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e Introduction
* Embedded SoC design

« HW/SW co-design
* Models of Computation
* Analysis
* Synthesis
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Systems-on-Chip (SoCs)

« Employ a combination of Analog
* SW on programmable Specific Gates 110

processors
- FI-eX|b|.I|ty, comple.)(l.ty Prgcessor Memory
« Application-specific, Ores
custom HW

— Performance, low power
e Transducers, sensors, actuators
* A/D & D/A converters

— Interact with analog, continuous-time environment

» Micro-controllers & digital signal processors (DSPs)
» ASICs & Field programmable gate arrays (FPGAS)
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Design Problems

* Design a heterogeneous multiprocessor architecture that
satisfies the design requirements.

» Use computational unit(s) dedicated to some functions
— Processing elements (PE): hardwired logic, CPU

* Program the system

* A significant part of the design problem is deciding which
parts should be in SW on programmable processors, and
which in specialized HW

» Deciding the HW/SW architecture

* Ad-hoc approaches today
» Based on earlier experience with similar products
* HW/SW partitioning decided a priori, designed separately
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Productivity Gaps
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Source: W. Ecker, W. Miller, R. Démer, Hardware-dependent Software - Principles and Practice, Springer 2009.
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Design Automation

e Computer-Aided Design (CAD)
Electronic Design Automation (EDA)

» Tools take care of HW fairly well (at least in relative terms)
» Productivity gap emerging
» Situation in SW is worse

» HLLs such as C help, but can’t cope with exponential
increase in complexity and performance constraints

Holy Grail for Tools People: HW-like synthesis & verification from a
behavior description of the whole system at a high level of
abstraction using formal computation models
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Embedded System Design

* The design of an embedded system consists of correctly
implementing a specific set of functions while satisfying
constraints on

» Performance

» Dollar cost

» Energy consumption, power dissipation
* Weight, etc.

The choice of a system architecture impacts whether designers will
implement a function as custom hardware or as (embedded) software
running on a programmable component (processor).
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Embedded System Design Process

Requirements Definition

|

System Specification

|

System Architecture Development

— ~.

Sw Development Hw Design
* Application Sw « Sw driver * Hw architecture design

* Compilers, etc. « Hw interface synthesis e Hw synthesi§
* RTOSs * Physical design

\ Integration and test

!

can no longer
be serialized

Interface Design
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Desirable Design Methodology

Design should be based on the use of one or more formal
models to describe the behavior of the system at a high
level of abstraction

» Such behavior should be captured on an unbiased way,
that is, before a decision on its decomposition into
hardware and software components is taken

The final implementation of the system should be

generated as much as possible using automatic

synthesis from this high level of abstraction

» To explore the design space and optimize implementations

» To ensure implementations that are “correct by
construction”

Validation (through simulation or verification) should be

done as much as possible at the higher levels of

abstraction
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HW/SW Co-Design

Use additional computational unit(s) dedicated to some
functions

» Hardwired logic, extra CPU

» Automated design & optimization of HW/SW systems

» Specification
— Modeling
— Performance analysis
* Synthesis
— HW/SW partitioning (resource allocation & binding)
— Scheduling
* HW & SW implementation
— SW compilation
— HW synthesis
» Validation
— Integration, verification & debugging
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Lecture 5: Outline

« HW/SW co-design
* Models of Computation
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Formal Model of a Design

* Most tools and designers describe the behavior of a
design as arelation between a set of inputs and a set of
outputs

» This relation may be informal, even expressed in natural
language

» Such informal, ambiguous specifications may result in
unnecessary redesigns...

* A formal model of a design should consist of the following
components:

» Functional specification

» Set of properties

» Set of performance indices

» Set of constraints on performance indices
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Models of Computation (MoCs)

» Consider essential aspects of embedded systems
» Time/synchronization
» Concurrency
* Heterogeneity

» Classify models based on
* How to specify behavior
* How to specify communication
* Implementability
» Composability
* Availability of tools for validation and synthesis
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Main MoCs for Embedded Systems

* Programming models
* Imperative & declarative
» Synchronous/reactive

* Process-based models
* Discrete event
» Kahn Process Networks (KPNs)
* (Synchronous) Dataflow models ((S)DF)

e State-based models
* Finite State Machines (FSM)

* Hierarchical, Concurrent State Machines (HCFSM)
* Petri Nets

» EE382V: Embedded System Design & Modeling
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Task Graph Model

» A graph representation of the application specification

» Derived from data dependency based representation
commonly utilized in compilers

» Application is specified by a graph G(V,E)
* Vs the set of tasks
— t(v,r) gives the run-time of “v” on a processing element “r’

» E is the set of directed edges
— e(u,v) implies data produced by u is consumed by v
— v cannot begin execution before u has finished execution

» Execution constraints
— Deadlines, rates, latencies

» Data-dominated application model

» Multimedia and network processing applications can be
specified by this model
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Task Graph Example

_ * Assign weights to
nodes and edges
@ @ » Cost, delays

e Constraints for nodes
or whole graph

Q @ @ » Source-to-sink
C
delay

» Analysis & synthesis
» Partitioning

@ @ @ > Real-Time
Scheduling
» Amdahl’'s law
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Lecture 5: Outline

« HW/SW co-design

* Analysis
» Execution time analysis (Lecture 4)
» Scheduling analysis (Lecture 7)

» Synthesis
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Lecture 5: Outline

« HW/SW co-design

* Synthesis
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Design Synthesis

C (language) Executable functional model VHDL (language)
Specificati . .
pe(‘;;c',‘é") on { Imperative States Processes Discrete event
Scheduling &
Partitioning
Refinement
. Software High-Level Logic
Compiler : . .
synthesis synthesis synthesis
O
, Processor Processor Logic Logic
Implementation model model model model

Target architecture model
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Synthesis Tasks

* Mapping
 Allocate resources (hardware/software processors)
» Bind computations to resources
» Schedule operations in time

» Partitioning = (allocation +) binding
» Mapping = binding + scheduling

e Allocation, scheduling and binding interact,
but separating them helps

 Alternatively allocate, bind, then schedule
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Mapping Example

dl d2

M1 M2

Task graph

Hardware platform
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Example Cost Model

e Process execution times

e Communication cost

e @
Fl > 2 4
P2 5 dl d2
SR

¢ Assume communication within PE is free
e Cost of communication from P1to P3isdl =2
e Cost of P2 to P3 communication is d2 = 4
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First Design

e Allocate P2 -> M1; P1, P3 -> M2.

M1 )
Time =15
M2
network
| w | |
5 10 15 20
time
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Second Design
¢ Allocate P1 -> M1; P2, P3 -> M2:
M1 )
Time =12
M2
network
| | \ |
5 10 15 20
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Co-Design Approaches

» Partitioning
» Exact methods
— Integer linear programming (ILP) formulations

* Heuristics
— Constructive: Hierarchical clustering
— lterative: Kernighan-Lin

* Scheduling
e Static

« ILP formulations for combined scheduling & partitioning

» Borrowed from high-level synthesis (see later lectures)
» Dynamic

* Operating system

» Real-time scheduling
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