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Systems-on-Chip (SoCs)

• Employ a combination of

• SW on programmable 
processors

– Flexibility, complexity

• Application-specific, 
custom HW

– Performance, low power

• Transducers, sensors, actuators

• A/D & D/A converters
– Interact with analog, continuous-time environment

 Micro-controllers & digital signal processors (DSPs)

 ASICs & Field programmable gate arrays (FPGAs)

Application 
Specific Gates

Processor 
Cores

Analog 
I/O

Memory
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Design Problems

• Design a heterogeneous multiprocessor architecture that 
satisfies the design requirements.

• Use computational unit(s) dedicated to some functions
– Processing elements (PE): hardwired logic, CPU

• Program the system

• A significant part of the design problem is deciding which 
parts should be in SW on programmable processors, and 
which in specialized HW

• Deciding the HW/SW architecture

• Ad-hoc approaches today

• Based on earlier experience with similar products

• HW/SW partitioning decided a priori, designed separately

© Margarida Jacome, UT Austin
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Productivity Gaps
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required for HW
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System
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1.6x/18 Months

Source: W. Ecker, W. Müller, R. Dömer, Hardware-dependent Software - Principles and Practice, Springer 2009.
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Design Automation

• Computer-Aided Design (CAD)
Electronic Design Automation (EDA) 

• Tools take care of HW fairly well (at least in relative terms)

• Productivity gap emerging

• Situation in SW is worse

• HLLs such as C help, but can’t cope with exponential 
increase in complexity and performance constraints

Holy Grail for Tools People: HW-like synthesis & verification from a 
behavior description of the whole system at a high level of 

abstraction using formal computation models

© Margarida Jacome, UT Austin
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Embedded System Design

• The design of an embedded system consists of correctly 
implementing a specific set of functions while satisfying 
constraints on 

• Performance

• Dollar cost

• Energy consumption, power dissipation 

• Weight, etc.

The choice of a system architecture impacts whether designers  will 
implement a function as custom hardware or as (embedded) software 
running on a programmable component (processor). 

The choice of a system architecture impacts whether designers  will 
implement a function as custom hardware or as (embedded) software 
running on a programmable component (processor). 

© Margarida Jacome, UT Austin
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can no longer
be serialized

System Specification

Requirements Definition

System Architecture Development

Sw Development
• Application Sw
• Compilers, etc.
• RTOSs

Interface Design
• Sw driver
• Hw interface synthesis

Hw Design
• Hw architecture design
• Hw synthesis
• Physical design

Integration and test

Embedded System Design Process

© Margarida Jacome, UT Austin
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Desirable Design Methodology

• Design should be based on the use of one or more formal 
models to describe the behavior of the system at a high 
level of abstraction
• Such behavior should be captured on an unbiased way, 

that is, before a decision on its decomposition into 
hardware and software components is taken

• The final implementation of the system should be 
generated as much as possible using automatic 
synthesis from this high level of abstraction
• To explore the design space and optimize implementations
• To ensure implementations that are “correct by 

construction”
• Validation (through simulation or verification) should be 

done as much as possible at the higher levels of 
abstraction

© Margarida Jacome, UT Austin

EE382M.20: SoC Design, Lecture 5 © 2018 A. Gerstlauer 10

HW/SW Co-Design

• Use additional computational unit(s) dedicated to some 
functions
• Hardwired logic, extra CPU 

 Automated design & optimization of HW/SW systems
• Specification

– Modeling
– Performance analysis

• Synthesis
– HW/SW partitioning (resource allocation & binding)
– Scheduling

• HW & SW implementation
– SW compilation
– HW synthesis

• Validation
– Integration, verification & debugging

© Margarida Jacome, UT Austin
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Lecture 5: Outline

 Introduction

Embedded SoC design

• HW/SW co-design

• Models of Computation

• Analysis

• Synthesis
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Formal Model of a Design

• Most tools and designers describe the behavior of a 
design as a relation between a set of inputs and a set of 
outputs

• This relation may be informal, even expressed in natural 
language 

• Such informal, ambiguous specifications may result in 
unnecessary redesigns…

• A formal model of a design should consist of the following 
components:

• Functional specification

• Set of properties

• Set of performance indices

• Set of constraints on performance indices

© Margarida Jacome, UT Austin
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Models of Computation (MoCs)

• Consider essential aspects of embedded systems
• Time/synchronization
• Concurrency
• Heterogeneity

• Classify models based on
• How to specify behavior
• How to specify communication
• Implementability
• Composability
• Availability of tools for validation and synthesis

© Margarida Jacome, UT Austin
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Main MoCs for Embedded Systems

• Programming models

• Imperative & declarative

• Synchronous/reactive

• Process-based models

• Discrete event

• Kahn Process Networks (KPNs)

• (Synchronous) Dataflow models ((S)DF)

• State-based models

• Finite State Machines (FSM)

• Hierarchical, Concurrent State Machines (HCFSM)  

• Petri Nets

EE382V: Embedded System Design & Modeling

© Margarida Jacome, UT Austin
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Task Graph Model

• A graph representation of the application specification
• Derived from data dependency based representation 

commonly utilized in compilers

• Application is specified by a graph G(V,E)
• V is the set of tasks

– t(v,r) gives the run-time of “v” on a processing element “r” 

• E is the set of directed edges
– e(u,v) implies data produced by u is consumed by v
– v cannot begin execution before u has finished execution

• Execution constraints
– Deadlines, rates, latencies

 Data-dominated application model
• Multimedia and network processing applications can be 

specified by this model
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Task Graph Example

• Assign weights to 
nodes and edges

• Cost, delays

• Constraints for nodes 
or whole graph

• Source-to-sink 
delay

 Analysis & synthesis

 Partitioning

 Real-Time 
Scheduling

 Amdahl’s law

a b

c

hgf

d e

Source

Sink
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Lecture 5: Outline

 Introduction

 Design methodology

• HW/SW co-design

 Models of Computation

• Analysis
 Execution time analysis (Lecture 4)

 Scheduling analysis (Lecture 7)

• Synthesis
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Lecture 5: Outline

 Introduction

 Embedded SoC design

• HW/SW co-design

 Models of Computation
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• Synthesis
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Design Synthesis

Imperative States Processes Discrete event

Scheduling &
Partitioning

High-Level
synthesis

Software 
synthesis

Logic 
synthesis

Compiler

Specification
(MoC)

Refinement

Implementation
Logic 
model

Processor 
model

Processor 
model

Logic 
model

Target architecture model

Executable functional modelC (language) VHDL (language)

© Margarida Jacome, UT Austin
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Synthesis Tasks

• Mapping

• Allocate resources (hardware/software processors)

• Bind computations to resources

• Schedule operations in time

 Partitioning = (allocation +) binding

Mapping = binding + scheduling

• Allocation, scheduling and binding interact, 
but separating them helps

• Alternatively allocate, bind, then schedule

© Margarida Jacome, UT Austin
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Mapping Example

P1 P2

P3

d1 d2

Task graph Hardware platform

M1 M2

© Margarida Jacome, UT Austin
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Example Cost Model

• Process execution times

• Communication cost

• Assume communication within PE is free

• Cost of communication from P1 to P3 is d1 = 2

• Cost of P2 to P3 communication is d2 = 4

P1 P2

P3

d1 d2
2 4

P1

P2

P3

M1 M2
5

5

--

5

6

5
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First Design

• Allocate P2 -> M1; P1, P3 -> M2.

time

M1

M2

network

5 10 15 20

P1

P2

d2

P3

Time = 15

© Margarida Jacome, UT Austin
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Second Design

• Allocate P1 -> M1; P2, P3 -> M2:

M1

M2

network

5 10 15 20

P1

P2

d1

P3

Time = 12
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Co-Design Approaches

• Partitioning

• Exact methods
– Integer linear programming (ILP) formulations

• Heuristics
– Constructive: Hierarchical clustering

– Iterative: Kernighan-Lin

• Scheduling

• Static
• ILP formulations for combined scheduling & partitioning

 Borrowed from high-level synthesis (see later lectures)

• Dynamic
• Operating system

 Real-time scheduling


