
EE382M.20: System-on-Chip (SoC) Design Lecture 4

© 2018 A. Gerstlauer 1

EE382M.20:
System-on-a-Chip (SoC) Design

Andreas Gerstlauer
Electrical and Computer Engineering

University of Texas at Austin
gerstl@ece.utexas.edu

Lecture 4 – SoC Performance Analysis
Sources:

Prof. Jacob Abraham, UT Austin
Prof. Lothar Thiele, ETH Zurich

Prof. Reinhard Wilhelm, Saarland Univ.

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 2

Lecture 4: Outline

• SoC design flow

• Iterative design convergence

• Requirement & performance analysis

• Algorithm analysis

• Component-level estimation

• System-level estimation

EE382M.20: System-on-Chip (SoC) Design Lecture 4

© 2018 A. Gerstlauer 2

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 3

SoC Design Flow

MRD

PRD

Map, Model &
Simulate in

SPW or Matlab or C
or C++

Mapping to
Platform or

Components
Complete?

Start

Modify
Model?

Analyze results

Metrics
Met?

Freeze
Architecture

MRD
Met?

Done

Analyze results

Functionality
Met?

System
BOM Costs

Met?

Power
Req. Met?

Schedule
Req. Met?

Platform
Req. Met?

Return

No

No

No

No

No

No

No

No

Yes
Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

Yes

Design
Convergence and

Verification
Loop

Product
Validation

Loop

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 4

Design Convergence

Front End DesignFront End Design ImplementationImplementation

Rapid Exploration Rapid Traversal

O

p
ti

m
iz

at
io

n
 S

o
lu

ti
o

n
s

Design Converges

Reduced convergence time due to minimal data

Convergence time increases due to more design data

Reduced convergence time due to reduced solution space

Convergence time increases due to transition phase

Reduced convergence time due to reduced solution space

EE382M.20: System-on-Chip (SoC) Design Lecture 4

© 2018 A. Gerstlauer 3

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 5

Performance of a System

• Depends on many factors

• System design (algorithms and data structures)

• Implementation (code)

• Execution platform architecture

• The workload to which it is subjected

• The metric used in the evaluation

 Interactions between these factors

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 6

 Simulation (dynamic) vs. analysis (static)

• Tightness of bounds, under- vs. over-estimation

Predictability

w.c. guarantee

w.c. performance

0 Lower Best
case

Worst
case

Upper
boundbound

Performance Analysis

Variation of actual execution times

EE382M.20: System-on-Chip (SoC) Design Lecture 4

© 2018 A. Gerstlauer 4

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 7

Evaluating a Design

• Algorithm level
• Analysis of complexity
• Identify bottlenecks, evaluate tradeoffs

• Component level
• Software partition

– Profiling, measurement
– Simulation, tracing
– Power/performance/… estimation

• Hardware partition
– Modeling & estimation

• System level
• Virtual platform prototyping
• Physical prototyping

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 8

Algorithm Analysis

• Theoretical complexity analysis
• O() notation (“order-of”)
• Example: Sorting

– “Bubble” sort
– Merge sort

• Example: Fourier transform
– Discrete Fourier transform
– Fast Fourier transform

• Analysis of code
• Example: BCH* encoding

– Code in C
– Find the number of XOR and AND operations performed in the loop as a

function of k
– Assume length is 1024, and in any bit position, 0 and 1 are equally likely

* A BCH code is a multilevel, cyclic, error-correcting, variable-length digital code used to correct multiple random error
patterns. BCH codes may also be used with multilevel phase-shift keying whenever the number of levels is a prime
number or a power of a prime number.

EE382M.20: System-on-Chip (SoC) Design Lecture 4

© 2018 A. Gerstlauer 5

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 9

encode_bch()
{
register int i, j;
register int feedback;
for (i = 0; i < length - k; i++)

bb[i] = 0;
for (i = k - 1; i >= 0; i--) {

feedback = data[i] ^ bb[length - k - 1];
if (feedback != 0) {

for (j = length - k - 1; j > 0; j--)
if (g[j] != 0)

bb[j] = bb[j - 1] ^ feedback;
else

bb[j] = bb[j - 1];
bb[0] = g[0] && feedback;

} else {
for (j = length - k - 1; j > 0; j--)

bb[j] = bb[j - 1];
bb[0] = 0;

}
}
}

BCH Code

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 10

Code Profiling

• Execute code on physical or simulated machine

• (Cross-)Compile down to binary

• Run on real processor or instruction-set simulator
– Benchmarks and input data test vectors

• Instrument code and collect metrics at runtime

• Include effect of processor instruction set and architecture
– For the given runtime platform (not necessarily the intended target)

• Many profiling tools for data gathering and analysis
– gprof, etc.

• Various interfaces, levels of automation, and approaches to
information presentation

• A lot of work in the high performance computing community

 Effect of instrumentation on measured results?

EE382M.20: System-on-Chip (SoC) Design Lecture 4

© 2018 A. Gerstlauer 6

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 11

Instrumentation Techniques
• Program instrumentation techniques

• Manual: Programmer inserted directives
• Automatic: No direct user involvement

– Sampling [gprof]
– Binary rewriting [PIN]
– Dynamic Instrumentation

• Hardware instrumentation techniques
• Timers, memory system performance, processor usage, etc.
• Available mostly through special registers or memory mapped location

– Example: Pentium Pro MSRs (model (machine)-specific registers)
» Counters for clock cycles, memory read/write, L1 cache misses, pipeline flushes, etc.

• Hardware assisted trace generation

• Operating system instrumentation techniques
• Behavior of virtual memory, file system, file cache, etc.
• Access via APIs

• Network instrumentation techniques
• Passive, e.g. RMON protocol packet header fields for monitoring
• Active, e.g. ping, NWS in grid style computing.

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 12

Darknet Profiling

• PC-based reference code
• Designed to run in a Linux environment, but in this course,

we are going to make it run on an embedded processor
(ARM Cortex-A9)

 Profile in both physical (board) and simulated ARM env.
– Measure performance and identify bottlenecks

• Board profiling (Lab 1)
• gprof measures where program spends its time and

which functions call other functions while it was executing
– Flat profile: total amount of time program spends executing each function
– Call graph: how much time was spent in each function and its children

• Virtual platform profiling (Lab 2)
• Run gprof in virtual platform prototype

– Flat and call graph profiles
– Timing accuracy of virtual platform? (QEMU timing model!)

EE382M.20: System-on-Chip (SoC) Design Lecture 4

© 2018 A. Gerstlauer 7

Component Simulation

• Cycle-accurate

• Describe micro-architecture/RTL in C

• Interpreted instruction-set simulation

• Cycle-accurate/-approximate

• Functionality/behavior only

• Compiled ISS

• Binary translation

• Offline vs. just-in-time (self-modifying code)

• Functional only (no/rough timing, e.g. CPI=1)

• Source-level/host-compiled simulation

• C model describing functionality/behavior

• Back-annotate with timing and other metrics

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 13

CPU

HAL

ISS

RTOS

App.

I/O

B
in

ar
y

Arch.
State

Quick EMUlator (QEMU)

• Open-source, binary-translating ISS [Ballard’xx]

• Emulates a variety of architectures (x86, ARM, PowerPC)

• Stand-alone or full-system model (peripherals to boot OS)

Source: M. Gilgor, N. Fournel, F. Pétrot, “Using Binary Translation in Event Driven Simulation for Fast and Flexible MPSoC Simulation,”
CODES+ISSS'09

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 14

EE382M.20: System-on-Chip (SoC) Design Lecture 4

© 2018 A. Gerstlauer 8

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 15

Estimation

• Static analysis and prediction of performance
• Need for hard guarantees in embedded space

– Reliability, safety, etc.

 Worst-Case Execution Time (WCET) estimation
 Tightness of bounds?

• Analysis of modern processors is very difficult
• Dynamic effects

– Pipeline introduces dependencies on input sequence (instructions)
– Cache effects
– Branch prediction

• Hazards lead to timing accidents & penalties
– Structural (resource being used by another)
– Data (dependence for data calculations)
– Control (calculating next address – branches, interrupts)

Overall WCET Approach

 Compute upper bounds along the program structure
• Programs are hierarchically structured
• Compute the upper bound for a construct from the upper

bounds of its constituents
• Basic blocks of code at the leaves of the hierarchy

• Micro-architecture analysis
• Abstract interpretation of code in basic blocks
• Determines WCET for each basic block (in contexts)
• Exclude as many timing accidents as possible

• Worst-case path determination
• Control flow graph (CFG) of basic blocks
• Map to an integer linear program
• Determines upper bound and associated path

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 16

EE382M.20: System-on-Chip (SoC) Design Lecture 4

© 2018 A. Gerstlauer 9

Conditional Statements

A  if B
then A1
else A2

B

A1 A2

yes no

Constituents of A:
1. condition B
2. statements A1 and A2

wcet(A) =

wcet(B) +

max(wcet(A1),
wcet(A2))

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 17

Loops

i  1

i ≤ 100

A1

yes

no

wcet(A) =
wcet(i  1) +
100  (wcet(i ≤ 100) +

wcet(A1)) +
wcet(i ≤ 100)

A  for i  1 to 100 do A1

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 18

EE382M.20: System-on-Chip (SoC) Design Lecture 4

© 2018 A. Gerstlauer 10

aiT Tool

CFG Builder

Value Analyzer

Cache/Pipeline
Analyzer

Executable
program

Static Analyses

ILP-Generator

LP-Solver

Evaluation

Path Analysis

Micro-architecture
Analysis

Worst-case Path
Determination

Micro-
Architecture

Timing
Information

Loop-
Bounds

WCET-
Visualization

Control-Flow-Graph

Loop Unfolding

to improve WCET bounds for loops

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 19

Program Path Analysis

• Program Path Analysis
• Which sequence of instructions is executed in the worst-

case (longest runtime)?
• Problem: the number of possible program paths grows

exponentially with the program length

• Model
• We know the upper bounds (number of cycles) for each

basic block from static analysis
• Number of loop iterations must be bounded

• Concept
• Transform structure of CFG into a set of (integer) linear

equations.
• Solution of the Integer Linear Program (ILP) yields bound

on the WCET.

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 20

EE382M.20: System-on-Chip (SoC) Design Lecture 4

© 2018 A. Gerstlauer 11

Control Flow Graph (CFG)

what_is_this {
1 read (a,b);
2 done = FALSE;
3 repeat {
4 if (a>b)
5 a = a-b;
6 elseif (b>a)
7 b = b-a;
8 else done = TRUE;
9 } until done;
10 write (a);

}

1

2

4

6

7 8

9

5

10

a=b

a>b

a<b

a<=b

done!done

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 21

Control Flow Graph (CFG)

• The nodes are the basic blocks

• Single point of entry & exit

• Instructions in block always executed together

i := 0
t2 := 0

L t2 := t2 + i
i := i + 1
if i < 10 goto L
x := t2 i < 10

i >= 10

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 22

EE382M.20: System-on-Chip (SoC) Design Lecture 4

© 2018 A. Gerstlauer 12

Calculation of the WCET

• Definition: A program consists of N basic blocks, where
each basic block Bi has a worst-case execution time ci

and is executed for exactly xi times. Then, the WCET is
given by

• The ci values are determined using static analysis.

• How to determine xi ?
• Structural constraints given by the program structure

• Additional constraints provided by the programmer (bounds for
loop counters, etc.; based on knowledge of the program
context)





N

i
ii xcWCET

1

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 23

Example

/* k >= 0 */
s = k;
WHILE (k < 10) {

IF (ok)
j++;

ELSE {
j = 0;
ok = true;

}
k ++;

}
r = j;

s = k;

WHILE (k<10)

if (ok)

j++; j = 0;
ok = true;

k++;

r = j;

B1

B2

B3

B4 B5

B6

B7

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 24

EE382M.20: System-on-Chip (SoC) Design Lecture 4

© 2018 A. Gerstlauer 13

Structural Constraints

s = k;

WHILE (k<10)

if (ok)

j++; j = 0;
ok = true;

k++;

r = j;

B1

B2

B3

B4 B5

B6

B7

Flow equations:

d1

d2
d1 = d2 = x1

d3

d8

d9

d2 + d8 = d3 + d9 = x2

d4 d5

d3 = d4 + d5 = x3

d6

d4 = d6 = x4

d7

d5 = d7 = x5

d6 + d7 = d8 = x6

d10

d9 = d10 = x7

1

2

3

4
5

6

7

d9 = d10 = x7

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 25

Additional Constraints

s = k;

WHILE (k<10)

if (ok)

j++; j = 0;
ok = true;

k++;

r = j;

B1

B2

B3

B4 B5

B6

B7

d1

d2

d3

d4 d5

d6 d7
d8d9

d10

Loop is executed for at most
10 times:

x3 <= 10 · x1

B5 is executed for at most one
time:

x5 <= 1 · x1

1

2

3

4
5

6

7
© 2018 A. Gerstlauer 26EE382M.20: SoC Design, Lecture 4

EE382M.20: System-on-Chip (SoC) Design Lecture 4

© 2018 A. Gerstlauer 14

Integer Linear Program (ILP)

• ILP with structural and additional constraints

 Apply standard ILP solver
• NP-complete, i.e. exponential complexity!

}

{

...1,

1max

...

)()(

1
1













Nixdd

dxcWCET

i
Boutk

k
Binj

j

N

i
ii

ii
structural
constraints

program is executed
once

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 27

Overview

CFG Builder

Value Analyzer

Cache/Pipeline
Analyzer

Executable
program

Static Analyses

ILP-Generator

LP-Solver

Evaluation

Path Analysis

Micro-architecture
Analysis

Worst-case Path
Determination

Micro-
Architecture

Timing
Information

Loop-
Bounds

WCET-
Visualization

Control-Flow-Graph

Loop Unfolding

to improve WCET bounds for loops

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 28

EE382M.20: System-on-Chip (SoC) Design Lecture 4

© 2018 A. Gerstlauer 15

Value Analysis

• Motivation:
• Provide access information to data-cache/pipeline analysis
• Detect infeasible paths
• Derive loop bounds

• Method: calculate intervals at all program points, i.e.
lower and upper bounds for the set of possible values
occurring in the machine program (addresses, register
contents, local and global variables)

 Abstract interpretation (AI)
• Semantics-based method for static program analysis
• Perform the program's computations using value

descriptions or abstract values in place of the concrete
values, start with a description of all possible inputs

• Supports correctness proofs

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 29

Value Analysis

• Intervals are computed along
the CFG edges

• At joins, intervals are „unioned“

D1: [-2,+2] D1: [-4,0]

D1: [-4,+2]

move #4,D0

add D1,D0

move (A0,D0),D1

D1:[-4,4], A0:[0x1000,0x1000]

D0:[4,4], D1:[-4,4],
A0:[0x1000,0x1000]

D0:[0,8], D1:[-4,4],
A0:[0x1000,0x1000]

access [0x1000,0x1008]
Which address is accessed here?

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 30

EE382M.20: System-on-Chip (SoC) Design Lecture 4

© 2018 A. Gerstlauer 16

Caches

• Caches are used, because

• Speed gap between CPU and main memory

 Fast but expensive on-chip memory in between

• Every memory access goes through the cache

• Block m containing a is in the cache (hit):
request for a is served in the next cycle.

• Block m is not in the cache (miss):
m is transferred from main memory to the cache,
m may replace some block in the cache,
request for a is served ASAP while transfer still continues.

• Several replacement strategies: LRU, PLRU, FIFO,...
determine which line to replace.

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 31

Static Cache Analysis

• Abstraction

• Sets of memory blocks in single cache lines
– From values to locations, ignoring arithmetic

 Must Analysis
• For each program point (and calling context), find out

which blocks are in the cache
• Determines safe information about cache hits. Each

predicted cache hit reduces WCET.

 May Analysis
• For each program point (and calling context), find out

which blocks may be in the cache. Complement says what
is not in the cache

• Determines safe information about cache misses. Each
predicted cache miss increases BCET.

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 32

EE382M.20: System-on-Chip (SoC) Design Lecture 4

© 2018 A. Gerstlauer 17

Cache with LRU: Must Analysis

x
y
t
z

s
x
y
t

s
x
t
y

x
t
y
s

concrete

abstract

“young”

“old”

Age[access s]

{ x }
{ }
{ y, t }
{ }

{ s }
{ x }
{ }
{y, t}

[access s]

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 33

Must Analysis: Join

{ a }
{ }
{ c, f }
{ d }

{ c }
{ e }
{ a }
{ d }

{ }
{ }
{ a, c }
{ d }

“intersection + maximal age”

Join (must)

Interpretation:
memory block a is definitively in the
(concrete) cache => always hit

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 34

EE382M.20: System-on-Chip (SoC) Design Lecture 4

© 2018 A. Gerstlauer 18

Cache with LRU: May Analysis

x
t
z
y

s
x
t
z

s
t
y
x

t
y
x
s

concrete

abstract

“young”

“old”

Age[access s]

{ x,t }
{ y,s }
{ z }
{ }

{ s }
{ x, t }
{ y, z }
{ }

[access s]

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 35

May Analysis: Join

{ a }
{ }
{ c, f }
{ d }

{ c }
{ e }
{ a }
{ d }

{ a, c }
{ e }
{ f }
{ d }

“union + minimal age”

Join (may)

Interpretation:
all blocks may be in the cache; none is
definitely not in the cache.

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 36

EE382M.20: System-on-Chip (SoC) Design Lecture 4

© 2018 A. Gerstlauer 19

Cache Analysis for WCET

• Information about cache contents sharpens timings

.

.

.

ref to s
.
.
.

tmiss

thit

if s is in must-cache:
tWCET = thit

otherwise
tWCET = tmiss

if s is in may-cache:
tBCET = thit

otherwise
tBCET = tmiss

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 37

Cache Analysis Contexts

• Cache contents depends on the context

• Calls and loops

• First iteration loads the cache

• Intersection looses most of the
information

• Distinguish as many contexts as useful

• 1 unrolling for caches

• 1 unrolling for branch prediction (pipeline)

while cond do

join (must)

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 38

EE382M.20: System-on-Chip (SoC) Design Lecture 4

© 2018 A. Gerstlauer 20

Overview

CFG Builder

Value Analyzer

Cache/Pipeline
Analyzer

Executable
program

Static Analyses

ILP-Generator

LP-Solver

Evaluation

Path Analysis

Micro-architecture
Analysis

Worst-case Path
Determination

Micro-
Architecture

Timing
Information

Loop-
Bounds

WCET-
Visualization

Control-Flow-Graph

Loop Unfolding

to improve WCET bounds for loops

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 39

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 40

Motorola ColdFire 5307 Pipeline

IC1

IED

IC2

IB

EX

SST

IAG

B
U

S
 U

N
IT

set(a)/stop

cancel

cancel

next

wait

wait

wait

wait

wait

wait

read(A)/write(A)

fetch(a)

addr(a)

await(a)

put(a)

instr

start

store

hold

code(a)

data/hold

EE382M.20: System-on-Chip (SoC) Design Lecture 4

© 2018 A. Gerstlauer 21

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 41

19

No

30

Yes

1

3

1

3

6

6

6

6

41

4

Unit occupied?1-Cache miss? Multicycle? Pending instructions?

Fetch Issue Execute Retire

Execution of Multiply Instruction

Cache analysis: prediction of cache hits on instruction or
operand fetch or store

Static Analysis of Hazards

lwz r4, 20(r1) Hit

Dependency analysis: analysis of data/control hazards

Resource reservation tables: analysis of resource hazards

add r4, r5,r6
lwz r7, 10(r1)
add r8, r4, r4 Operand

ready

IF
EX
M
F

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 42

EE382M.20: System-on-Chip (SoC) Design Lecture 4

© 2018 A. Gerstlauer 22

Abstract Pipeline Execution

• exec (b : basic block, s : abstract pipeline state) t: trace

• Interprets instruction stream of b (annotated with cache
information) starting in state s producing trace t

• length(t) gives number of cycles

• What is abstracted?

• Abstract states may lack information, e.g. about cache
contents

• Assume local worst cases is safe (in the case of no timing
anomalies)

• Traces may be longer (but never shorter) than in reality

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 43

Context

• Starting state for basic block? In particular, if there are
several predecessor blocks?

• Solutions

• Sets of states

• Combine by assuming that local worst case is safe

s2s1
s?

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 44

EE382M.20: System-on-Chip (SoC) Design Lecture 4

© 2018 A. Gerstlauer 23

Summary of WCET Analysis Steps

• Value analysis

• Cache analysis using statically computed effective
addresses and loop bounds

• Pipeline analysis

• Assume cache hits where predicted,

• Assume cache misses where predicted or not excluded.

• Only the “worst” result states of an instruction need to be
considered as input states for successor instructions!

• Path analysis

• Compute final WCET estimate

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 45

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 46

Lecture 4: Outline

 SoC design flow

 Iterative design convergence

• Requirement & performance analysis

Algorithm analysis

Component-level estimation

• System-level estimation

EE382M.20: System-on-Chip (SoC) Design Lecture 4

© 2018 A. Gerstlauer 24

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 47

Processor

Interface

RAM

ROM

Intr

Addr

Data

Concept

System
Development

Implementation

System

The

System Development

• Get the architecture right before
implementation begins

• Best design for system performance
and functionality

Source: CoWare, Inc.

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 48

Hardware

• Processors
• Bus
• Memory
• Peripherals
• Interfaces

Software
• Startup code
• Device drivers
• RTOS
• Application

code

Simulation

Processor

I/F

RAM

ROM

Intr

Addr

Data

Analysis

System

Virtual Platforms

• Virtual prototyping
• Instruction-set simulation in transaction-level model (TLM)

Source: CoWare, Inc.

EE382M.20: System-on-Chip (SoC) Design Lecture 4

© 2018 A. Gerstlauer 25

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer 49

Memory

Hardware

Bus

Software
Instruction

Data

AHB

Int.
ROM

Int.
RAM

IRQ
FIQ

DMA_Int

Master1

Master2

Slave
APB

Input
Device

AHB

APB_cfg

APB

Reset
Ctrl

Clock
Gen.

ARM
Core

DMA
Ctrl

Intr.
Ctrl.

Custom
Peripheral

Architecture Analysis

Source: CoWare, Inc.

