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+ SoC design flow
* lterative design convergence

* Requirement & performance analysis
 Algorithm analysis
« Component-level estimation
» System-level estimation
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Design Convergence

# Optimization Solutions

{_A_\

Front End Design

Reduced convergence time due to minimal data

Convergence time increases due to more design data

f_j%

Implementation

Reduced convergence time due to reduced solution space

Convergence time increases due to transition phase

Reducediconvergence time due to reduced solution space
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Performance of a System

* Depends on many factors
+ System design (algorithms and data structures)
Implementation (code)
Execution platform architecture
The workload to which it is subjected
* The metric used in the evaluation

> Interactions between these factors
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Performance Analysis

Predictability
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Variation of actual execution times

» Simulation (dynamic) vs. analysis (static)
» Tightness of bounds, under- vs. over-estimation
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Evaluating a Design

« Algorithm level
* Analysis of complexity
+ Identify bottlenecks, evaluate tradeoffs

« Component level

» Software partition
— Profiling, measurement
— Simulation, tracing
— Power/performance/... estimation

* Hardware partition
— Modeling & estimation

» System level
+ Virtual platform prototyping
» Physical prototyping
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Algorithm Analysis

» Theoretical complexity analysis
* O() notation (“order-of”)

» Example: Sorting
— “Bubble” sort
— Merge sort

» Example: Fourier transform
— Discrete Fourier transform
— Fast Fourier transform

* Analysis of code

« Example: BCH" encoding
— CodeinC

— Find the number of XOR and AND operations performed in the loop as a
function of k

— Assume length is 1024, and in any bit position, 0 and 1 are equally likely

* A BCH code is a multilevel, cyclic, error-correcting, variable-length digital code used to correct multiple random error
patterns. BCH codes may also be used with multilevel phase-shift keying whenever the number of levels is a prime
number or a power of a prime number.
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BCH Code

encode_bch(Q)
{
register int i, J:
register int feedback;
for (i = 0; 1 < length - k; i++)
bb[i] = 0;
for (i =k - 1; 1 >=0; 1--) {
feedback = data[i] ™ bb[length - k - 1];
if (feedback '= 0) {
for ( = length - k - 1; j > 0; j--)
if (gl = 0)
bb[j] bb[j - 1] ~ feedback;
else
bb[j] = bb[y - 1];
bb[0] = g[0] && feedback;
} else {
for ( = length - k - 1; j > 0; j--)
bb[j] = bb[j - 1];

bb[0] = O;
}
}
}
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Code Profiling

» Execute code on physical or simulated machine
* (Cross-)Compile down to binary

* Run on real processor or instruction-set simulator
— Benchmarks and input data test vectors

* |Instrument code and collect metrics at runtime

* Include effect of processor instruction set and architecture
— For the given runtime platform (not necessarily the intended target)

* Many profiling tools for data gathering and analysis

— gprof, etc.

 Various interfaces, levels of automation, and approaches to

information presentation

+ Alot of work in the high performance computing community

> Effect of instrumentation on measured results?
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Instrumentation Techniques

* Program instrumentation techniques
* Manual: Programmer inserted directives
» Automatic: No direct user involvement

— Sampling [gprof]
— Binary rewriting [PIN]
— Dynamic Instrumentation

* Hardware instrumentation techniques
« Timers, memory system performance, processor usage, etc.

» Available mostly through special registers or memory mapped location

— Example: Pentium Pro MSRs (model (machine)-specific registers)
» Counters for clock cycles, memory read/write, L1 cache misses, pipeline flushes, etc.

» Hardware assisted trace generation

» Operating system instrumentation techniques
» Behavior of virtual memory, file system, file cache, etc.
» Access via APIs

* Network instrumentation techniques
» Passive, e.g. RMON protocol packet header fields for monitoring
+ Active, e.g. ping, NWS in grid style computing.
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Darknet Profiling

e PC-based reference code

» Designed to run in a Linux environment, but in this course,
we are going to make it run on an embedded processor
(ARM Cortex-A9)

> Profile in both physical (board) and simulated ARM env.

— Measure performance and identify bottlenecks

* Board profiling (Lab 1)

= gprof measures where program spends its time and
which functions call other functions while it was executing

— Flat profile: total amount of time program spends executing each function
— Call graph: how much time was spent in each function and its children

» Virtual platform profiling (Lab 2)

* Run gprof in virtual platform prototype
— Flat and call graph profiles
— Timing accuracy of virtual platform? (QEMU timing model!)
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Component Simulation

* Cycle-accurate
* Describe micro-architecture/RTL in C

* Interpreted instruction-set simulation
» Cycle-accurate/-approximate
» Functionality/behavior only

« Compiled ISS
» Binary translation

inary

B
ac
>
=

S

°
0O
o
(@

ISS
/0
Arch.
State

* Source-level/host-compiled simulation
» C model describing functionality/behavior
« Back-annotate with timing and other metrics

» Offline vs. just-in-time (self-modifying code)
* Functional only (no/rough timing, e.g. CPI=1)
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Quick EMUlator (QEMU)

* Open-source, binary-translating ISS [Ballard’xx]
+ Emulates a variety of architectures (x86, ARM, PowerPC)
» Stand-alone or full-system model (peripherals to boot OS)

PC
already >
seen?

micro-ops
buffer

Instruction | ———

Target binary

code (.elf) )
Micro-operations

built-in

CODES+ISSS'09

Execute

| ‘Code Generation' Translation Cache

_______

TB Cache Ent

(host binary code)

Source: M. Gilgor, N. Fournel, F. Pétrot, “Using Binary Translation in Event Driven Simulation for Fast and Flexible MPSoC Simulation,”

EE382M.20: SoC Design, Lecture 4 © 2018 A. Gerstlauer

© 2018 A. Gerstlauer

Lecture 4



EE382M.20: System-on-Chip (SoC) Design Lecture 4

Estimation

» Static analysis and prediction of performance

* Need for hard guarantees in embedded space
— Reliability, safety, etc.

» Worst-Case Execution Time (WCET) estimation
» Tightness of bounds?

* Analysis of modern processors is very difficult

» Dynamic effects
— Pipeline introduces dependencies on input sequence (instructions)
— Cache effects
— Branch prediction
» Hazards lead to timing accidents & penalties
— Structural (resource being used by another)

— Data (dependence for data calculations)
— Control (calculating next address — branches, interrupts)
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Overall WCET Approach

» Compute upper bounds along the program structure
» Programs are hierarchically structured

» Compute the upper bound for a construct from the upper
bounds of its constituents

» Basic blocks of code at the leaves of the hierarchy

* Micro-architecture analysis
» Abstract interpretation of code in basic blocks
» Determines WCET for each basic block (in contexts)
» Exclude as many timing accidents as possible

* Worst-case path determination
+ Control flow graph (CFG) of basic blocks
* Map to an integer linear program
» Determines upper bound and associated path
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Conditional Statements

A=ifB Constituents of A:
then Al 1. condition B
else A2 2. statements A1 and A2
yes o
wcet(A) =
Al A2 wcet(B) +
max(wcet(A1),
_ wcet(A2))
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Loops
A=fori« 1to 100 do A1
i«1
wcet(A) =
weet(i <« 1) +
st 100  (wee(i < 100) +
es wcet(A1) ) +
wcet( i < 100)
A1
~—_
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aiT Tool
program Control-Flow-Graph
CFG Builder to improve WCET bounds for loops
\
Loop Unfolding
/
Static Analyses Path Apalysis
| Loop-
[Velus Analyzer ] | ILP-Generator |-
Micro- ‘
Architecture | LP-Solver ]
Cache/Pipeline ‘
Analyzer ! WCET-
| Timing | Evaluation ]_ Visualization
Information
Micro-architecture Worst-case Path
Analysis Determination
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Program Path Analysis

* Program Path Analysis

* Which sequence of instructions is executed in the worst-
case (longest runtime)?

* Problem: the number of possible program paths grows
exponentially with the program length

« Model

* We know the upper bounds (number of cycles) for each
basic block from static analysis

» Number of loop iterations must be bounded

+ Concept
« Transform structure of CFG into a set of (integer) linear
equations.
+ Solution of the Integer Linear Program (ILP) yields bound
on the WCET.
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Control Flow Graph (CFG)

what_is_this {

1 read (a,b);
2 done = FALSE;
3 repeat { />
- 4
4 if (aib) ) a>b& a<=b
5 a = a-b;
6 elseif (b>a) @ @
7 b = b-a; a<b a=b
8 else done = TRUE;
9 } until done; @
1 write (a);
3
(s)
Idone ~  done
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Control Flow Graph (CFG)

The nodes are the basic blocks
+ Single point of entry & exit
* Instructions in block always executed togeth

erﬁ
i >= 10

i <10
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Calculation of the WCET

» Definition: A program consists of N basic blocks, where
each basic block B; has a worst-case execution time c;
and is executed for exactly x; times. Then, the WCET is
given by

N
WCET= ZCi X
=1

» The c; values are determined using static analysis.

* How to determine x;?
+ Structural constraints given by the program structure

+ Additional constraints provided by the programmer (bounds for
loop counters, etc.; based on knowledge of the program

context)
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Example |
!
B1|s = k;

/* Kk >= 0 */ l
s = k; B2 |[WHILE (k<10)
WHILE (k < 10) { ]

IF (0k)

ELSE {

Jj =0; \TTT;T
ok = true; B4 [J++; Bs|d = ¥ X

3 ok = true;

k ++; \ /
} B6 | k++;
r=7;

|
B7|r = J;
I
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Structural Constraints
d1 |
s = k; .
@ Flow equations:
d2 |
d1=d2=x,
WHILE (k<10) (2 d2 +d8=d3 +d9 =x,
| d3] d3=d4 +d5=x,
if (ok) @ d4 =d6 = x,
d5=d7 =x
d4a d5 5
/ & d6 + d7 = d8 = x
= = ; =d10 =
(@ ok = true; d9=d10 =X,
d9 (N ‘/d7
O
I ds
|
OFE
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Additional Constraints
| df
s = k; @ Loop is executed for at most
10 times:
| d2
WHILE (k<10) (2 X3 <=10 - X
RS
it (k) (3)
da NL;‘ B5 is executed for at most one
time:
(@+; ®= o;
i ok = true; Xs <= 1%y
d_
d9 ﬁ 48
©;
I
|
S RN T
EE382M.20: SoC Design, Leritu&f,rto © 2018 A. Gerstlauer 26

© 2018 A. Gerstlauer 13



EE382M.20: System-on-Chip (SoC) Design

Integer Linear Program (ILP)

once /

N
weeET=max{>c - | d, =1

i=1

dYd = >d =x,i=1.Na
3

» Apply standard ILP solver
* NP-complete, i.e. exponential complexity!

e |LP with structural and additional constraints

program is executed

jein(B;) k eout(B;)
structural

constraints
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Overview

program Control-Flow-Graph

\*_/ Micro-
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i
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CFG Builder to improve WCET bounds for loops
\
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/
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Y — | Loop-
< Value Analyzer > | |LP-Ge|;erator ]-—

I_ WCET-
Visualization

| Evaluation
| Timing
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Micro-architecture Worst-case Path
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Value Analysis

* Motivation:
» Provide access information to data-cache/pipeline analysis
» Detect infeasible paths
» Derive loop bounds

* Method: calculate intervals at all program points, i.e.
lower and upper bounds for the set of possible values
occurring in the machine program (addresses, register
contents, local and global variables)

» Abstract interpretation (Al)
« Semantics-based method for static program analysis

» Perform the program's computations using value
descriptions or abstract values in place of the concrete
values, start with a description of all possible inputs

» Supports correctness proofs
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Value Analysis

D1:[-4,4], AO:[0x1000,0x1000]

* Intervals are computed along
the CFG edges

DO:[4,4], D1:[-4,4], * At joins, intervals are ,unioned"
A0:[0x1000,0x1000]

DO0:[0,8], D1:[-4,4],
A0:[0x1000,0x1000]

move #4,D0

\

D1: [-4,0]

|

D1: [-4,+2]
move (A0,DO),D1

;

Which address is accessed here?
access [0x1000,0x1008]
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Caches

+ Caches are used, because
» Speed gap between CPU and main memory
» Fast but expensive on-chip memory in between

+ Every memory access goes through the cache

* Block m containing a is in the cache (hit):
request for a is served in the next cycle.

» Block mis not in the cache (miss):
m is transferred from main memory to the cache,
m may replace some block in the cache,
request for a is served ASAP while transfer still continues.

« Several replacement strategies: LRU, PLRU, FIFO,...
determine which line to replace.
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Static Cache Analysis

e Abstraction

» Sets of memory blocks in single cache lines
— From values to locations, ignoring arithmetic

» Must Analysis

» For each program point (and calling context), find out
which blocks are in the cache

* Determines safe information about cache hits. Each
predicted cache hit reduces WCET.

» May Analysis

» For each program point (and calling context), find out
which blocks may be in the cache. Complement says what
is not in the cache

+ Determines safe information about cache misses. Each
predicted cache miss increases BCET.
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Cache with LRU: Must Analysis

0| X
| X |»

concrete l— [ ] vyewe
[access s ] i/ T ; [ Age
7] —— [t “old”

/\
abstract <7 {s}
[access s ] Rf,t} 8(}
{} {y. t}
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Must Analysis: Join
Join (must)
{a} {c}
{} {e}
{c f} {a}
{d} {d}
\ /{tersection + maximal age”
{{ % Interpretation:
{a,cy| mMemory blockais definitively in the
a7 (concrete) cache => always hit
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Cache with LRU: May Analysis
/—\
concrete :( — [s young
[access s ] -  : i( ] Age
y z “old"
—
t s
e —
X y
S X
—
abstract (Xt} {s}
[accesss] [YS} X, t}
z} y.z}
{} }
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May Analysis: Join
Join (may)
{a} {c}
{3 {e}
{c.f} {a}
{d} {d}
\ /@on +minimal age”
E :’}C ! Interpretation:
3 all blocks may be in the cache; none is
{dJ definitely not in the cache.
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Cache Analysis for WCET

« Information about cache contents sharpens timings

if s is in must-cache:

tweer = thit
otherwise

t tWCET = tmiss

miss . ..
refto s - —* if sisin may-cache:
: tecer = thit

thit
otherwise
lseimr = Uiifiss
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Cache Analysis Contexts

» Cache contents depends on the context
» Calls and loops

e First iteration loads the cache E
* Intersection looses most of the
information

while cond do
join (must)

=

« Distinguish as many contexts as useful
* 1 unrolling for caches

|
|
|
+ 1 unrolling for branch prediction (pipeline) 1
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Overview

program Control-Flow-Graph

CFG Builder to improve WCET bounds for loops

|

Loop Unfolding

Static Analyses Path Ahalysis

| Loop-
ILP- t
Value Analyzer | Generator ]-—
Micro- ‘
Architecture | LP-Solver ]

Cache/Pipeline

N
Analyzer ‘ e
Evaluation - ety
Timing | H -Vlsuallzanon

Information
Micro-architecture Worst-case Path
Analysis Determination
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Motorola ColdFire 5307 Pipeline

set(a)/stop

IAG

l addr(a) wait

l await(a) wait
l put() wait
l instr wait
next l start

cancel

fetch(a)

hold

code(a)

1INN SNg

read(A)/write(A)

data/hold
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Execution of Multiply Instruction

Fetch Issue Execute Retire
1-Cache miss? Unit occupied? Multicycle? Pending instructions?

///1
//
No ///
///
4//
.l 30

Yes  *

* s

ATl > 41
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Static Analysis of Hazards

Cache analysis: prediction of cache hits on instruction or

operand fetch or store
lwz r4, 20(r1) @

Dependency analysis: analysis of data/control hazards

add r4, r5,r6
lwz r7,10(r1)

add r8, 4, r4
ready

Resource reservation tables: analysis of resource hazards
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Abstract Pipeline Execution

+ exec (b : basic block, s : abstract pipeline state) t: trace

* Interprets instruction stream of b (annotated with cache
information) starting in state s producing trace t

* length(t) gives number of cycles

* What is abstracted?

» Abstract states may lack information, e.g. about cache
contents

» Assume local worst cases is safe (in the case of no timing
anomalies)

» Traces may be longer (but never shorter) than in reality
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Context

« Starting state for basic block? In particular, if there are
several predecessor blocks?

* Solutions
+ Sets of states
« Combine by assuming that local worst case is safe

S, Sz
S,
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Summary of WCET Analysis Steps

* Value analysis

+ Cache analysis using statically computed effective
addresses and loop bounds

* Pipeline analysis
» Assume cache hits where predicted,
» Assume cache misses where predicted or not excluded.

» Only the “worst” result states of an instruction need to be
considered as input states for successor instructions!

« Path analysis
» Compute final WCET estimate
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* Requirement & performance analysis

» System-level estimation
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System Development

* Get the architecture right before
implementation begins
» Best design for system performance
and functionality

Concept\ g

System

Processor
Addr

Data ROM|

ystem . L]
~_Development B
\\\ Intr . _____

Source: CoWare, Inc.
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Virtual Platforms

Hardware
Software \ « Processors

« Startup code *Bus

« Device drivers System Pmcessor » Memory

. RTOS . Addr « Peripherals

* Application Data « Interfaces
code

Intr

;i_: — Slmulatlj

* Virtual prototyping
* Instruction-set simulation in transaction-level model (TLM)

Source: CoWare, Inc.
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Architecture Analysis

. Software

Custom
Peripheral

Source: CoWare, Inc.
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