EE382M.20: System-on-Chip (SoC) Design Lecture 5

EE382M.20:
System-on-Chip (SoC) Design

Lecture 5 — HW/SW Co-Design

Sources:
Prof. Margarida Jacome, UT Austin

Andreas Gerstlauer
Electrical and Computer Engineering
University of Texas at Austin
gerstl@ece.utexas.edu

The University of Texas at Austin
Electrical and Computer Engineering
Cockrell School of Engineering

Lecture 5: Outline

e Introduction
* Embedded SoC design

« HW/SW co-design
* Models of Computation
* Analysis
* Synthesis

EE382M.20: SoC Design, Lecture 5 © 2018 A. Gerstlauer 2

© 2018 A. Gerstlauer 1

EE382M.20: System-on-Chip (SoC) Design

Systems-on-Chip (SoCs)

« Employ a combination of Analog
* SW on programmable Specific Gates 110

processors
- FI-eX|b|.I|ty, comple.)(l.ty Prgcessor Memory
« Application-specific, Ores
custom HW

— Performance, low power
e Transducers, sensors, actuators
* A/D & D/A converters

— Interact with analog, continuous-time environment

» Micro-controllers & digital signal processors (DSPs)
» ASICs & Field programmable gate arrays (FPGAS)

EE382M.20: SoC Design, Lecture 5 © Margarida Jacome, UT Austin 3

Design Problems

* Design a heterogeneous multiprocessor architecture that
satisfies the design requirements.

» Use computational unit(s) dedicated to some functions
— Processing elements (PE): hardwired logic, CPU

* Program the system

* A significant part of the design problem is deciding which
parts should be in SW on programmable processors, and
which in specialized HW

» Deciding the HW/SW architecture

* Ad-hoc approaches today
» Based on earlier experience with similar products
* HW/SW partitioning decided a priori, designed separately

EE382M.20: SoC Design, Lecture 5 © Margarida Jacome, UT Austin

© 2018 A. Gerstlauer

Lecture 5

EE382M.20: System-on-Chip (SoC) Design Lecture 5

Productivity Gaps

log ,- Additional SW
tLoc SWI/Chip L~ required for HW
Gates/Chip //’ 2x all 10 months
Gates/Day
LoC/Day Capability of
_.-~" Technology
-7 2x/18 Months
System HW Design

Design Gap __ Productivity
---"" 1.6x/18 Months
Average HW + SW
Design Productivity

HW Design
Gap

/— """" Software
Productivity
2x/5 years

- n ()] o ~ p [Te) [g H
3 8 3 3 3]] 8 time
- - - — - N N N

Source: W. Ecker, W. Miller, R. Démer, Hardware-dependent Software - Principles and Practice, Springer 2009.

EE382M.20: SoC Design, Lecture 5 © 2018 A. Gerstlauer 5

Design Automation

e Computer-Aided Design (CAD)
Electronic Design Automation (EDA)

» Tools take care of HW fairly well (at least in relative terms)
» Productivity gap emerging
» Situation in SW is worse

» HLLs such as C help, but can’t cope with exponential
increase in complexity and performance constraints

Holy Grail for Tools People: HW-like synthesis & verification from a
behavior description of the whole system at a high level of
abstraction using formal computation models

EE382M.20: SoC Design, Lecture 5 © Margarida Jacome, UT Austin 6

© 2018 A. Gerstlauer 3

EE382M.20: System-on-Chip (SoC) Design Lecture 5

Embedded System Design

* The design of an embedded system consists of correctly
implementing a specific set of functions while satisfying
constraints on

» Performance

» Dollar cost

» Energy consumption, power dissipation
* Weight, etc.

The choice of a system architecture impacts whether designers will
implement a function as custom hardware or as (embedded) software
running on a programmable component (processor).

EE382M.20: SoC Design, Lecture 5 © Margarida Jacome, UT Austin 7

Embedded System Design Process

Requirements Definition

|

System Specification

|

System Architecture Development

— ~.

Sw Development Hw Design
* Application Sw « Sw driver * Hw architecture design

* Compilers, etc. « Hw interface synthesis e Hw synthesi§
* RTOSs * Physical design

\ Integration and test

!

can no longer
be serialized

Interface Design

EE382M.20: SoC Design, Lecture 5 © Margarida Jacome, UT Austin 8

© 2018 A. Gerstlauer 4

EE382M.20: System-on-Chip (SoC) Design

Desirable Design Methodology

Design should be based on the use of one or more formal
models to describe the behavior of the system at a high
level of abstraction

» Such behavior should be captured on an unbiased way,
that is, before a decision on its decomposition into
hardware and software components is taken

The final implementation of the system should be

generated as much as possible using automatic

synthesis from this high level of abstraction

» To explore the design space and optimize implementations

» To ensure implementations that are “correct by
construction”

Validation (through simulation or verification) should be

done as much as possible at the higher levels of

abstraction

EE382M.20: SoC Design, Lecture 5 © Margarida Jacome, UT Austin 9

HW/SW Co-Design

Use additional computational unit(s) dedicated to some
functions

» Hardwired logic, extra CPU

» Automated design & optimization of HW/SW systems

» Specification
— Modeling
— Performance analysis
* Synthesis
— HW/SW partitioning (resource allocation & binding)
— Scheduling
* HW & SW implementation
— SW compilation
— HW synthesis
» Validation
— Integration, verification & debugging

EE382M.20: SoC Design, Lecture 5 © Margarida Jacome, UT Austin 10

© 2018 A. Gerstlauer

Lecture 5

EE382M.20: System-on-Chip (SoC) Design

Lecture 5: Outline

« HW/SW co-design
* Models of Computation

EE382M.20: SoC Design, Lecture 5 © 2018 A. Gerstlauer 11

Formal Model of a Design

* Most tools and designers describe the behavior of a
design as arelation between a set of inputs and a set of
outputs

» This relation may be informal, even expressed in natural
language

» Such informal, ambiguous specifications may result in
unnecessary redesigns...

* A formal model of a design should consist of the following
components:

» Functional specification

» Set of properties

» Set of performance indices

» Set of constraints on performance indices

EE382M.20: SoC Design, Lecture 5 © Margarida Jacome, UT Austin 12

© 2018 A. Gerstlauer

Lecture 5

EE382M.20: System-on-Chip (SoC) Design Lecture 5

Models of Computation (MoCs)

» Consider essential aspects of embedded systems
» Time/synchronization
» Concurrency
* Heterogeneity

» Classify models based on
* How to specify behavior
* How to specify communication
* Implementability
» Composability
* Availability of tools for validation and synthesis

EE382M.20: SoC Design, Lecture 5

© Margarida Jacome, UT Austin 13

Main MoCs for Embedded Systems

* Programming models
* Imperative & declarative
» Synchronous/reactive

* Process-based models
* Discrete event
» Kahn Process Networks (KPNs)
* (Synchronous) Dataflow models ((S)DF)

e State-based models
* Finite State Machines (FSM)

* Hierarchical, Concurrent State Machines (HCFSM)
* Petri Nets

» EE382V: Embedded System Design & Modeling

EE382M.20: SoC Design, Lecture 5

© Margarida Jacome, UT Austin 14

© 2018 A. Gerstlauer

EE382M.20: System-on-Chip (SoC) Design Lecture 5

Task Graph Model

» A graph representation of the application specification

» Derived from data dependency based representation
commonly utilized in compilers

» Application is specified by a graph G(V,E)
* Vs the set of tasks
— t(v,r) gives the run-time of “v” on a processing element “r’

» E is the set of directed edges
— e(u,v) implies data produced by u is consumed by v
— v cannot begin execution before u has finished execution

» Execution constraints
— Deadlines, rates, latencies

» Data-dominated application model

» Multimedia and network processing applications can be
specified by this model

EE382M.20: SoC Design, Lecture 5 © 2018 A. Gerstlauer 15

Task Graph Example

_ * Assign weights to
nodes and edges
@ @ » Cost, delays

e Constraints for nodes
or whole graph

Q @ @ » Source-to-sink
C
delay

» Analysis & synthesis
» Partitioning

@ @ @ > Real-Time
Scheduling
» Amdahl’'s law

EE382M.20: SoC Design, Lecture 5 © 2018 A. Gerstlauer 16

© 2018 A. Gerstlauer 8

EE382M.20: System-on-Chip (SoC) Design Lecture 5

Lecture 5: Outline

« HW/SW co-design

* Analysis
» Execution time analysis (Lecture 4)
» Scheduling analysis (Lecture 7)

» Synthesis

EE382M.20: SoC Design, Lecture 5 © 2018 A. Gerstlauer 17

Lecture 5: Outline

« HW/SW co-design

* Synthesis

EE382M.20: SoC Design, Lecture 5 © 2018 A. Gerstlauer 18

© 2018 A. Gerstlauer 9

EE382M.20: System-on-Chip (SoC) Design Lecture 5

Design Synthesis

C (language) Executable functional model VHDL (language)
Specificati . .
pe(‘;;c',‘é") on { Imperative States Processes Discrete event
Scheduling &
Partitioning
Refinement
. Software High-Level Logic
Compiler : . .
synthesis synthesis synthesis
O
, Processor Processor Logic Logic
Implementation model model model model

Target architecture model

EE382M.20: SoC Design, Lecture 5 © Margarida Jacome, UT Austin 19

Synthesis Tasks

* Mapping
 Allocate resources (hardware/software processors)
» Bind computations to resources
» Schedule operations in time

» Partitioning = (allocation +) binding
» Mapping = binding + scheduling

e Allocation, scheduling and binding interact,
but separating them helps

 Alternatively allocate, bind, then schedule

EE382M.20: SoC Design, Lecture 5 © Margarida Jacome, UT Austin 20

© 2018 A. Gerstlauer 10

EE382M.20: System-on-Chip (SoC) Design

Mapping Example

dl d2

M1 M2

Task graph

Hardware platform

EE382M.20: SoC Design, Lecture 5

© Margarida Jacome, UT Austin 21

Example Cost Model

e Process execution times

e Communication cost

e @
Fl > 2 4
P2 5 dl d2
SR

¢ Assume communication within PE is free
e Cost of communication from P1to P3isdl =2
e Cost of P2 to P3 communication is d2 = 4

EE382M.20: SoC Design, Lecture 5

© Margarida Jacome, UT Austin 22

© 2018 A. Gerstlauer

Lecture 5

11

EE382M.20: System-on-Chip (SoC) Design

First Design

e Allocate P2 -> M1; P1, P3 -> M2.

M1)
Time =15
M2
network
| w | |
5 10 15 20
time
EE382M.20: SoC Design, Lecture 5 © Margarida Jacome, UT Austin 23
Second Design
¢ Allocate P1 -> M1; P2, P3 -> M2:
M1)
Time =12
M2
network
| | \ |
5 10 15 20

EE382M.20: SoC Design, Lecture 5

© Margarida Jacome, UT Austin

24

© 2018 A. Gerstlauer

Lecture 5

12

EE382M.20: System-on-Chip (SoC) Design Lecture 5

Co-Design Approaches

» Partitioning
» Exact methods
— Integer linear programming (ILP) formulations

* Heuristics
— Constructive: Hierarchical clustering
— lterative: Kernighan-Lin

* Scheduling
e Static

« ILP formulations for combined scheduling & partitioning

» Borrowed from high-level synthesis (see later lectures)
» Dynamic

* Operating system

» Real-time scheduling

EE382M.20: SoC Design, Lecture 5 © 2018 A. Gerstlauer 25

© 2018 A. Gerstlauer 13

