382M.20: SoC Design, Lecture 12 © G. De Micheli

© 2018 A. Gerstlauer

EE382M.20: System-on-Chip (SoC) Design

Example

Operations with zero mobility:
{ v, v2, v3, va, V5 }

Critical path

Operations with mobility one:
* {vevr}

Operations with mobility two:
s {vs vy Vo Vi1 }

77N, 7N
P e
,/’///// ! \ \ T / \\\ RN
7 7 / \ \\ - - / ~ =~
2 ! v 2 @6 0
Q @ SN TIME Q @
L 1 AN l
P /3 £ 6 | \ D) /3 4
Q ©, AN TIME Q @7 !
A\
J T 2 / 7/
7 0 // 7/ ’
TIME / %
¢ 3 ¢ A
5 1 5 a4
N A\ TIME s
~ P = “ - =
\y,</,/ \\/’,://
Nopn Nopin
/ ~~/
EE382M.20: SoC Design, Lecture 12 © G. De Micheli 1"

Lecture 12: QOutline

EE382M.20: SoC Design, Lecture 12

Resource constrained (RC) scheduling
» Exact formulations
- ILP

— Hu’s algorithm

Heuristic methods
— List scheduling

© G. De Micheli

© 2018 A. Gerstlauer

Lecture 12

EE382M.20: System-on-Chip (SoC) Design Lecture 12

Scheduling under Resource Constraints

* Classical scheduling problem

» Fix area bound — minimize latency (ML-RCS)
— Minimum latency resource constrained scheduling

 The amount of available resources affects the achievable
latency

* Dual problem:

 Fix latency bound — minimize resources (MR-LCS)
— Minimum resources latency constrained scheduling

* Assumption:
+ All delays bounded and known

EE382M.20: SoC Design, Lecture 12 © G. De Micheli 13

ML-RCS

+ Given
+ a set of ops V" with integer delays D
* a partial order on the operations £
* upper bounds {ax, k=1, 2,..., nes } ON resource usage

* Find an integer labeling ¢ : V — Z* such that:
¢ ti = ¢ (Vi)’
* ,24+d, forallijst (v, v) €k,
| v |Tv)=kand ,<I<t+d } |<q
— for all types k=1,2,...,n,.,and steps/

» and ¢, is minimum

» Intractable problem

EE382M.20: SoC Design, Lecture 12 © G. De Micheli 14

© 2018 A. Gerstlauer 7

EE382M.20: System-on-Chip (SoC) Design

ILP Formulation

* Binary decision variables
e X={x, i=12..n =12, +1}

* x; is TRUE only when operation v, starts in step / of the

schedule (i.e./=¢)
* Ais an upper bound on latency

« Start time of operationv;: X, |- x;

EE382M.20: SoC Design, Lecture 12 © G. De Micheli

ILP Constraints

* Operations start only once
Xx;=1 i=12,...,n

« Sequencing relations must be satisfied
tzt+d > t-t-d;=0 forall (v, v)eE
l-xy-X1l-x;—-d; =0 forall (v, v)eE

 Resource bounds must be satisfied
Simple case (unit delay)

X, x;<a, k=12..n

.n,,; foralll
i:T(v;)=k

EE382M.20: SoC Design, Lecture 12 © G. De Micheli

© 2018 A. Gerstlauer

Lecture 12

EE382M.20: System-on-Chip (SoC) Design Lecture 12

Start Time vs. Execution Time

 For each operation v;, only one start time

« If dj=1, then the following questions are the same:

* Does operation v, start at step /?
* Is operation v, running at step /?

« Butif d;>1, the two questions should be formulated as:

* Does operation v, start at step /?
— Does x; =1 hold?

* Is operation v, running at step /? ! ?
E x, =1

— Does the following hold?

m=l—d;+1

EE382M.20: SoC Design, Lecture 12 © K. Bazargan 17

Operation v; Still Running at Step 1 ?

* Isvgrunning at step 6?
* IS XQ6+X95+X94:1 7

4
> 5 5 | Vg
6 o) 6 Vo 6
, 1
Xg5=1 Xg5=1 Xg4~1
* Note:

* Only one (if any) of the above three cases can happen

* To meet resource constraints, we have to ask the same
question for ALL steps, and ALL operations of that type

EE382M.20: SoC Design, Lecture 12 © K. Bazargan 18

© 2018 A. Gerstlauer 9

EE382M.20: System-on-Chip (SoC) Design Lecture 12

Operation v; Still Running at Step 1 ?

* Isv;running at step | ?
. |S xiyl+xl-)l_] + ... +xi,l-di+]= 1 ?

l-d+1 l-d+1 l-d+1 / \

A P) r_\J

[1

xi,l=1 xi,l-]:1 xi,l—di+]:1

EE382M.20: SoC Design, Lecture 12 © K. Bazargan 19

ILP Formulation of ML-RCS

e Constraints:
« Unique start times: Zxﬂ =1, i=0l...n
/
+ Sequencing (dependency) relations must be satisfied

t, 2t +d, Y(v,,v,) eE:Zl.xﬂ ZZl.xj, +d,
/ /
» Resource constraints

S S an<a. k=l..n.. =17+l

iT(v)=k m=l—d;+1

* Objective: min ¢t
+ t = start times vector, ¢ = cost weight (e.g., [0 0 ... 1])

« Whenc=[00...1], ¢t = Zl.xn,
/

EE382M.20: SoC Design, Lecture 12 © K. Bazargan 20

© 2018 A. Gerstlauer 10

EE382M.20: System-on-Chip (SoC) Design

ILP Example

- 0
- '(N?fi

zf ggo

(NOF'\ n

* Resource constraints
* 2 ALUs; 2 Multipliers
cw=2,a,=2

* Single-cycle operation
e di=1 foralli

EE382M.20: SoC Design, Lecture 12 © G. De Micheli 21

ILP Example

« Assume A=4
* First, perform ASAP and ALAP
* (we can write the ILP without ASAP and ALAP, but using
ASAP and ALAP will simplify the inequalities)

'@ @ @ @0 @ ®

2 @ @ © 2 e 9N N\

s Q. / /S sl 999

s Q. /S 4 Q0 @O0
REH

© 2018 A. Gerstlauer

Lecture 12

11

EE382M.20: System-on-Chip (SoC) Design Lecture 12

ILP Example: Unique Start Times

* Without using ASAP and * Using ASAP and ALAP:
ALAP values:
X1 =1
X tX, X 3+X, =1 X =1
1 21
X, +X,+x+x,, =
2,1 2,2 2,3 2.4)('3,2 :1
X435 =1
Xs 4 =1

Xe1 +Xeo =1
X, +X5 =1
X+ 25 =1
Xy +X 5+ 4 =1

X TX TX 31X, =1

EE382M.20: SoC Design, Lecture 12 © K. Bazargan 23

ILP Example: Dependency Constraints

* Using ASAP and ALAP, the non-trivial inequalities are:
(assuming unit delay for + and *)

2., +3.5,5 — X, —2%,,—1=20

2 X5 +3 X3 4K 4 =X =2, —3.%,3,—120
2.5 +3x, 5 +4X 4 — X0 —2X0, —3X05—120
4x,—2x,,—3x,,—1=0

5., 52Xy, 3% —4%,,—1=0

5,5 =2, =3.X, 3 —4x,,—1=0

EE382M.20: SoC Design, Lecture 12 © K. Bazargan 24

© 2018 A. Gerstlauer 12

EE382M.20: System-on-Chip (SoC) Design

Objective:

ILP Example: Resource Constraints

Xy FX X Xy = 2
Xyp+Xer +X 5+ X5 <2
X5 +X5 = 2

X1 = 2
Xoo T X0 TX12 <2

Xyz3HX953+X03 X3 <2

Xsg+Xo4+X4 = 2

» Since A=4 and sink has no mobility, any feasible solution is
optimum, but we can use the following anyway:

Min x,,+2x,,+3.x,;+4x,,

EE382M.20: SoC Design, Lecture 12

Resource constraints (assuming 2 adders and 2 multipliers)

© K. Bazargan

25

ILP Example: Solution

11
\
\
\
\ T
|
TIME 3 @ !
|
|
/ i
5 o |
|
TIME 4 !
\\\\\ i ,//////
AP
{ NOP
L y
EE382M.20: SoC Design, Lecture 12 © G. De Micheli 26

© 2018 A. Gerstlauer

13

Lecture 12

EE382M.20: System-on-Chip (SoC) Design

MR-LCS Dual ILP formulation

Minimize resource usage under latency constraint
Additional constraint

+ Latency bound must be satisfied
o Xlx,<A+1

» Resource usage is unknown in the constraints
» Resource usage is the objective to minimize

EE382M.20: SoC Design, Lecture 12

© G. De Micheli

27

MR-LCS ILP Example

jo!
5
TIME 4

- Cost function (Nop) "
* Multiplier area =5

e ALU area =1

» Objective function: 5a; + a,

EE382M.20: SoC Design, Lecture 12

© G. De Micheli 28

© 2018 A. Gerstlauer

Lecture 12

14

EE382M.20: System-on-Chip (SoC) Design Lecture 12

ILP Solving

Use standard ILP packages

Transform into LP problem

Advantages
+ Exact method
» Others constraints can be incorporated

« Disadvantages
» Works well up to few thousand variables

EE382M.20: SoC Design, Lecture 12 © G. De Micheli 29

Hu’s Algorithm

+ Simple case of the scheduling problem
* Operations of unit delay
* Operations (and resources) of the same type

* Hu’s algorithm

» Greedy, polynomial and optimal (exact)

— Computes lower bound on number of resources for given latency

OR
Computes lower bound on latency subject to resource constraints

+ Basic idea
» Label operations based on their distances from the sink

» Try to schedule nodes with higher labels first
(i.e., most “critical” operations have priority)

EE382M.20: SoC Design, Lecture 12 ©R. Gupta 30

© 2018 A. Gerstlauer 15

EE382M.20: System-on-Chip (SoC) Design Lecture 12

Hu’s Algorithm with &8 Resources

» Label operations with distance to sink
« Setstepl=1

* Repeat until all ops are scheduled

* U= unscheduled vertices in
— Predecessors have been scheduled (or no predecessors)

» Select S < U resources with
- ISl<a
— Maximal labels

» Schedule the S operations at step /
* Incrementstep/=1/+1

EE382M.20: SoC Design, Lecture 12 © G. De Micheli 31

Hu’s Algorithm Example

Cgl 9 2 @e 8 10
3 7 9 1
/
// /7 /
/ 4
/ /

/
! /

* Assumptions
* One resource type only
« All operations have unit delay
* Labels
+ Distance to sink

EE382M.20: SoC Design, Lecture 12 © G. De Micheli 32

© 2018 A. Gerstlauer 16

EE382M.20: System-on-Chip (SoC) Design Lecture 12

Hu’s Algorithm Example

Step 1: Op 1,2,6
Step 2: Op 3,7,8
Step 3: Op 4,9,10
Step 4: Op 5,11

EE382M.20: SoC Design, Lecture 12 © G. De Micheli 33

List Scheduling

e Heuristic method for:

* Min latency subject to resource bound (ML-RCS)
* Min resource subject to latency bound (MR-LCS)

* Greedy strategy (like Hu’s)
» Does not guarantee optimality (unlike Hu'’s)

* General graphs (unlike Hu’s)
* Resource constraints on different resource types
» Operations of arbitrary delay

* Priority list heuristics
* Priority decided by criticality (similar to Hu'’s)
» Longest path to sink, longest path to timing constraint
* O(n) time complexity

EE382M.20: SoC Design, Lecture 12 © K. Bazargan 34

© 2018 A. Gerstlauer 17

EE382M.20: System-on-Chip (SoC) Design

List Scheduling for Minimum Latency

LIST_L(G(V, E), a) {
I=1;
repeat {
for each resource type k=1,2, ..., N, {

Determine ready operations U,,;
Determine unfinished operations T;
Select §y c U, vertices, s.t. [S] + [T} | < a;
Schedule the S, operations at step |,

}
I=1+1;
}
until (v, is scheduled) ;
return (t);
}
EE382M.20: SoC Design, Lecture 12 © G. De Micheli 35
List Scheduling Example
_Aosg__ -
/,//’/’/3’/ /'\\\\\ __ANoPLO
5o e
g 21 TIME 1 ; \ 2 [\6 \\\ Om
/// //// \\\\
/ /// TIME 2 \
5 e Y

7
y
s
\\,-L\/
(noPIny TIME 3
N

7 08
TIME 4

4
TIME 5

Resource bounds

/
3 multipliers with delay 2 1es b

1 ALU with delay 1 O

EE382M.20: SoC Design, Lecture 12 (NOP)'//

© 2018 A. Gerstlauer

Lecture 12

18

EE382M.20: System-on-Chip (SoC) Design Lecture 12

Lecture 12: Outline

* Time constrained (TC) scheduling

v Exact methods
v" ILP formulations
v Hu’s algorithm
* Heuristics
— List scheduling
— Force-directed scheduling

EE382M.20: SoC Design, Lecture 12 © G. De Micheli 37

List Scheduling for Minimum Resources

LIST_R(G(V, E),) {

a=1;

Compute the latest possible start times - by ALAP (G(V, E), &);

if (t, <0)

return (9);
|=1;
repeat {
for each resource type k=1,2, ..., N {

Determine ready operations U,,;
Compute the slacks {s;=t;—1 for all v;e U,};
Schedule candidate operations with zero slack and update a;
Schedule candidate operations not needing addt’l resources;

}

I=1+1;

until (v, is scheduled) ;
return (t, a);

EE382M.20: SoC Design, Lecture 12 © G. De Micheli 38

© 2018 A. Gerstlauer 19

EE382M.20: System-on-Chip (SoC) Design

Lecture 12

List Scheduling Example

Step 1
2

Two multlpllcatlons on CP
Seta, =

Schedule Mult 1,2
Schedule ALU 10
Step 2
Schedule Mult 3, 6
Schedule ALU 11
Step 3

Schedule Mult 7,8

Schedule ALU 4
Step 4

Set a,=2
Schedule ALU 5, 9

/j(NOF*@\
s II \ ~
‘NOP‘ n
Assumptions

/A N
Q @ ;o
TIME 1 !
* Unit-delay resources

\ Qlo
\\
\
@ Cy
* Maximum latency = 4
Start with

* a, =1 multiplier ki/s o ;
« a,=1ALUs " =
EE382M.20: SoC Design, Lecture 12 \\l/ero\;\]/// ?
Force-Directed Scheduling (FDS)

Heuristic, similar to list scheduling
+ Can handle ML-RCS and MR-LCS
* For ML-RCS, schedules step-by-step

« BUT, selection of the operations tries to find the globally
best set of operations
Idea [Paulin]

+ Find the mobility ;= tL—tl.S of operations (ALAP-ASAP)
* Look at the operation type probability distributions
» Try to flatten the operation type distributions

Definition: operation probability density
* p;(1)=Pr{v;executesinstep/}

» Assume uniform distribution

([)=—— forlelt’,t]
4 +1
EE382M.20: SoC Design, Lecture 12 ©R. Gupta 40
© 2018 A. Gerstlauer

20

EE382M.20: System-on-Chip (SoC) Design Lecture 12

Force-Directed Scheduling: Definitions

* Operation-type distribution
(sum of operation probabilities for each type)

- q D= D p
iT(v,)=k

* Operation probabilities over control steps
- b= {pi 0), ps...p, (n)}
« Distribution graph of type k over all steps

* 14:0),q, (D, .. q,(n)}

* ¢ (/) can be thought of as expected operator cost for
implementing operations of type & at step /

EE382M.20: SoC Design, Lecture 12 © K. Bazargan 41

Force-Directed Scheduling Example

1 11
9t D =3~ 0.33 iD= 1+1+§ +3 =2.83
111 111
2)=—+—+—=1 =l+—+—+—=
Gaad(2) 37373 e 1+2+2+3 233
111 11
=l+—+—+—= T
Gaaa(3) 37373 e) >3 0.83
Gotd® = 1+§ % =1.66 Gy (4 =0

—|0.33 & &

1

a 2.83

()
5 @ J& 2.33
B e
I P

EE382M.20: SoC Design, Lecture 12 © K. Bazargan 42

© 2018 A. Gerstlauer 21

EE382M.20: System-on-Chip (SoC) Design Lecture 12

Force-Directed Scheduling Algorithm

* Very similar to LIST_L(G(V,E), a)
« Compute mobility of operations using ASAP and ALAP
« Computer operation probabilities and type distributions
» Select and schedule operation
» Update operation probabilities and type distributions
» Go to next step/operation

» Difference with list scheduling in selecting operations
» Select operations with least force
« O(n?) time complexity due to pair-wise force computations

EE382M.20: SoC Design, Lecture 12 ©R. Gupta 43

Force

* Used as priority function

* Forceis related to concurrency
» Sort operations for least force

* Mechanical analogy (spring)

» Force = constant x displacement
— Constant = operation-type distribution
— Displacement = change in probability

EE382M.20: SoC Design, Lecture 12 © G. De Micheli 44

© 2018 A. Gerstlauer 22

EE382M.20: System-on-Chip (SoC) Design Lecture 12

Two Types of Forces

« Self-force
» Sum of forces to feasible schedule steps
 Self-force for operation v; in step /
— Sum over type distribution x delta probability

) m in interval qk(m) (5lm _pz(m))
— Higher self-force indicates higher mobility

 Predecessor/successor-force

* Related to the predecessors/successors

— Fixing an operation timeframe restricts timeframe of
predecessors/successors

— Ex: Delaying an operation implies delaying its successors
— Computed by changes in self-forces of neighbors

EE382M.20: SoC Design, Lecture 12 © G. De Micheli 45

Example: Schedule Operation v,

_—-AnNorP 1@ _
LTI T
- - / ~ S~
T - / Sal o
- //// /' ~o ~_
3 7 9 1
/ /
4
/
4 / 7
/ 7
/ e
// ,/
/ 7
5 / v
/ //
/
~ / 7
el ;s
\\7—4\/
(NoP) M

» Distribution graphs for multiplier and ALU

o 1 2 3 o 1 2 3
LTI LT
1 1
2 — 2 .
3 3 I
4 4 I

* Operation v, can be scheduled in step 1 or step 2

EE382M.20: SoC Design, Lecture 12 © G. De Micheli 46

© 2018 A. Gerstlauer 23

EE382M.20: System-on-Chip (SoC) Design

Example: Operation vg

* Op v, can be scheduled in the first two steps
*p(1)=05p(2)=05p(3)=0;p(4)=0

+ Distribution
* q(1)=28;q(2)=23

* Assign vgtostep 1
+ Variation in probability 1 — 0.5 = 0.5 for step 1
 Variation in probability 0 — 0.5 = -0.5 for step 2
» Self-force
+ 28+05-23+05=+0.25
* No successor force
» Total force =0.25

EE382M.20: SoC Design, Lecture 12 © G. De Micheli

47

Example: Operation vy

» Assign vgto step 2
* variation in probability 0 — 0.5 = -0.5 for step 1
* variation in probability 1 — 0.5 = 0.5 for step 2

Self-force
e -28:05+23+05=-0.25

* Successor-force
* Operation v, assigned to step 3
» Succ. forceis2.3(0-05)+08(1-05)=-.75

Total force =-1

EE382M.20: SoC Design, Lecture 12 © G. De Micheli

48

© 2018 A. Gerstlauer

Lecture 12

24

EE382M.20: System-on-Chip (SoC) Design

Example: Operation vg

Total force in step 1 =+ 0.25
Total force in step 2 =-1

» Conclusion:
» Least force is for step 2
 Assigning vg to step 2 reduces concurrency

EE382M.20: SoC Design, Lecture 12 © G. De Micheli

49

FDS for Minimum Resources
FDS (G (V,E), &)
{
repeat {
Compute/update the time-frames;
Compute the operation and type probabilities;
Compute the self-forces, p/s-forces and total forces;
Schedule the op. with least force;
}
until (all operations are scheduled)
return (t);
}
EE382M.20: SoC Design, Lecture 12 © G. De Micheli 50

© 2018 A. Gerstlauer

Lecture 12

25

EE382M.20: System-on-Chip (SoC) Design Lecture 12

Scheduling Generalizations

» Detailed timing constraints

* Protocol and interface synthesis
— Bounds on start time differences
— Forward & backward edges for min/max constraints

» Operation generalizations

* Unbounded delay operations (e.g. synchronization)
— Relative scheduling w.r. to anchors and combine

» Conditional operations

* Resource generalizations
* Multi-cycling and chaining
» Pipelined resources

* Model generalizations
» Hierarchy
 Pipelining
* Loops

EE382M.20: SoC Design, Lecture 12 ©R. Gupta 51

Multi-Cycling and Chaining

« Consider delays of resources not in terms of cycles

» Use scheduling to chain multiple operations in the same
control step

+ Use scheduling to multi-cycle an operation across more
than one control step

+ Useful techniques to explore effect of cycle-time on
areal/latency trade-off

« Algorithms
* ILP
+ ALAP/ASAP
* List scheduling

EE382M.20: SoC Design, Lecture 12 © G. De Micheli 52

© 2018 A. Gerstlauer 26

EE382M.20: System-on-Chip (SoC) Design

Chaining Example

0
/// \\\
()] (s0)
o}
(10)°
/ 7
()

* Cycle-time: 50

EE382M.20: SoC Design, Lecture 12 © G. De Micheli

53

Pipelining

* Two levels of data pipelining

« Structural pipelining
— Pipelined resources
— Non-pipelined model

* Functional pipelining
— Non-pipelined resources
— Pipelined model

* Control pipelining
» Pipelined control logic

EE382M.20: SoC Design, Lecture 12 ©R. Gupta

54

© 2018 A. Gerstlauer

Lecture 12

27

EE382M.20: System-on-Chip (SoC) Design Lecture 12

Structural Pipelining

* Non-pipelined model using pipelined resources
* Resources characterized by

* Execution delay

+ Data introduction interval: DIl

* Implications
» Operations sharing a pipelined resource are serialized
(always)
» Operations do not have data dependency

» Solution using list scheduling
* Relax criteria for selection of vertices

EE382M.20: SoC Design, Lecture 12 ©R. Gupta 55

Structural Pipelining Example
Q @ @l @ @ . \%/ @ Q
e |5 e e
©) ® © R :
¢ /@ © Lol el [e
C—, S /
&) B
A
®» ® @ ®» ® ®
\ 5 . VA
o | / @
t-f (k-) /
e
vy
* 3 multipliers w/ 2 cycle delay and DIl =1
EE382M.20: SoC Design, Lecture 12 ©R. Gupta 56

© 2018 A. Gerstlauer 28

EE382M.20: System-on-Chip (SoC) Design Lecture 12

Functional (Loop) Pipelining

Pipelined model, non-pipelined resources
Assume non-hierarchical graphs

Model characterized by

» Latency

* Initiation interval, 11
* Restart source before completing sink
 Implicit loop
 Limited by loop-carried dependencies

» Solutions using ILP or heuristics

* |LP resource constraints modified to include increased
concurrency

» List or force-directed methods

EE382M.20: SoC Design, Lecture 12 ©R. Gupta 57

Pipelining and Concurrency

» Il determines resource usage

» Smaller /I leads to larger overlaps, higher resource

requirements
min{a,} = n,, for II=1 (all n, operations are concurrent)

— [n,
* Ingeneral, a;,=|—%
i

« Concurrent operations
« Operations v, and v, are executing concurrently at control
step /, if
rem{ ;,/1l } =rem{ t;,/1l } =1
+ Affects the design of the controller circuitry

EE382M.20: SoC Design, Lecture 12 ©R. Gupta 58

© 2018 A. Gerstlauer 29

EE382M.20: System-on-Chip (SoC) Design Lecture 12

Loop Scheduling

+ Potential parallelism across loop invocations
* Single loop executions
» Sequential execution

» Loop unrolling (known iteration count)
— Merge multiple iterations into one to provide scheduling opportunities

» Loop pipelining (iteration count might be unknown)
— Start next iteration while current one is still running
— Depends on dependencies across iterations
» Functional pipelining
* Merging of multiple loops

» Run different loops in parallel (no dependencies)

EE382M.20: SoC Design, Lecture 12 ©R. Gupta 59

Loop Scheduling Example

+ Sequential

1 2 3 4 5 6 I 8

 Unrolled

123 4,5,6 78,9

* Pipelined

+ lteration count= N
1 3 5 7 « Loop latency = N - A
+ Pipeline loop iterations with 77 <\

2 4 6 8 » Latency of the pipelined loop
— N-II + overhead
— Overhead = |%}, |1

EE382M.20: SoC Design, Lecture 12 ©R. Gupta 60

© 2018 A. Gerstlauer 30

EE382M.20: System-on-Chip (SoC) Design

Lecture 12: Summary

Scheduling determines area/latency trade-off

Intractable problem in general
* Heuristic algorithms
* ILP formulation (small-case problems)

Several heuristic formulations
+ List scheduling is the fastest and most used
» Force-directed scheduling tends to yield good results

+ Several extensions
+ Chaining and multi-cycling
 Pipelining

EE382M.20: SoC Design, Lecture 12 © G. De Micheli 61

© 2018 A. Gerstlauer

Lecture 12

31

