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Lecture 15: Outline

• Some Definitions

• Introduction:  The Expanding Challenge

• Phases of System Software Integration

• From Requirements to Software Components 
Identification

• Software Selection Issues during Architectural Design

• Unit-Level Integration and Software Performance 
Assessment

• Subsystem and Functional-Level Software Integration

• System-Level Software Integration and Testing
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Definitions

• System Integration:  The task of creating a properly 
functioning system from its constituent components

• Hardware

• Firmware

• Software

• System Hardware Integration

• Are the components wired together correctly?

• System Software Integration

• Typically assumes hardware integration is largely complete

• The final step before acceptance testing and deployment
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System Engineering Process

EE382M.20: SoC Design, Lecture 15 © 2018 A. Gerstlauer 4

Requirements
Definition

System
Specification

System
Design

Detailed
Design

Module Design
and Coding

Module/Unit
Test

Subsystem
Integration

Subsystem
Test

System
Integration

System Test &
Verification

Acceptance
Test

System
Deployment

Acceptance
Test Plan

System
Integration
Test Plan

Subsystem
Integration
Test Plans

Of course, 
iteration 
occurs at all 
levels and 
among most 
levels…

© S. Smith



EE382M.20: System-on-Chip (SoC) Design Lecture 15

© 2018 A. Gerstlauer 3

The Good Old Days

• Software developed internally

• Design-specific software

• No consideration given to software reuse

• Direct access to software design, source code and developer

• Uni-processors predominate

• No inter-processor and limited inter-process communications

• Small, simple real-time operating systems (RTOS)

• Easy porting and configuration

• Comparatively simple debugging and testing

• Single-function systems

EE382M.20: SoC Design, Lecture 15 © 2018 A. Gerstlauer 5© S. Smith

Today: Life Gets Complicated

• Software components gathered from many sources

• Heterogeneous multi-processors

• Customized, configurable processors

• Memory management units (MMUs)

• Mix of operating systems:  RTOS and Linux

• Mix of functions and operating modes

• Browser-based configuration

• Multiple debuggers, no interoperability among tools

• Enormously challenging testing implications
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Implications for Software Integration

• System software integration issues must be addressed 
early and continually throughout the design!

• Tool and software component selection must be made in 
the context of system-level design and development 
considerations.

• Debugger interoperability increasingly critical

• Integrated Development Environments (IDE) may have 
long learning curves

• Compilers each have their own idiosyncrasies 

• Disparate operating systems don’t often play well together

• No longer just a “back-end” task
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System Software Design & Integration Phases

• Identification of required software functions

• Begins during requirements specification

• Architecture decisions may add or remove requirements

• Mapping of required functions to candidate components

• Analysis of trade-offs in software component selection

• Initial software component selection or specification

• Performance analysis, verification

• Subsystem integration, performance analysis, verification

• System integration, performance analysis, verification
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System Engineering Process
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Identifying Required Software Functions

• Embedded system design often begins with an 
executable specification, or a high-level language (HLL) 
application
• Or, increasingly, two, or three…
• Natural starting place for software function identification

• Initial hardware/software partitioning during architectural 
design defines required software functions
• This is a highly iterative process as performance 

bottlenecks and other design criteria come into focus

• Some software functions are not performance critical, but 
may demand significant flexibility
• E.g., the Internet refrigerator and its embedded http server

• End-user or OEM/VAR customization requirements also 
dictate required software functionality.  Java, anyone?
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System Software Elements
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Identifying Candidate Software Elements

• Map required software functions into specific candidate 
components

• Buy, adapt or develop?

• Requires consideration of all design criteria, not to mention 
business issues

 Difficult to evaluate early in the project
 But also difficult to revisit later in the effort

• Operating system or executive selections are a key step

• A uniform operating system in a multi-processor SoC is 
extremely desirable, but not always feasible
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Operating System Selection Criteria

• Real-time capabilities
• “Hard” real-time: guaranteed maximum latency for entering 

interrupt service routines (ISRs)
• “Soft” real-time:  no guarantees, but fairly quick response 

to real-time events (not for pacemakers, flight control, etc.)

• General-purpose features (e.g., file system, web server)

• Operating system acquisition and unit costs

• Inter-process and -processor communication support

• Reliability, Quality

• Resource requirements
• Memory footprint of program and data
• Boot, power-on-self-test (P.O.S.T.) mechanisms
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Latency in Real-Time Applications
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Embedded Operating System Trends

• Linux - “Hard” real-time embedded Linux versions exist, 
but worst-case response times may still be too long

• Real-Time Application Interface (RTAI.org)

• Linux Extensions for Real Time (LXRT) – built on RTAI

• Mainline Linux kernel real-time patches (RT-Preempt)

• Linux “on top” of a hard RTOS or kernel (RTLinux)

• Linux executes only when the RTOS is otherwise idle

• Fine for configuration and other non-critical functions

• Highly variable performance during normal system 
operation; Linux may be starved indefinitely by the RTOS

• Growing support ecosystem for embedded Linux

• Porting, configuring still a non-trivial effort
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Real-Time Linux

• Linux with Real-Time Application Interface

• RTAI is hard real-time kernel that runs Linux in its idle loop

• Real-time applications run in kernel mode

• Linux with RTAI and Linux Extensions for Real-Time

• LXRT Extends RTAI to support Linux real-time user mode 
applications

– Enables use of Linux memory management

– Pairs a kernel mode RT task with the user mode task

• Long paths in Linux kernel getting shorter and shorter

• Real-time extensions have now merged with core kernel

• Tuning the kernel using scheduling policy selection
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Real-Time Middleware

• CORBA - Common Object Request Broker Architecture

• Standard mechanism for medium to coarse grain 
parallelism based on objects

– Separation of object interface from implementation

– Services available on a computing resource can be queried

– Standardized argument marshalling, function calls, etc.

• Platform and language independent

• Object Management Group (omg.org) 
– Version 3.0 released in 2003

• CORBA Real-Time 

• Adds RT scheduling services to CORBA

• Enables (but does not explicitly provide) load balancing
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Embedded Software Component Sources
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Software Component Selection Details (1)

• Develop internally or externally?

• Acceptable cost to develop or acquire?

• Source code or black-box, object-only module?

• Well-documented?

• Standard call specifications?

• Specific to a particular operating system or linker?

• Specific to a particular hardware component?

• E.g., device drivers

• Sufficiently small code and data footprint?
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Software Component Selection Details (2)

• Performance critical?  Reliable?

• Optimized for this system?

• Configurable?  

• Debugging information and tool support?

• Module-level tests available?

• Run-time dependence upon other modules?

• Predictable workload characteristics?

• Inter-process/inter-processor communications?

• Short learning curve?
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Component Development & Acquisition

• Hardware abstraction layer (HAL) designed and 
developed early in process

• Supports unit-level hardware debug

• Defines virtual machine for application software

• Enables bit-accurate C models to support performance 
modeling and software development

• Application-level software components often developed 
and partially debugged on general-purpose hardware 
before moving to target architecture

• Using bit-accurate C HW models underneath HAL

• IP acquisition may be slow due to business issues
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Regression Testing

• Regression testing is crucial at each level of software 
development and integration

• Unit, subsystem, and system level

• Detect new design errors, deviations quickly
– Don’t go backwards

• Must be run frequently (i.e., daily)

• Goal is to maintain conformance with the gold model 
throughout the design

• Comparing results at each level of design not easy

• Behavioral don’t-cares vs. explicit values at lower levels

• Increasing time accuracy at lower levels also troublesome
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Unit-Level Hardware/Software Integration

• Unit-level power-on initialization software

• Execute and profile individual software component on its 
target hardware or a model of same

• Debugging hardware, HAL, and software simultaneously

• First meaningful opportunity to assess performance

• Iterate until software component is “completely” debugged

• Execute and profile all software components residing on 
a single target processor

• Assess multi-tasking overhead

• Local busy-waiting on resources or hardware interrupts

• Reassess resource requirements
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Subsystem Software Integration

• Typically addresses specific functionality in comparative 
isolation

• May cover a single processor and the hardware 
resources it manages directly

• First opportunity to test and debug HAL with application 
software

• Provides basis for evaluating performance estimates at 
the subsystem level

• Reflects overhead (e.g. busy-waiting, interrupt servicing) 
not reflected in application-only or unit-level testing

• Enables initial programming and code-tuning for real-time 
execution
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Subsystem Decomposition Example

• Enables specific function-level debug and testing

• Requires cleanly separable hardware components and 
interfaces
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System Software Integration

• Full system and application-level integration and test

• Mixture of canned tests and real-world workloads

• Extensive regression tests absolutely necessary

• Initially based on simulation or emulation platforms

• Provides opportunity for early integration, detection of 
design defects

• Too slow for long runs, operating system execution, etc.

• Culminates with execution on real silicon

• Transition to acceptance testing

• All regression tests pass

• Random, real workloads behave as expected
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System-Level Debug

• Performance measurement and tuning

• Deadlock avoidance verification

• Still not a proof

• Real-time schedule tuning

• Refine interrupt versus polling tradeoffs and decisions

• Error detection and recovery

• Transition to acceptance testing

• All regression tests pass

• Random, real workloads behave as expected

EE382M.20: SoC Design, Lecture 15 © 2018 A. Gerstlauer 27© S. Smith

Multi-Processor/Multi-Core Debug

• Requires cooperating debug tool instances

• No common API means a sole-source debugger (for now)

• Single processor breakpoints

• Other processors may halt or continue execution on 
breakpoints, based on user preferences

• Precise timing usually impossible, especially with multiple 
clock speeds/domains

• Synchronized single-stepping for repeatable results

• Multiple processor breakpoints

• AND, OR, XOR, IF-THEN-ELSE conditionals combine 
single breakpoint triggers

• Repeatability difficult without synchronized single-stepping
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Advanced Multi-Processor Debug

• Watchpoints for data-triggered execution breaks

• May require hardware assist

• Multiple watchpoints

• Consistent user-interface

• Falls out of sole-source multiprocessor debugger

• Industry needs standardized debugger API, function set

• Vendors currently prefer closed environments, which may 
be fine until a processor is selected that is not supported 
by the debugger vendor

• Adapting debugger to configurable or novel processor 
architectures not easy
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Lecture 15: Conclusions 

• Software integration must be addressed at every phase of 
the design process

• Definitely NOT merely a back-end task

• May be key driver of system architectural design, 
processor selection, etc.

• Already often the single most costly aspect of system 
design, current trends will continue to amplify the 
importance of system integration issues, particularly for 
software.

• Software components from a growing array of sources

• Rapidly expanding number of components

• Multiple operation modes exacerbate the testing task
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