
EE382M.20: System-on-Chip (SoC) Design Lecture 5

© 2018 A. Gerstlauer 1

EE382M.20:
System-on-Chip (SoC) Design

Andreas Gerstlauer
Electrical and Computer Engineering

University of Texas at Austin
gerstl@ece.utexas.edu

Lecture 5 – HW/SW Co-Design

Sources:
Prof. Margarida Jacome, UT Austin

EE382M.20: SoC Design, Lecture 5 © 2018 A. Gerstlauer 2

Lecture 5: Outline

• Introduction

• Embedded SoC design

• HW/SW co-design

• Models of Computation

• Analysis

• Synthesis

EE382M.20: System-on-Chip (SoC) Design Lecture 5

© 2018 A. Gerstlauer 2

EE382M.20: SoC Design, Lecture 5 © 2018 A. Gerstlauer 3

Systems-on-Chip (SoCs)

• Employ a combination of

• SW on programmable
processors

– Flexibility, complexity

• Application-specific,
custom HW

– Performance, low power

• Transducers, sensors, actuators

• A/D & D/A converters
– Interact with analog, continuous-time environment

 Micro-controllers & digital signal processors (DSPs)

 ASICs & Field programmable gate arrays (FPGAs)

Application
Specific Gates

Processor
Cores

Analog
I/O

Memory

© Margarida Jacome, UT Austin

EE382M.20: SoC Design, Lecture 5 © 2018 A. Gerstlauer 4

Design Problems

• Design a heterogeneous multiprocessor architecture that
satisfies the design requirements.

• Use computational unit(s) dedicated to some functions
– Processing elements (PE): hardwired logic, CPU

• Program the system

• A significant part of the design problem is deciding which
parts should be in SW on programmable processors, and
which in specialized HW

• Deciding the HW/SW architecture

• Ad-hoc approaches today

• Based on earlier experience with similar products

• HW/SW partitioning decided a priori, designed separately

© Margarida Jacome, UT Austin

EE382M.20: System-on-Chip (SoC) Design Lecture 5

© 2018 A. Gerstlauer 3

EE382M.20: SoC Design, Lecture 5 © 2018 A. Gerstlauer 5

Productivity Gaps

Capability of
Technology
2x/18 Months

Gates/Chip
Gates/Day

Software
Productivity
2x/5 years

log

time

19
81

19
85

19
89

19
93

19
97

20
01

20
05

20
09

LoC SW/Chip

Average HW + SW
Design Productivity

LoC/Day

Additional SW
required for HW
2x all 10 months

System
Design Gap

HW Design
Gap

HW Design
Productivity
1.6x/18 Months

Source: W. Ecker, W. Müller, R. Dömer, Hardware-dependent Software - Principles and Practice, Springer 2009.

EE382M.20: SoC Design, Lecture 5 © 2018 A. Gerstlauer 6

Design Automation

• Computer-Aided Design (CAD)
Electronic Design Automation (EDA)

• Tools take care of HW fairly well (at least in relative terms)

• Productivity gap emerging

• Situation in SW is worse

• HLLs such as C help, but can’t cope with exponential
increase in complexity and performance constraints

Holy Grail for Tools People: HW-like synthesis & verification from a
behavior description of the whole system at a high level of

abstraction using formal computation models

© Margarida Jacome, UT Austin

EE382M.20: System-on-Chip (SoC) Design Lecture 5

© 2018 A. Gerstlauer 4

EE382M.20: SoC Design, Lecture 5 © 2018 A. Gerstlauer 7

Embedded System Design

• The design of an embedded system consists of correctly
implementing a specific set of functions while satisfying
constraints on

• Performance

• Dollar cost

• Energy consumption, power dissipation

• Weight, etc.

The choice of a system architecture impacts whether designers will
implement a function as custom hardware or as (embedded) software
running on a programmable component (processor).

The choice of a system architecture impacts whether designers will
implement a function as custom hardware or as (embedded) software
running on a programmable component (processor).

© Margarida Jacome, UT Austin

EE382M.20: SoC Design, Lecture 5 © 2018 A. Gerstlauer 8

can no longer
be serialized

System Specification

Requirements Definition

System Architecture Development

Sw Development
• Application Sw
• Compilers, etc.
• RTOSs

Interface Design
• Sw driver
• Hw interface synthesis

Hw Design
• Hw architecture design
• Hw synthesis
• Physical design

Integration and test

Embedded System Design Process

© Margarida Jacome, UT Austin

EE382M.20: System-on-Chip (SoC) Design Lecture 5

© 2018 A. Gerstlauer 5

EE382M.20: SoC Design, Lecture 5 © 2018 A. Gerstlauer 9

Desirable Design Methodology

• Design should be based on the use of one or more formal
models to describe the behavior of the system at a high
level of abstraction
• Such behavior should be captured on an unbiased way,

that is, before a decision on its decomposition into
hardware and software components is taken

• The final implementation of the system should be
generated as much as possible using automatic
synthesis from this high level of abstraction
• To explore the design space and optimize implementations
• To ensure implementations that are “correct by

construction”
• Validation (through simulation or verification) should be

done as much as possible at the higher levels of
abstraction

© Margarida Jacome, UT Austin

EE382M.20: SoC Design, Lecture 5 © 2018 A. Gerstlauer 10

HW/SW Co-Design

• Use additional computational unit(s) dedicated to some
functions
• Hardwired logic, extra CPU

 Automated design & optimization of HW/SW systems
• Specification

– Modeling
– Performance analysis

• Synthesis
– HW/SW partitioning (resource allocation & binding)
– Scheduling

• HW & SW implementation
– SW compilation
– HW synthesis

• Validation
– Integration, verification & debugging

© Margarida Jacome, UT Austin

EE382M.20: System-on-Chip (SoC) Design Lecture 5

© 2018 A. Gerstlauer 6

EE382M.20: SoC Design, Lecture 5 © 2018 A. Gerstlauer 11

Lecture 5: Outline

 Introduction

Embedded SoC design

• HW/SW co-design

• Models of Computation

• Analysis

• Synthesis

EE382M.20: SoC Design, Lecture 5 © 2018 A. Gerstlauer 12

Formal Model of a Design

• Most tools and designers describe the behavior of a
design as a relation between a set of inputs and a set of
outputs

• This relation may be informal, even expressed in natural
language

• Such informal, ambiguous specifications may result in
unnecessary redesigns…

• A formal model of a design should consist of the following
components:

• Functional specification

• Set of properties

• Set of performance indices

• Set of constraints on performance indices

© Margarida Jacome, UT Austin

EE382M.20: System-on-Chip (SoC) Design Lecture 5

© 2018 A. Gerstlauer 7

EE382M.20: SoC Design, Lecture 5 © 2018 A. Gerstlauer 13

Models of Computation (MoCs)

• Consider essential aspects of embedded systems
• Time/synchronization
• Concurrency
• Heterogeneity

• Classify models based on
• How to specify behavior
• How to specify communication
• Implementability
• Composability
• Availability of tools for validation and synthesis

© Margarida Jacome, UT Austin

EE382M.20: SoC Design, Lecture 5 © 2018 A. Gerstlauer 14

Main MoCs for Embedded Systems

• Programming models

• Imperative & declarative

• Synchronous/reactive

• Process-based models

• Discrete event

• Kahn Process Networks (KPNs)

• (Synchronous) Dataflow models ((S)DF)

• State-based models

• Finite State Machines (FSM)

• Hierarchical, Concurrent State Machines (HCFSM)

• Petri Nets

EE382V: Embedded System Design & Modeling

© Margarida Jacome, UT Austin

EE382M.20: System-on-Chip (SoC) Design Lecture 5

© 2018 A. Gerstlauer 8

EE382M.20: SoC Design, Lecture 5 © 2018 A. Gerstlauer 15

Task Graph Model

• A graph representation of the application specification
• Derived from data dependency based representation

commonly utilized in compilers

• Application is specified by a graph G(V,E)
• V is the set of tasks

– t(v,r) gives the run-time of “v” on a processing element “r”

• E is the set of directed edges
– e(u,v) implies data produced by u is consumed by v
– v cannot begin execution before u has finished execution

• Execution constraints
– Deadlines, rates, latencies

 Data-dominated application model
• Multimedia and network processing applications can be

specified by this model

EE382M.20: SoC Design, Lecture 5 © 2018 A. Gerstlauer 16

Task Graph Example

• Assign weights to
nodes and edges

• Cost, delays

• Constraints for nodes
or whole graph

• Source-to-sink
delay

 Analysis & synthesis

 Partitioning

 Real-Time
Scheduling

 Amdahl’s law

a b

c

hgf

d e

Source

Sink

EE382M.20: System-on-Chip (SoC) Design Lecture 5

© 2018 A. Gerstlauer 9

EE382M.20: SoC Design, Lecture 5 © 2018 A. Gerstlauer 17

Lecture 5: Outline

 Introduction

 Design methodology

• HW/SW co-design

 Models of Computation

• Analysis
 Execution time analysis (Lecture 4)

 Scheduling analysis (Lecture 7)

• Synthesis

EE382M.20: SoC Design, Lecture 5 © 2018 A. Gerstlauer 18

Lecture 5: Outline

 Introduction

 Embedded SoC design

• HW/SW co-design

 Models of Computation

 Analysis

• Synthesis

EE382M.20: System-on-Chip (SoC) Design Lecture 5

© 2018 A. Gerstlauer 10

EE382M.20: SoC Design, Lecture 5 © 2018 A. Gerstlauer 19

Design Synthesis

Imperative States Processes Discrete event

Scheduling &
Partitioning

High-Level
synthesis

Software
synthesis

Logic
synthesis

Compiler

Specification
(MoC)

Refinement

Implementation
Logic
model

Processor
model

Processor
model

Logic
model

Target architecture model

Executable functional modelC (language) VHDL (language)

© Margarida Jacome, UT Austin

EE382M.20: SoC Design, Lecture 5 © 2018 A. Gerstlauer 20

Synthesis Tasks

• Mapping

• Allocate resources (hardware/software processors)

• Bind computations to resources

• Schedule operations in time

 Partitioning = (allocation +) binding

Mapping = binding + scheduling

• Allocation, scheduling and binding interact,
but separating them helps

• Alternatively allocate, bind, then schedule

© Margarida Jacome, UT Austin

EE382M.20: System-on-Chip (SoC) Design Lecture 5

© 2018 A. Gerstlauer 11

EE382M.20: SoC Design, Lecture 5 © 2018 A. Gerstlauer 21

Mapping Example

P1 P2

P3

d1 d2

Task graph Hardware platform

M1 M2

© Margarida Jacome, UT Austin

EE382M.20: SoC Design, Lecture 5 © 2018 A. Gerstlauer 22

Example Cost Model

• Process execution times

• Communication cost

• Assume communication within PE is free

• Cost of communication from P1 to P3 is d1 = 2

• Cost of P2 to P3 communication is d2 = 4

P1 P2

P3

d1 d2
2 4

P1

P2

P3

M1 M2
5

5

--

5

6

5

© Margarida Jacome, UT Austin

EE382M.20: System-on-Chip (SoC) Design Lecture 5

© 2018 A. Gerstlauer 12

EE382M.20: SoC Design, Lecture 5 © 2018 A. Gerstlauer 23

First Design

• Allocate P2 -> M1; P1, P3 -> M2.

time

M1

M2

network

5 10 15 20

P1

P2

d2

P3

Time = 15

© Margarida Jacome, UT Austin

EE382M.20: SoC Design, Lecture 5 © 2018 A. Gerstlauer 24

Second Design

• Allocate P1 -> M1; P2, P3 -> M2:

M1

M2

network

5 10 15 20

P1

P2

d1

P3

Time = 12

© Margarida Jacome, UT Austin

EE382M.20: System-on-Chip (SoC) Design Lecture 5

© 2018 A. Gerstlauer 13

EE382M.20: SoC Design, Lecture 5 © 2018 A. Gerstlauer 25

Co-Design Approaches

• Partitioning

• Exact methods
– Integer linear programming (ILP) formulations

• Heuristics
– Constructive: Hierarchical clustering

– Iterative: Kernighan-Lin

• Scheduling

• Static
• ILP formulations for combined scheduling & partitioning

 Borrowed from high-level synthesis (see later lectures)

• Dynamic
• Operating system

 Real-time scheduling

