
EE382M.20: System-on-Chip (SoC) Design Lecture 15

© 2018 A. Gerstlauer 1

EE382M.20:
System-on-Chip (SoC) Design

Andreas Gerstlauer
Electrical and Computer Engineering

University of Texas at Austin
gerstl@ece.utexas.edu

Lecture 15 – System Software Integration

Sources:
Steven Smith

Lecture 15: Outline

• Some Definitions

• Introduction: The Expanding Challenge

• Phases of System Software Integration

• From Requirements to Software Components
Identification

• Software Selection Issues during Architectural Design

• Unit-Level Integration and Software Performance
Assessment

• Subsystem and Functional-Level Software Integration

• System-Level Software Integration and Testing

• Conclusions

EE382M.20: SoC Design, Lecture 15 © 2018 A. Gerstlauer 2© S. Smith

EE382M.20: System-on-Chip (SoC) Design Lecture 15

© 2018 A. Gerstlauer 2

Definitions

• System Integration: The task of creating a properly
functioning system from its constituent components

• Hardware

• Firmware

• Software

• System Hardware Integration

• Are the components wired together correctly?

• System Software Integration

• Typically assumes hardware integration is largely complete

• The final step before acceptance testing and deployment

EE382M.20: SoC Design, Lecture 15 © 2018 A. Gerstlauer 3© S. Smith

System Engineering Process

EE382M.20: SoC Design, Lecture 15 © 2018 A. Gerstlauer 4

Requirements
Definition

System
Specification

System
Design

Detailed
Design

Module Design
and Coding

Module/Unit
Test

Subsystem
Integration

Subsystem
Test

System
Integration

System Test &
Verification

Acceptance
Test

System
Deployment

Acceptance
Test Plan

System
Integration
Test Plan

Subsystem
Integration
Test Plans

Of course,
iteration
occurs at all
levels and
among most
levels…

© S. Smith

EE382M.20: System-on-Chip (SoC) Design Lecture 15

© 2018 A. Gerstlauer 3

The Good Old Days

• Software developed internally

• Design-specific software

• No consideration given to software reuse

• Direct access to software design, source code and developer

• Uni-processors predominate

• No inter-processor and limited inter-process communications

• Small, simple real-time operating systems (RTOS)

• Easy porting and configuration

• Comparatively simple debugging and testing

• Single-function systems

EE382M.20: SoC Design, Lecture 15 © 2018 A. Gerstlauer 5© S. Smith

Today: Life Gets Complicated

• Software components gathered from many sources

• Heterogeneous multi-processors

• Customized, configurable processors

• Memory management units (MMUs)

• Mix of operating systems: RTOS and Linux

• Mix of functions and operating modes

• Browser-based configuration

• Multiple debuggers, no interoperability among tools

• Enormously challenging testing implications

EE382M.20: SoC Design, Lecture 15 © 2018 A. Gerstlauer 6© S. Smith

EE382M.20: System-on-Chip (SoC) Design Lecture 15

© 2018 A. Gerstlauer 4

Implications for Software Integration

• System software integration issues must be addressed
early and continually throughout the design!

• Tool and software component selection must be made in
the context of system-level design and development
considerations.

• Debugger interoperability increasingly critical

• Integrated Development Environments (IDE) may have
long learning curves

• Compilers each have their own idiosyncrasies

• Disparate operating systems don’t often play well together

• No longer just a “back-end” task

EE382M.20: SoC Design, Lecture 15 © 2018 A. Gerstlauer 7© S. Smith

System Software Design & Integration Phases

• Identification of required software functions

• Begins during requirements specification

• Architecture decisions may add or remove requirements

• Mapping of required functions to candidate components

• Analysis of trade-offs in software component selection

• Initial software component selection or specification

• Performance analysis, verification

• Subsystem integration, performance analysis, verification

• System integration, performance analysis, verification

EE382M.20: SoC Design, Lecture 15 © 2018 A. Gerstlauer 8© S. Smith

EE382M.20: System-on-Chip (SoC) Design Lecture 15

© 2018 A. Gerstlauer 5

System Engineering Process

EE382M.20: SoC Design, Lecture 15 © 2018 A. Gerstlauer 9

Requirements
Definition

System
Specification

System
Design

Detailed
Design

Module Design
and Coding

Module/Unit
Test

Subsystem
Integration

Subsystem
Test

System
Integration

System Test &
Verification

Acceptance
Test

System
Deployment

Acceptance
Test Plan

System
Integration
Test Plan

Subsystem
Integration
Test Plans

Identify
Required
Software
Functions

Identify
Candidate
Software
Components

Analysis
of Software
Design
Trade-offs

Software
Performance
Analysis &
Verification

Subsystem
Software
Performance
Analysis &
Verification

System
Performance
Analysis &
Verification

© S. Smith

Identifying Required Software Functions

• Embedded system design often begins with an
executable specification, or a high-level language (HLL)
application
• Or, increasingly, two, or three…
• Natural starting place for software function identification

• Initial hardware/software partitioning during architectural
design defines required software functions
• This is a highly iterative process as performance

bottlenecks and other design criteria come into focus

• Some software functions are not performance critical, but
may demand significant flexibility
• E.g., the Internet refrigerator and its embedded http server

• End-user or OEM/VAR customization requirements also
dictate required software functionality. Java, anyone?

EE382M.20: SoC Design, Lecture 15 © 2018 A. Gerstlauer 10© S. Smith

EE382M.20: System-on-Chip (SoC) Design Lecture 15

© 2018 A. Gerstlauer 6

System Software Elements

EE382M.20: SoC Design, Lecture 15 © 2018 A. Gerstlauer 11

System
Application 1

System
Application 2

Embedded Operating System(s)

System
Application n

Hardware Abstraction
Layer (HAL) Drivers

External
Interface

Boot
Loader(s)

Custom
IPC

…

Interfaces to:
- Hardware Accelerators
- Real-time clocks
- IPC control hardware

(e.g., semaphores)
- Boot hardware (flash)

Provides inter-processor messaging,
synchronization, and notification functions

© S. Smith

Identifying Candidate Software Elements

• Map required software functions into specific candidate
components

• Buy, adapt or develop?

• Requires consideration of all design criteria, not to mention
business issues

 Difficult to evaluate early in the project
 But also difficult to revisit later in the effort

• Operating system or executive selections are a key step

• A uniform operating system in a multi-processor SoC is
extremely desirable, but not always feasible

EE382M.20: SoC Design, Lecture 15 © 2018 A. Gerstlauer 12© S. Smith

EE382M.20: System-on-Chip (SoC) Design Lecture 15

© 2018 A. Gerstlauer 7

Operating System Selection Criteria

• Real-time capabilities
• “Hard” real-time: guaranteed maximum latency for entering

interrupt service routines (ISRs)
• “Soft” real-time: no guarantees, but fairly quick response

to real-time events (not for pacemakers, flight control, etc.)

• General-purpose features (e.g., file system, web server)

• Operating system acquisition and unit costs

• Inter-process and -processor communication support

• Reliability, Quality

• Resource requirements
• Memory footprint of program and data
• Boot, power-on-self-test (P.O.S.T.) mechanisms

EE382M.20: SoC Design, Lecture 15 © 2018 A. Gerstlauer 13© S. Smith

Latency in Real-Time Applications

EE382M.20: SoC Design, Lecture 15 © 2018 A. Gerstlauer 14

time

Interrupt

Interrupt
Service
Routine
Starts

Signal
Operating
System

Control
Task
Awakens

Control
Calculations
Complete

HW Response ISR Context Switch Control Calculations

t0 t1 t2 t3
Interrupt Latency

Preemption Latency
Minimum
RT Period

© S. Smith

EE382M.20: System-on-Chip (SoC) Design Lecture 15

© 2018 A. Gerstlauer 8

Embedded Operating System Trends

• Linux - “Hard” real-time embedded Linux versions exist,
but worst-case response times may still be too long

• Real-Time Application Interface (RTAI.org)

• Linux Extensions for Real Time (LXRT) – built on RTAI

• Mainline Linux kernel real-time patches (RT-Preempt)

• Linux “on top” of a hard RTOS or kernel (RTLinux)

• Linux executes only when the RTOS is otherwise idle

• Fine for configuration and other non-critical functions

• Highly variable performance during normal system
operation; Linux may be starved indefinitely by the RTOS

• Growing support ecosystem for embedded Linux

• Porting, configuring still a non-trivial effort

EE382M.20: SoC Design, Lecture 15 © 2018 A. Gerstlauer 15© S. Smith

Real-Time Linux

• Linux with Real-Time Application Interface

• RTAI is hard real-time kernel that runs Linux in its idle loop

• Real-time applications run in kernel mode

• Linux with RTAI and Linux Extensions for Real-Time

• LXRT Extends RTAI to support Linux real-time user mode
applications

– Enables use of Linux memory management

– Pairs a kernel mode RT task with the user mode task

• Long paths in Linux kernel getting shorter and shorter

• Real-time extensions have now merged with core kernel

• Tuning the kernel using scheduling policy selection

EE382M.20: SoC Design, Lecture 15 © 2018 A. Gerstlauer 16© S. Smith

EE382M.20: System-on-Chip (SoC) Design Lecture 15

© 2018 A. Gerstlauer 9

Real-Time Middleware

• CORBA - Common Object Request Broker Architecture

• Standard mechanism for medium to coarse grain
parallelism based on objects

– Separation of object interface from implementation

– Services available on a computing resource can be queried

– Standardized argument marshalling, function calls, etc.

• Platform and language independent

• Object Management Group (omg.org)
– Version 3.0 released in 2003

• CORBA Real-Time

• Adds RT scheduling services to CORBA

• Enables (but does not explicitly provide) load balancing

EE382M.20: SoC Design, Lecture 15 © 2018 A. Gerstlauer 17© S. Smith

Embedded Software Component Sources

EE382M.20: SoC Design, Lecture 15 © 2018 A. Gerstlauer 18

New,
Internally

Developed

Internally
Developed,

Reused

New,
Externally
Developed

COTS
Components
with Support

COTS
Components
w/o Support

Open
Source

Components

Cooperative
Development

SoC

Open
Source
RTOS

COTS
RTOS

Embedded
Linux

OEM/VAR/
End-User

Developed

© S. Smith

EE382M.20: System-on-Chip (SoC) Design Lecture 15

© 2018 A. Gerstlauer 10

Software Component Selection Details (1)

• Develop internally or externally?

• Acceptable cost to develop or acquire?

• Source code or black-box, object-only module?

• Well-documented?

• Standard call specifications?

• Specific to a particular operating system or linker?

• Specific to a particular hardware component?

• E.g., device drivers

• Sufficiently small code and data footprint?

EE382M.20: SoC Design, Lecture 15 © 2018 A. Gerstlauer 19© S. Smith

Software Component Selection Details (2)

• Performance critical? Reliable?

• Optimized for this system?

• Configurable?

• Debugging information and tool support?

• Module-level tests available?

• Run-time dependence upon other modules?

• Predictable workload characteristics?

• Inter-process/inter-processor communications?

• Short learning curve?

EE382M.20: SoC Design, Lecture 15 © 2018 A. Gerstlauer 20© S. Smith

EE382M.20: System-on-Chip (SoC) Design Lecture 15

© 2018 A. Gerstlauer 11

Component Development & Acquisition

• Hardware abstraction layer (HAL) designed and
developed early in process

• Supports unit-level hardware debug

• Defines virtual machine for application software

• Enables bit-accurate C models to support performance
modeling and software development

• Application-level software components often developed
and partially debugged on general-purpose hardware
before moving to target architecture

• Using bit-accurate C HW models underneath HAL

• IP acquisition may be slow due to business issues

EE382M.20: SoC Design, Lecture 15 © 2018 A. Gerstlauer 21© S. Smith

Regression Testing

• Regression testing is crucial at each level of software
development and integration

• Unit, subsystem, and system level

• Detect new design errors, deviations quickly
– Don’t go backwards

• Must be run frequently (i.e., daily)

• Goal is to maintain conformance with the gold model
throughout the design

• Comparing results at each level of design not easy

• Behavioral don’t-cares vs. explicit values at lower levels

• Increasing time accuracy at lower levels also troublesome

EE382M.20: SoC Design, Lecture 15 © 2018 A. Gerstlauer 22© S. Smith

EE382M.20: System-on-Chip (SoC) Design Lecture 15

© 2018 A. Gerstlauer 12

Unit-Level Hardware/Software Integration

• Unit-level power-on initialization software

• Execute and profile individual software component on its
target hardware or a model of same

• Debugging hardware, HAL, and software simultaneously

• First meaningful opportunity to assess performance

• Iterate until software component is “completely” debugged

• Execute and profile all software components residing on
a single target processor

• Assess multi-tasking overhead

• Local busy-waiting on resources or hardware interrupts

• Reassess resource requirements

EE382M.20: SoC Design, Lecture 15 © 2018 A. Gerstlauer 23© S. Smith

Subsystem Software Integration

• Typically addresses specific functionality in comparative
isolation

• May cover a single processor and the hardware
resources it manages directly

• First opportunity to test and debug HAL with application
software

• Provides basis for evaluating performance estimates at
the subsystem level

• Reflects overhead (e.g. busy-waiting, interrupt servicing)
not reflected in application-only or unit-level testing

• Enables initial programming and code-tuning for real-time
execution

EE382M.20: SoC Design, Lecture 15 © 2018 A. Gerstlauer 24© S. Smith

EE382M.20: System-on-Chip (SoC) Design Lecture 15

© 2018 A. Gerstlauer 13

Subsystem Decomposition Example

• Enables specific function-level debug and testing

• Requires cleanly separable hardware components and
interfaces

EE382M.20: SoC Design, Lecture 15 © 2018 A. Gerstlauer 25

Ethernet System
Control

Audio
Processor

System
Memory

Video Frame
Memory

Bitstream
Processor

Video Ctrl.
Processor

External Host
Interface

HW 1 HW 2 HW n…
:= Subsystem of interest

© S. Smith

System Software Integration

• Full system and application-level integration and test

• Mixture of canned tests and real-world workloads

• Extensive regression tests absolutely necessary

• Initially based on simulation or emulation platforms

• Provides opportunity for early integration, detection of
design defects

• Too slow for long runs, operating system execution, etc.

• Culminates with execution on real silicon

• Transition to acceptance testing

• All regression tests pass

• Random, real workloads behave as expected

EE382M.20: SoC Design, Lecture 15 © 2018 A. Gerstlauer 26© S. Smith

EE382M.20: System-on-Chip (SoC) Design Lecture 15

© 2018 A. Gerstlauer 14

System-Level Debug

• Performance measurement and tuning

• Deadlock avoidance verification

• Still not a proof

• Real-time schedule tuning

• Refine interrupt versus polling tradeoffs and decisions

• Error detection and recovery

• Transition to acceptance testing

• All regression tests pass

• Random, real workloads behave as expected

EE382M.20: SoC Design, Lecture 15 © 2018 A. Gerstlauer 27© S. Smith

Multi-Processor/Multi-Core Debug

• Requires cooperating debug tool instances

• No common API means a sole-source debugger (for now)

• Single processor breakpoints

• Other processors may halt or continue execution on
breakpoints, based on user preferences

• Precise timing usually impossible, especially with multiple
clock speeds/domains

• Synchronized single-stepping for repeatable results

• Multiple processor breakpoints

• AND, OR, XOR, IF-THEN-ELSE conditionals combine
single breakpoint triggers

• Repeatability difficult without synchronized single-stepping

EE382M.20: SoC Design, Lecture 15 © 2018 A. Gerstlauer 28© S. Smith

EE382M.20: System-on-Chip (SoC) Design Lecture 15

© 2018 A. Gerstlauer 15

Advanced Multi-Processor Debug

• Watchpoints for data-triggered execution breaks

• May require hardware assist

• Multiple watchpoints

• Consistent user-interface

• Falls out of sole-source multiprocessor debugger

• Industry needs standardized debugger API, function set

• Vendors currently prefer closed environments, which may
be fine until a processor is selected that is not supported
by the debugger vendor

• Adapting debugger to configurable or novel processor
architectures not easy

EE382M.20: SoC Design, Lecture 15 © 2018 A. Gerstlauer 29© S. Smith

Lecture 15: Conclusions

• Software integration must be addressed at every phase of
the design process

• Definitely NOT merely a back-end task

• May be key driver of system architectural design,
processor selection, etc.

• Already often the single most costly aspect of system
design, current trends will continue to amplify the
importance of system integration issues, particularly for
software.

• Software components from a growing array of sources

• Rapidly expanding number of components

• Multiple operation modes exacerbate the testing task

EE382M.20: SoC Design, Lecture 15 © 2018 A. Gerstlauer 30© S. Smith

