EE382M.20: System-on-Chip (SoC) Design

Lecture 12 – Operation Scheduling

Source: G. De Micheli, Integrated Systems Center, EPFL "Synthesis and Optimization of Digital Circuits", McGraw Hill, 2001.

Additional sources:

Notes by Kia Bazargan, http://www.ece.umn.edu/users/kia/Courses/EE5301 Notes by Rajesh Gupta, UCSD, http://www.cecs.uci.edu/~rgupta/ics280.html

Andreas Gerstlauer

Electrical and Computer Engineering University of Texas at Austin gerstl@ece.utexas.edu

Lecture 12: Outline

- The scheduling problem
 - · Case analysis
- Unconstrained scheduling
 - ASAP and ALAP schedules
- Resource constrained (RC) scheduling
 - List scheduling
- Time constrained (TC) scheduling
 - · Force-directed scheduling
- Advanced scheduling problems
 - Chaining
 - Pipelining

EE382M.20: SoC Design, Lecture 12

© G. De Micheli

2

Scheduling

- · Circuit model:
 - · Sequencing graph
 - · Cycle-time is given
 - · Operation delays expressed in cycles
- Scheduling:
 - · Determine the start times for the operations
 - Satisfying all the sequencing (timing and resource) constraint
- Goal:
 - Determine area/latency trade-off

EE382M.20: SoC Design, Lecture 12

© G. De Micheli

3

Operation Scheduling

- Input:
 - Sequencing graph G(V, E), with *n* vertices
 - Cycle time τ
 - Operation delays $D = \{d_i: i=0..n\}$
- Output:
 - Schedule ϕ determines start time t_i of operation v_i .
 - Latency $\lambda = t_n t_0$.
- · Goal: determine area / latency tradeoff
- · Classes:
 - · Non-hierarchical and unconstrained
 - · Latency constrained
 - · Resource constrained
 - Hierarchical

EE382M.20: SoC Design, Lecture 12

© R. Gupta

5

Simplest Method

- · All operations have bounded delays
- · All delays are in cycles:
 - Cycle-time is given
- No constraints no bounds on area
- Goal:
 - Minimize latency

EE382M.20: SoC Design, Lecture 12

© G. De Micheli

6

Min Latency Unconstrained Scheduling

- Simplest case: no constraints, find min latency
- Given set of vertices V, delays D and a partial order > on operations E,
- find an integer labeling of operations $\phi: V \rightarrow \mathbb{Z}^+$ such that:
 - $t_i = \phi(v_i)$
 - $t_i \ge t_j + d_j$ $\forall (v_j, v_i) \in E$
 - and $\lambda = t_n t_0$ is minimum
- Solvable in polynomial time
 - Bounds on latency for resource constrained problems
 - · ASAP algorithm used: topological order

EE382M.20: SoC Design, Lecture 12

© R. Gupta

7

ASAP Schedules

- Schedule v_0 at $t_0=0$
- While (v_n not scheduled)
 - Select v_i with all scheduled predecessors
 - Schedule v_i at $t_i = \max\{t_j + d_j\}$, v_j being a predecessor of v_i
- Return t_n

EE382M.20: SoC Design, Lecture 12

© R. Gupta

8

© 2018 A. Gerstlauer

ALAP Schedules

- Schedule v_n at $t_n=l$
- While (v₀ not scheduled)
 - Select v_i with all scheduled successors
 - Schedule v_i at $t_i = \min \{t_j d_j\}$, v_j being a successor of v_i

EE382M.20: SoC Design, Lecture 12

© R. Gupta

9

Remarks

- ALAP solves a latency-constrained problem
 - Latency bound can be set to latency computed by ASAP algorithm
- Mobility
 - · Defined for each operation
 - · Difference between ALAP and ASAP schedule
 - > Slack on the start time

EE382M.20: SoC Design, Lecture 12

© G. De Micheli

10

Example

- · Operations with zero mobility:
 - $\{v_1, v_2, v_3, v_4, v_5\}$
 - · Critical path
- · Operations with mobility one:
 - $\{v_6, v_7\}$
- Operations with mobility two:
 - $\{v_8, v_9, v_{10}, v_{11}\}$

Lecture 12: Outline

- √ The scheduling problem
- √ Unconstrained scheduling
- Resource constrained (RC) scheduling
 - · Exact formulations
 - ILP
 - Hu's algorithm
 - · Heuristic methods
 - List scheduling
- Time constrained (TC) scheduling
- Advanced scheduling problems

EE382M.20: SoC Design, Lecture 12

© G. De Micheli

12

Scheduling under Resource Constraints

- Classical scheduling problem
 - Fix area bound minimize latency (ML-RCS)
 - Minimum latency resource constrained scheduling
 - The amount of available resources affects the achievable latency
- Dual problem:
 - Fix latency bound minimize resources (MR-LCS)
 - Minimum resources latency constrained scheduling
- Assumption:
 - · All delays bounded and known

EE382M.20: SoC Design, Lecture 12

© G. De Micheli

13

ML-RCS

- Given
 - a set of ops V with integer delays D
 - a partial order on the operations *E*
 - upper bounds { a_k ; $k = 1, 2, ..., n_{res}$ } on resource usage
- Find an integer labeling $\phi: V \to \mathbb{Z}^+$ such that:
 - $t_i = \phi(v_i)$,
 - $t_i \ge t_j + d_j$ for all i,j s.t. $(v_j, v_i) \in E$,
 - $\mid \{v_i \mid T(v_i) = k \text{ and } t_i \leq l < t_j + d_j \} \mid \leq a_k$ - for all types $k = 1, 2, ..., n_{res}$ and steps l
 - \triangleright and t_n is minimum
- Intractable problem

EE382M.20: SoC Design, Lecture 12

© G. De Micheli

14

ILP Formulation

- Binary decision variables
 - $X = \{ x_{il}, i = 1, 2, ..., n; l = 1, 2, ..., \overline{\lambda} + 1 \}$
 - x_{il} is **TRUE** only when operation v_i starts in step l of the schedule (i.e. $l = t_i$)
 - $\overline{\lambda}$ is an upper bound on latency
- Start time of operation v_i : $\Sigma_l l \cdot x_{il}$

EE382M.20: SoC Design, Lecture 12

© G. De Micheli

15

ILP Constraints

Operations start only once

$$\sum x_{il} = 1$$
 $i = 1, 2, ..., n$

· Sequencing relations must be satisfied

$$\begin{array}{ccc} t_i \geq t_j + d_j & \boldsymbol{\rightarrow} & t_i - t_j - d_j \geq 0 & & \text{for all } (v_j, v_i) \in E \\ \Sigma \ l \cdot x_{il} - \Sigma \ l \cdot x_{jl} - d_j \geq 0 & & \text{for all } (v_j, v_i) \in E \end{array}$$

· Resource bounds must be satisfied

Simple case (unit delay)

$$\sum_{\substack{l\\i:T(v_i)=k}} x_{il} \leq a_k \quad k=1,2,...n_{res} \,; \quad \text{for all } l$$

EE382M.20: SoC Design, Lecture 12

© G. De Micheli

16

© 2018 A. Gerstlauer

Start Time vs. Execution Time

- For each operation v_i , only one start time
- If d_i =1, then the following questions are the same:
 - Does operation v_i start at step l?
 - Is operation v_i running at step l?
- But if $d_i > 1$, the two questions should be formulated as:
 - Does operation v_i start at step l?
 Does x_{il} = 1 hold?
 - Is operation v_i running at step l?
 - Does the following hold?

$$\sum_{m=l-d_i+1}^{l} x_{im} \stackrel{?}{=} 1$$

EE382M.20: SoC Design, Lecture 12

© K. Bazargan

17

Operation v_i Still Running at Step I?

- Is v₉ running at step 6?
 - Is $x_{9,6} + x_{9,5} + x_{9,4} = 1$?

4 5 6 **V**₉

5 6 V₉

 $x_{9.6} = 1$

- Note:
 - Only one (if any) of the above three cases can happen
 - To meet resource constraints, we have to ask the same question for ALL steps, and ALL operations of that type

EE382M.20: SoC Design, Lecture 12

© K. Bazargan

Operation v_i Still Running at Step I?

- Is v_i running at step l?
 - Is $x_{i,l} + x_{i,l-1} + ... + x_{i,l-di+1} = 1$?

EE382M.20: SoC Design, Lecture 12

© K. Bazargan

19

ILP Formulation of ML-RCS

- Constraints:
 - Unique start times: $\sum_{l} x_{il} = 1$, i = 0,1,...,n
 - Sequencing (dependency) relations must be satisfied $t_i \geq t_j + d_j \ \forall (v_j, v_i) \in E \Longrightarrow \sum_l l.x_{il} \geq \sum_l l.x_{jl} + d_j$
 - · Resource constraints

$$\sum_{i:T(v_i)=k} \sum_{m=l-d_i+1}^{l} x_{im} \le a_k, \quad k=1,\ldots,n_{res}, \quad l=1,\ldots,\overline{\lambda}+1$$

- Objective: min c^Tt
 - t = start times vector, c = cost weight (e.g., [0 0 ... 1])
 - When $c = [0 \ 0 \ ... \ 1], c^T t = \sum_{l} l \cdot x_{nl}$

EE382M.20: SoC Design, Lecture 12

© K. Bazargan

- Resource constraints
 - 2 ALUs; 2 Multipliers
 - $a_1 = 2$; $a_2 = 2$
- Single-cycle operation
 - $d_i = 1$ for all i

EE382M.20: SoC Design, Lecture 12

© G. De Micheli

21

ILP Example

- Assume $\overline{\lambda} = 4$
- First, perform ASAP and ALAP
 - (we can write the ILP without ASAP and ALAP, but using ASAP and ALAP will simplify the inequalities)

ILP Example: Unique Start Times

 Without using ASAP and ALAP values:

$$x_{1,1} + x_{1,2} + x_{1,3} + x_{1,4} = 1$$
$$x_{2,1} + x_{2,2} + x_{2,3} + x_{2,4} = 1$$

•••

•••

...

$$x_{11,1} + x_{11,2} + x_{11,3} + x_{11,4} = 1$$

Using ASAP and ALAP:

$$x_{1,1} = 1$$

$$x_{2,1} = 1$$

$$x_{3,2} = 1$$

$$x_{43} = 1$$

$$x_{54} = 1$$

$$x_{6.1} + x_{6.2} = 1$$

$$x_{7,2} + x_{7,3} = 1$$

$$x_{81} + x_{82} + x_{83} = 1$$

$$x_{9,2} + x_{9,3} + x_{9,4} = 1$$

....

EE382M.20: SoC Design, Lecture 12

© K. Bazargan

23

ILP Example: Dependency Constraints

 Using ASAP and ALAP, the non-trivial inequalities are: (assuming unit delay for + and *)

$$2.x_{7,2} + 3.x_{7,3} - x_{6,1} - 2.x_{6,2} - 1 \ge 0$$

$$2x_{9,2} + 3x_{9,3} + 4x_{9,4} - x_{8,1} - 2x_{8,2} - 3x_{8,3} - 1 \ge 0$$

$$2x_{11,2} + 3x_{11,3} + 4x_{11,4} - x_{10,1} - 2x_{10,2} - 3x_{10,3} - 1 \ge 0$$
$$4x_{5,4} - 2x_{7,2} - 3x_{7,3} - 1 \ge 0$$

$$5x_{n,5} - 2x_{9,2} - 3x_{9,3} - 4x_{9,4} - 1 \ge 0$$

$$5x_{n,5} - 2x_{11,2} - 3x_{11,3} - 4x_{11,4} - 1 \ge 0$$

EE382M.20: SoC Design, Lecture 12

© K. Bazargan

24

ILP Example: Resource Constraints

Resource constraints (assuming 2 adders and 2 multipliers)

$$x_{1,1} + x_{2,1} + x_{6,1} + x_{8,1} \le 2$$

$$x_{3,2} + x_{6,2} + x_{7,2} + x_{8,2} \le 2$$

$$x_{7,3} + x_{8,3} \le 2$$

$$x_{10,1} \le 2$$

$$x_{9,2} + x_{10,2} + x_{11,2} \le 2$$

$$x_{4,3} + x_{9,3} + x_{10,3} + x_{11,3} \le 2$$

$$x_{5,4} + x_{9,4} + x_{11,4} \le 2$$

- · Objective:
 - Since λ =4 and sink has no mobility, any feasible solution is optimum, but we can use the following anyway:

Min
$$x_{n,1} + 2.x_{n,2} + 3.x_{n,3} + 4.x_{n,4}$$

EE382M.20: SoC Design, Lecture 12

© K. Bazargan

25

MR-LCS Dual ILP formulation

- · Minimize resource usage under latency constraint
- Additional constraint
 - · Latency bound must be satisfied
 - $\Sigma_l l x_{nl} \leq \lambda + 1$
- > Resource usage is unknown in the constraints
 - · Resource usage is the objective to minimize

EE382M.20: SoC Design, Lecture 12

© G. De Micheli

27

MR-LCS ILP Example

- Cost function
 - Multiplier area = 5
 - ALU area = 1
 - Objective function: $5a_1 + a_2$

EE382M.20: SoC Design, Lecture 12

© G. De Micheli

28

ILP Solving

- Use standard ILP packages
- Transform into LP problem
- Advantages
 - · Exact method
 - · Others constraints can be incorporated
- Disadvantages
 - Works well up to few thousand variables

EE382M.20: SoC Design, Lecture 12

© G. De Micheli

29

Hu's Algorithm

- Simple case of the scheduling problem
 - Operations of unit delay
 - · Operations (and resources) of the same type
- Hu's algorithm
 - Greedy, polynomial and optimal (exact)
 - Computes lower bound on number of resources for given latency OR
 Computes lower bound on latency subject to resource constraints
- Basic idea
 - Label operations based on their distances from the sink
 - Try to schedule nodes with higher labels first (i.e., most "critical" operations have priority)

EE382M.20: SoC Design, Lecture 12

© R. Gupta

30

Hu's Algorithm with ā Resources

- Label operations with distance to sink
- Set step l = 1
- Repeat until all ops are scheduled
 - U = unscheduled vertices in V
 - Predecessors have been scheduled (or no predecessors)
 - Select $S \subseteq U$ resources with

 - $|S| \le \bar{a}$ Maximal labels
 - Schedule the S operations at step l
 - Increment step l = l + 1

EE382M.20: SoC Design, Lecture 12

© G. De Micheli

Hu's Algorithm Example

- Assumptions
 - One resource type only
 - · All operations have unit delay
- Labels
 - Distance to sink

EE382M.20: SoC Design, Lecture 12

© G. De Micheli

Step 1: Op 1,2,6

Step 2: Op 3,7,8

Step 3: Op 4,9,10

Step 4: Op 5,11

EE382M.20: SoC Design, Lecture 12

© G. De Micheli

List Scheduling

- Heuristic method for:
 - Min latency subject to resource bound (ML-RCS)
 - Min resource subject to latency bound (MR-LCS)
- Greedy strategy (like Hu's)
 - Does not guarantee optimality (unlike Hu's)
- General graphs (unlike Hu's)
 - Resource constraints on different resource types
 - · Operations of arbitrary delay
- **Priority list heuristics**
 - Priority decided by criticality (similar to Hu's)
 - Longest path to sink, longest path to timing constraint
 - *O*(*n*) time complexity

EE382M.20: SoC Design, Lecture 12

© K. Bazargan

```
List Scheduling for Minimum Latency

LIST_L(G(V, E), a) {
    l=1;
    repeat {

        Determine ready operations U_{l,k};
        Determine unfinished operations T_{l,k};
        Select S_k \subseteq U_{l,k} vertices, s.t. |S_k| + |T_{l,k}| \le a_k;
        Schedule the S_k operations at step l;
        }
        l=l+1;
    }
     until (v_n is scheduled) ;
    return(t);
}

EE382M.20: SoC Design, Lecture 12 © G. De Micheli 35
```


Lecture 12: Outline

- √ The scheduling problem
- ✓ Unconstrained scheduling
- √ Resource constrained (RC) scheduling
- Time constrained (TC) scheduling
 - ✓ Exact methods
 - ✓ ILP formulations
 - √ Hu's algorithm
 - Heuristics
 - List scheduling
 - Force-directed scheduling
- Advanced scheduling problems

EE382M.20: SoC Design, Lecture 12

EE382M.20: SoC Design, Lecture 12

© G. De Micheli

© G. De Micheli

37

List Scheduling for Minimum Resources

```
LIST_R( G(V,E),\overline{\lambda}) {
a=1;
Compute the latest possible start times t^L by ALAP ( G(V,E),\overline{\lambda});
if(t_0<0)
return(\emptyset);
l=1;
repeat {
for each resource type <math>k=1,2,...,n_{res} {
Determine ready operations $U_{l,k}$;}
Compute the slacks { <math>s_i=t_i-l$ for all $v_i \in U_{lk}$ };
Schedule candidate operations with zero slack and update a;
Schedule candidate operations not needing addt'l resources;
} l=l+1;
}
until(v_n \text{ is scheduled});
return(t,a);
```


Force-Directed Scheduling (FDS)

- Heuristic, similar to list scheduling
 - Can handle ML-RCS and MR-LCS
 - For ML-RCS, schedules step-by-step
 - BUT, selection of the operations tries to find the globally best set of operations
- Idea [Paulin]
 - Find the mobility $\mu_i = t_i^L t_i^S$ of operations (ALAP-ASAP)
 - · Look at the operation type probability distributions
 - · Try to flatten the operation type distributions
- Definition: operation probability density
 - $p_i(l) = Pr \{ v_i \text{ executes in step } l \}$
 - Assume uniform distribution: $p_i(l) = \frac{1}{\mu_i + 1}$ for $l \in [t_i^S, t_i^L]$

EE382M.20: SoC Design, Lecture 12

© R. Gupta

40

Force-Directed Scheduling: Definitions

- Operation-type distribution (sum of operation probabilities for each type)
 - $\cdot q_k(l) = \sum_{i:T(v_i)=k} p_i(l)$
- Operation probabilities over control steps
 - $p_i = \{p_i(0), p_i(1), ..., p_i(n)\}$
- Distribution graph of type k over all steps
 - $\{q_k(0), q_k(1), ..., q_k(n)\}$
 - $q_k(l)$ can be thought of as *expected* operator cost for implementing operations of type k at step l

EE382M.20: SoC Design, Lecture 12

© K. Bazargan

41

Force-Directed Scheduling Example

Force-Directed Scheduling Algorithm

- Very similar to LIST_L(G(V,E), a)
 - · Compute mobility of operations using ASAP and ALAP
 - Computer operation probabilities and type distributions
 - Select and schedule operation
 - Update operation probabilities and type distributions
 - Go to next step/operation
- Difference with list scheduling in selecting operations
 - · Select operations with least force
 - $O(n^2)$ time complexity due to pair-wise force computations

EE382M.20: SoC Design, Lecture 12

© R. Gupta

43

Force

- Used as priority function
- Force is related to concurrency
 - Sort operations for least force
- Mechanical analogy (spring)
 - Force = constant × displacement
 - Constant = operation-type distribution
 - Displacement = change in probability

EE382M.20: SoC Design, Lecture 12

© G. De Micheli

44

Two Types of Forces

- Self-force
 - · Sum of forces to feasible schedule steps
 - Self-force for operation v_i in step l
 - Sum over type distribution × delta probability

$$\sum_{m \text{ in interval}} q_k(m) (\delta_{lm} - p_i(m))$$

- Higher self-force indicates higher mobility

- Predecessor/successor-force
 - Related to the predecessors/successors
 - Fixing an operation timeframe restricts timeframe of predecessors/successors
 - Ex: Delaying an operation implies delaying its successors
 - Computed by changes in self-forces of neighbors

EE382M.20: SoC Design, Lecture 12

© G. De Micheli

45

• Distribution graphs for multiplier and ALU Operation v_6 • Operation v_6 can be scheduled in step 1 or step 2 EE382M.20: SoC Design, Lecture 12 © G. De Micheli 46

Example: Operation v_6

- Op v_6 can be scheduled in the first two steps
 - p(1) = 0.5; p(2) = 0.5; p(3) = 0; p(4) = 0
- Distribution
 - q(1) = 2.8; q(2) = 2.3
- Assign v₆ to step 1
 - Variation in probability 1 0.5 = 0.5 for step 1
 - Variation in probability 0 0.5 = -0.5 for step 2
- Self-force
 - 2.8 * 0.5 2.3 * 0.5 = + 0.25
- No successor force
- Total force = 0.25

EE382M.20: SoC Design, Lecture 12

© G. De Micheli

47

Example: Operation v_6

- Assign v₆ to step 2
 - variation in probability 0 0.5 = -0.5 for step 1
 - variation in probability 1 0.5 = 0.5 for step 2
- Self-force
 - -2.8 * 0.5 + 2.3 * 0.5 = -0.25
- Successor-force
 - Operation v₇ assigned to step 3
 - Succ. force is 2.3 (0-0.5) + 0.8 (1 0.5) = -.75
- Total force = -1

EE382M.20: SoC Design, Lecture 12

© G. De Micheli

48

Example: Operation v_6

- Total force in step 1 = +0.25
- Total force in step 2 = -1
- > Conclusion:
 - Least force is for step 2
 - Assigning v_6 to step 2 reduces concurrency

EE382M.20: SoC Design, Lecture 12

© G. De Micheli

49

FDS for Minimum Resources

```
FDS ( G ( V, E ), λ̄)
{
    repeat {
        Compute/update the time-frames;
        Compute the operation and type probabilities;
        Compute the self-forces, p/s-forces and total forces;
        Schedule the op. with least force;
    }
    until (all operations are scheduled)
    return (t);
}
```

EE382M.20: SoC Design, Lecture 12 © G. De Micheli 5

Scheduling Generalizations

- Detailed timing constraints
 - Protocol and interface synthesis
 - Bounds on start time differences
 - Forward & backward edges for min/max constraints
- Operation generalizations
 - Unbounded delay operations (e.g. synchronization)
 - Relative scheduling w.r. to anchors and combine
 - Conditional operations
- Resource generalizations
 - Multi-cycling and chaining
 - · Pipelined resources
- Model generalizations
 - Hierarchy
 - Pipelining
 - Loops

EE382M.20: SoC Design, Lecture 12

© R. Gupta

51

Multi-Cycling and Chaining

- Consider delays of resources not in terms of cycles
 - Use scheduling to chain multiple operations in the same control step
 - Use scheduling to multi-cycle an operation across more than one control step
- Useful techniques to explore effect of cycle-time on area/latency trade-off
- Algorithms
 - ILP
 - ALAP/ASAP
 - List scheduling

EE382M.20: SoC Design, Lecture 12

© G. De Micheli

52

Pipelining

- Two levels of data pipelining
 - Structural pipelining
 - Pipelined resources
 - Non-pipelined model
 - · Functional pipelining
 - Non-pipelined resources
 - Pipelined model
- Control pipelining
 - · Pipelined control logic

EE382M.20: SoC Design, Lecture 12

© R. Gupta

54

Structural Pipelining

- Non-pipelined model using pipelined resources
- Resources characterized by
 - Execution delay
 - Data introduction interval: DII
- Implications
 - Operations sharing a pipelined resource are serialized (always)
 - · Operations do not have data dependency
- > Solution using list scheduling
 - · Relax criteria for selection of vertices

EE382M.20: SoC Design, Lecture 12

© R. Gupta

55

3 multipliers w/ 2 cycle delay and DII = 1

EE382M.20: SoC Design, Lecture 12

© R. Gupta

56

Functional (Loop) Pipelining

- Pipelined model, non-pipelined resources
- Assume non-hierarchical graphs
- Model characterized by
 - Latency
 - Initiation interval, II
- · Restart source before completing sink
 - Implicit loop
 - · Limited by loop-carried dependencies
- Solutions using ILP or heuristics
 - ILP resource constraints modified to include increased concurrency
 - · List or force-directed methods

EE382M.20: SoC Design, Lecture 12

© R. Gupta

57

Pipelining and Concurrency

- · II determines resource usage
 - Smaller II leads to larger overlaps, higher resource requirements

 $min\{a_k\} = n_k$, for II=1 (all n_k operations are concurrent)

- In general, $\bar{a}_k = \left\lceil \frac{n_k}{II} \right\rceil$
- Concurrent operations
 - Operations v_i and v_j are executing concurrently at control step l, if

 $rem\{t_i/II\} = rem\{t_i/II\} = l$

· Affects the design of the controller circuitry

EE382M.20: SoC Design, Lecture 12

© R. Gupta

58

Loop Scheduling

- Potential parallelism across loop invocations
- Single loop executions
 - Sequential execution
 - Loop unrolling (known iteration count)
 - Merge multiple iterations into one to provide scheduling opportunities
 - Loop pipelining (iteration count might be unknown)
 - Start next iteration while current one is still running
 - Depends on dependencies across iterations
 - > Functional pipelining
- Merging of multiple loops
 - Run different loops in parallel (no dependencies)

EE382M.20: SoC Design, Lecture 12

© R. Gupta

59

Loop Scheduling Example

Sequential

Unrolled

Pipelined

- Iteration count = N
- Loop latency = N · λ
- Pipeline loop iterations with $II < \lambda$
- Latency of the pipelined loop
 - $N \cdot II$ + overhead
 - Overhead = $\left|\frac{\lambda}{II}\right| 1$

EE382M.20: SoC Design, Lecture 12

© R. Gupta

60

Lecture 12: Summary

- · Scheduling determines area/latency trade-off
- Intractable problem in general
 - · Heuristic algorithms
 - ILP formulation (small-case problems)
- Several heuristic formulations
 - · List scheduling is the fastest and most used
 - · Force-directed scheduling tends to yield good results
- Several extensions
 - · Chaining and multi-cycling
 - Pipelining

EE382M.20: SoC Design, Lecture 12

© G. De Micheli

61