
EE382M.20: System-on-Chip (SoC) Design Lecture 6

© 2018 A. Gerstlauer 1

EE382M.20:
System-on-Chip (SoC) Design

Andreas Gerstlauer
Electrical and Computer Engineering

University of Texas at Austin
gerstl@ece.utexas.edu

Lecture 6 – Task Partitioning
Sources:

Prof. Margarida Jacome, UT Austin
Prof. Lothar Thiele, ETH Zürich

EE382M.20: SoC Design, Lecture 6 © 2018 A. Gerstlauer 2

Lecture 6: Outline

• Accelerated system design

• When to use accelerators

• Performance analysis

• Partitioning

• Decomposition

• Constructive heuristics

• Iterative heuristics

• System-level design

• MPSoC trends

EE382M.20: System-on-Chip (SoC) Design Lecture 6

© 2018 A. Gerstlauer 2

EE382M.20: SoC Design, Lecture 6 © 2018 A. Gerstlauer 3

Hardware vs. Software Modules

• Hardware
• Functionality implemented via a custom architecture

(e.g. datapath + FSM)
• Software

• Functionality implemented on a programmable processor
(datapath + programmable control)

 Key differences
• Concurrency

– Processors usually have one “thread of control”
– Dedicated hardware often has concurrent datapaths

Multiplexing
– Software modules multiplexed with others on a processor (e.g. OS)
– Hardware modules are typically mapped individually on dedicated

hardware blocks

© Margarida Jacome, UT Austin

EE382M.20: SoC Design, Lecture 6 © 2018 A. Gerstlauer 4

Accelerated System Architecture

CPU

Accelerator

Memory

I/O

request

data
result

© Margarida Jacome, UT Austin

EE382M.20: System-on-Chip (SoC) Design Lecture 6

© 2018 A. Gerstlauer 3

EE382M.20: SoC Design, Lecture 6 © 2018 A. Gerstlauer 5

Accelerators

• Accelerator vs. co-processor

• A co-processor executes instructions.
– Instructions are dispatched by the CPU

• An accelerator appears as a device on the bus.
– The accelerator is controlled via registers

• Accelerator implementations

• Application-specific integrated circuit (ASIC)

• Field-programmable gate array (FPGA).

• Standard component.
– Example: graphics processor.

• SoCs enable multiple accelerators, peripherals, and some
memory to be placed with a CPU on a single chip

© Margarida Jacome, UT Austin

EE382M.20: SoC Design, Lecture 6 © 2018 A. Gerstlauer 6

Why Accelerators?

• Better cost/performance

• Custom logic may be able to perform operation faster or at
lower power than a CPU of equivalent cost

– Better at real-time, I/O, streaming, parallelism

• CPU cost is a non-linear function of performance
– May not be able to do the work on even the largest CPU

cost

performance

© Margarida Jacome, UT Austin

EE382M.20: System-on-Chip (SoC) Design Lecture 6

© 2018 A. Gerstlauer 4

EE382M.20: SoC Design, Lecture 6 © 2018 A. Gerstlauer 7

Why Accelerators? (cont’d)

• Better real-time performance

• Put time-critical functions on less-loaded processing
elements

• Scheduling utilization is ‘limited’---extra CPU cycles must
be reserved to meet deadlines. (see previous lecture)

cost

performance

deadline
deadline w/
scheduling overhead

© Margarida Jacome, UT Austin

EE382M.20: SoC Design, Lecture 6 © 2018 A. Gerstlauer 8

Performance Analysis

• Critical parameter is speedup

• How much faster is the system with the accelerator?

• Must take into account

• Accelerator execution time

• Data transfer time

• Synchronization with the master CPU

• Total accelerator execution time

• taccel = tin + tx + tout

Data input Accelerated
computation

Data output

© Margarida Jacome, UT Austin

EE382M.20: System-on-Chip (SoC) Design Lecture 6

© 2018 A. Gerstlauer 5

EE382M.20: SoC Design, Lecture 6 © 2018 A. Gerstlauer 9

Accelerator Speedup

• Assume loop is executed n times.

• Compare accelerated system to non-accelerated system:

• Saved Time = n(tCPU - taccel)

• = n[tCPU - (tin + tx + tout)]

• Speed-Up = Original Ex. Time / Accelerated Ex. Time

• Speed-Up = tCPU / taccel

• Data input/output times include

• flushing register/cache values to main memory;

• time required for CPU to set up transaction;

• data transfer overhead for bus packets, handshaking, etc.

Execution time of equivalent
function on CPU

© Margarida Jacome, UT Austin

EE382M.20: SoC Design, Lecture 6 © 2018 A. Gerstlauer 10

Accelerator/CPU Interface

• Data transfers

• Accelerator registers provide control registers for CPU

• Shared memory region for data exchange
– Data registers can be used for small data objects

• Accelerator may include special-purpose read/write logic
(bus mastering DMA hardware)

– Especially valuable for large data transfers

• Caching problems

• CPU might not see memory writes by the accelerator

 Invalidate cache lines or disable caching of shared regions

• Synchronization

• Concurrent accesses to shared variables

 Semaphores using atomic test & set bus operations

© Margarida Jacome, UT Austin

EE382M.20: System-on-Chip (SoC) Design Lecture 6

© 2018 A. Gerstlauer 6

EE382M.20: SoC Design, Lecture 6 © 2018 A. Gerstlauer 11

Single- vs. Multi-Threaded

• One critical factor is available parallelism
• Single-threaded/blocking

– CPU waits for accelerator

• Multithreaded/non-blocking
– CPU continues to execute along with accelerator

• To multithread, CPU must have useful work to do
• But software must also support multithreading

 Sources of parallelism
• Overlap I/O and accelerator computation

– Perform operations in batches, read in second batch of data while
computing on first batch.

• Find other work to do on the CPU
– May reschedule operations to move work after accelerator initiation.

© Margarida Jacome, UT Austin

EE382M.20: SoC Design, Lecture 6 © 2018 A. Gerstlauer 12

Execution Time Analysis

• Single-threaded:

• Count execution time of all
component processes.

• Multi-threaded:

• Find longest path through
execution.

P2

P1

A1

P3

P4

P2

P1

A1

P3

P4

© Margarida Jacome, UT Austin

EE382M.20: System-on-Chip (SoC) Design Lecture 6

© 2018 A. Gerstlauer 7

EE382M.20: SoC Design, Lecture 6 © 2018 A. Gerstlauer 13

Lecture 6: Outline

 Accelerated system design

When to use accelerators

Performance analysis

• HW/SW partitioning

• Decomposition

• Constructive heuristics

• Iterative heuristics

• System-level design

• MPSoC trends

EE382M.20: SoC Design, Lecture 6 © 2018 A. Gerstlauer 14

Decomposition

• Divide functional specification into modules

• Map units onto PEs

• Units may become processes

• Determine proper level of parallelism

f3(f1(),f2())

f1() f2()

f3()

vs.

© Margarida Jacome, UT Austin

EE382M.20: System-on-Chip (SoC) Design Lecture 6

© 2018 A. Gerstlauer 8

EE382M.20: SoC Design, Lecture 6 © 2018 A. Gerstlauer 15

Decomposition Example

• Divide program into Control-Data Flow Graph (CDFG)

• Hierarchically decompose CDFG to identify partitions

Block 1

Block 2

Block 3

cond 1

cond 2
P1

P2

P3
P4

P5

© Margarida Jacome, UT Austin

Partitioning

• Assign tasks (objects) to processors (partitions) such
that all objects are assigned to unique partitions

• Minimize communication cost (graph partitioning)

• Minimize partition count (bin packing)

• Partition size, partition count, etc. constraints

 Exact methods

• Exhaustive enumeration, integer linear programming (ILP)

 Constructive heuristics

• Random mapping, hierarchical clustering

 Iterative heuristics

• Hill climbing, Kernighan-Lin, simulated annealing

EE382M.20: SoC Design, Lecture 6 © 2018 A. Gerstlauer 16© Lothar Thiele, ETH Zürich

EE382M.20: System-on-Chip (SoC) Design Lecture 6

© 2018 A. Gerstlauer 9

EE382M.20: SoC Design, Lecture 6 © 2018 A. Gerstlauer 17

Constructive Methods

• Construct solution one by one

• Visit every object once

• Can generate a starting partition for iterative methods

• Shows the difficulty of finding proper closeness functions

 Random mapping

• Each object is assigned to a block randomly

 Hierarchical clustering

• Stepwise grouping of objects

• Closeness function determines how desirable it is to group
two objects

© Lothar Thiele, ETH Zürich

EE382M.20: SoC Design, Lecture 6 © 2018 A. Gerstlauer 18

Hierarchical Clustering - Example (1)

2010

10
8

4 6

v1

v3v2

v4

v5 = v1v3

10

7

4 v4

v5

v2

Closeness function: arithmetic mean of weights

© Lothar Thiele, ETH Zürich

EE382M.20: System-on-Chip (SoC) Design Lecture 6

© 2018 A. Gerstlauer 10

EE382M.20: SoC Design, Lecture 6 © 2018 A. Gerstlauer 19

Hierarchical Clustering - Example (2)

v6 = v2v5

5.5

v4

v610

7

4 v4

v5

v2

© Lothar Thiele, ETH Zürich

EE382M.20: SoC Design, Lecture 6 © 2018 A. Gerstlauer 20

Hierarchical Clustering - Example (3)

v7 = v6v4

v75.5

v4

v6

© Lothar Thiele, ETH Zürich

EE382M.20: System-on-Chip (SoC) Design Lecture 6

© 2018 A. Gerstlauer 11

EE382M.20: SoC Design, Lecture 6 © 2018 A. Gerstlauer 21

Hierarchical Clustering - Example (4)

v7 = v6v4

v4

v6 = v2v5

v5 = v1v3

v1 v2 v3

Step 1:

Step 2:

Step 3:

Cut lines
(partitions)

© Lothar Thiele, ETH Zürich

Iterative Methods

• Principles

• Start with some initial solution

• Search neighborhood (similar solutions), select candidate
and make local change based on fitness/cost function

• End on stopping criterion

 Simple iterative improvement or “hill climbing”

• Select candidate with best improvement in cost

• Stop when no candidate with lower cost is found

 Kernighan-Lin

• More exhaustive search to escape local optima

EE382M.20: SoC Design, Lecture 6 © 2018 A. Gerstlauer 22© Lothar Thiele, ETH Zürich

EE382M.20: System-on-Chip (SoC) Design Lecture 6

© 2018 A. Gerstlauer 12

EE382M.20: SoC Design, Lecture 6 © 2018 A. Gerstlauer 23

Iterative Improvement (Hill Climbing)

• Simple greedy heuristic

• Until there is no improvement in cost: re-group a pair of
objects which leads to the largest gain in cost

v9

v2

v4
v5

v7

v1

v3v6

v8

Example: Cost = number of edges crossing the partitions
Before re-group: 5 ; after re-group: 4 ; gain = 1

© Lothar Thiele, ETH Zürich

EE382M.20: SoC Design, Lecture 6 © 2018 A. Gerstlauer 24

Kernighan-Lin

• Problem

• Simple greedy heuristic can get stuck in a local minimum

• Kernighan-Lin algorithm

• As long as a better partition is found
– From all possible pairs of objects, virtually re-group the “best” (lowest

cost of the resulting partition)

– From the remaining not yet touched objects, virtually re-group the “best”
pair, etc.,

– Continue until all objects have been re-grouped

– From these n/2 partitions take the one with smallest cost and actually
perform the corresponding re-group operations. O(n2logn) complexity

• Still can get stuck in local minimum
– Among sequences of moves

 More complex strategies

• Randomize search, e.g. simulated annealing

© Lothar Thiele, ETH Zürich

EE382M.20: System-on-Chip (SoC) Design Lecture 6

© 2018 A. Gerstlauer 13

EE382M.20: SoC Design, Lecture 6 © 2018 A. Gerstlauer 25

Lecture 6: Outline

 Accelerated system design

When to use accelerators

Performance analysis

 HW/SW partitioning

Decomposition

Partitioning heuristics

• System-level design

• MPSoC trends

EE382M.20: SoC Design, Lecture 6 © 2018 A. Gerstlauer 26

Many More Implementation Choices

• Microprocessors
• Microcontrollers

• Domain-specific processors
• DSP
• Graphics/network

processors
• ASIPs
• Reconfigurable SoC
• FPGA
• Gatearray
• ASIC

Speed Power Cost

High Low
Volume

© Margarida Jacome, UT Austin

EE382M.20: System-on-Chip (SoC) Design Lecture 6

© 2018 A. Gerstlauer 14

EE382M.20: SoC Design, Lecture 6 © 2018 A. Gerstlauer 27

Heterogeneous Processors

• Many types of programmable processors

• Past/now: micro-processor/-controller, DSP

• Now/future: graphics, network, crypto, game, … processor

• Application-specific instruction-set processor (ASIP)

• Processors with instruction-sets tailored to specific
applications or application domains

– Instruction-set generation as part of synthesis

– e.g. Tensilica

• Pluses:
– Customization yields lower area, power etc.

• Minuses:
– Higher h/w & s/w development overhead

– Design, compilers, debuggers

© Margarida Jacome, UT Austin

EE382M.20: SoC Design, Lecture 6 © 2018 A. Gerstlauer 28

DSP core 1
Modem

DSP core 2
Sound codec

ASIP core 1
Master control

ASIP core 2
Mem. controller

ASIP core 3
Bit manip.

VLIW DSP

Programmable video
operations, std. extensions

A/D
&
D/A

Hardware Accelerators

Video operators for DCT,
inv. DCT, motion estim.

Memory
(RAM)

Glue Logic

I/O: S interface

I/O: Host interface

Embedded
Software

Hardware:
Std. cell and
Memory

Designed by the
R&D group at SGS
Thompson

MPSoC: Video Telephone

© Margarida Jacome, UT Austin

EE382M.20: System-on-Chip (SoC) Design Lecture 6

© 2018 A. Gerstlauer 15

EE382M.20: SoC Design, Lecture 6 © 2018 A. Gerstlauer 29

IP-Based Design

Source: A. Sangiovanni-Vincentelli, UC Berkeley

© Margarida Jacome, UT Austin

EE382M.20: SoC Design, Lecture 6 © 2018 A. Gerstlauer 30

Platform Mapping

Source: A. Sangiovanni-Vincentelli, UC Berkeley

© Margarida Jacome, UT Austin

EE382M.20: System-on-Chip (SoC) Design Lecture 6

© 2018 A. Gerstlauer 16

EE382M.20: SoC Design, Lecture 5 © 2018 A. Gerstlauer 31

MPSoC Synthesis Tasks

• Recap: Mapping

• Allocate resources (hardware/software processors)

• Bind computations to resources

• Schedule operations in time

 Partitioning = (allocation +) binding

Mapping = binding + scheduling

 Allocation, scheduling and binding interact

 Even more so in MPSoC case

© Margarida Jacome, UT Austin

