
EE382M.20: System-on-Chip (SoC) Design Lecture 7

© 2018 A. Gerstlauer 1

EE382M.20:
System-on-Chip (SoC) Design

Andreas Gerstlauer
Electrical and Computer Engineering

University of Texas at Austin
gerstl@ece.utexas.edu

Lecture 7 – Task Scheduling
With sources from:

Prof. Margarida Jacome, UT Austin
Prof. Peter Marwedel, Univ. of Dortmund

EE382M.20: SoC Design, Lecture 7 © 2018 A. Gerstlauer 2

Lecture 7: Outline

• Uni-processor scheduling

• Aperiodic tasks

• Periodic tasks

• Dependent tasks

• Special considerations

• Context-switch times

• Interrupts

• Muti-processor scheduling

• MPSoC synthesis

EE382M.20: System-on-Chip (SoC) Design Lecture 7

© 2018 A. Gerstlauer 2

EE382M.20: SoC Design, Lecture 7 © 2018 A. Gerstlauer 3

Margarida Jacome - UT Austin 3

Multiplexing Software Modules

Call B

Return

Resume B

Resume B

Resume A

Resume A

A B A B A B

SUBROUTINES COROUTINES PROCESSES
Hierarchical Symmetric Symmetric

Sequential, static Sequential, static Concurrent, dynamic
Modularity
Complexity

© Margarida Jacome, UT Austin

EE382M.20: SoC Design, Lecture 7 © 2018 A. Gerstlauer 4

Scheduling

V1 V2 V4V3

t

G=(V,E)

Dt

• Assume that we are given a task graph G=(V,E)

• A schedule of G is a mapping V Dt of a set of tasks V
to start times from domain Dt, such that none overlap

 Find such a mapping
• Optimize throughput (rate of G), latency (makespan of G)
• Resource, dependency, real-time (deadline) constraints

© Peter Marwedel, Dortmund Univ.

EE382M.20: System-on-Chip (SoC) Design Lecture 7

© 2018 A. Gerstlauer 3

EE382M.20: SoC Design, Lecture 7 © 2018 A. Gerstlauer 5

Task Scheduling Problems

• Task types
• Periodic

– Set of tasks { T1, T2, … }
– Period ti

– (Worst-case) execution time ei

• Aperiodic/sporadic
– Arrival/release time ai

• Task dependencies
• Tasks with precedence constraints

– Dependencies, task graph

• Preemptive vs. non-preemptive
• Task with higher priority can preempt lower priority one

• Uni- vs. multi-processor scheduling
• Pre-defined vs. joint binding/partitioning
• Symmetric vs. asymmetric multi-processing (SMP/AMP)

– Homogeneous vs. heterogeneous

EE382M.20: SoC Design, Lecture 7 © 2018 A. Gerstlauer 6

Uni-Processor Scheduling

• Aperiodic, independent tasks (task set)

• Simultaneous (at system start) arrival times
– Earliest Due Date (EDD) minimizes max. lateness (non-preemptive)

• Arbitrary arrival times (statically know or dynamic)
– Earliest Deadline First (EDF) minimizes max. lateness (preemptive)

– Without preemption optimality only possible if arrival times known

• Periodic, independent tasks

• Schedulability only (preemptive, static or dynamic)
– Rate Monotonic Scheduling (RMS) is optimal fixed priority scheme

» Does not achieve 100% CPU utilization for guaranteed schedulability

– Earliest Deadline First (EDF) is optimal dynamic priority scheme
» 100% utilization, but runtime support/overhead for dynamic priorities

• Dependent tasks (task graph)

• Simultaneous (at system start) arrival times
– Latest Deadline First (LDF) minimizes max. lateness (non-preempt.)

• Arbitrary arrival times (statically know or dynamic)
– Modified EDF* w/ successor-adjusted deadlines

EE382M.20: System-on-Chip (SoC) Design Lecture 7

© 2018 A. Gerstlauer 4

EE382M.20: SoC Design, Lecture 7 © 2018 A. Gerstlauer 7

Aperiodic, Independent Task Model

• ei is execution time of task i
• Arrival time ai of task i
• Deadline i of task i (real-time!)

 Waiting time
• Difference between start time si and arrival time ai

 Response time
• Difference between finish time fi and arrival time ai

 Lateness/slack
• Difference between response time ri and deadline i

Deadline i

Ti

Execution time ei

© Margarida Jacome, UT Austin

Arrival ai

Simultaneous Arrival Times

• Preemption is useless

• All tasks arrive at the same time

• Total schedule makespan/length is fixed to ∑ei

• Optimize average waiting time: Shortest Job First (SJF)

• Optimize lateness under deadlines: real-time scheduling

 Earliest Due Date (EDD)

• Execute task with earliest due date (deadline) first

• Sort tasks by their (absolute) deadlines

 EDD is optimal to minimize the maximum lateness

fifi fi

EE382M.20: SoC Design, Lecture 7 © 2018 A. Gerstlauer 8© Peter Marwedel, Dortmund Univ.

EE382M.20: System-on-Chip (SoC) Design Lecture 7

© 2018 A. Gerstlauer 5

Different Arrival Times

• Requires preemption for optimality

• Avg. waiting time: Shortest Remaining Time First (SRTF)

• Real-time: Earliest Deadline First (EDF)
– Alternative: Least Laxity (LL) / Least Slack Time First (LSF)

 EDF and LL/LSF are optimal

• Minimizing maximum lateness

• Differences in response times

 If preemption is not allowed

• All arrival times need to be know to achieve optimality

• Problem becomes NP-hard

• EDF remains best online (unknown arrival times) algorithm

EE382M.20: SoC Design, Lecture 7 © 2018 A. Gerstlauer 9© Peter Marwedel, Dortmund Univ.

EE382M.20: SoC Design, Lecture 7 © 2018 A. Gerstlauer 10

Periodic Task Model

• ei is execution time of task i
• Tasks arrive at regular, periodic times ai = {i, 2i, 3i,…}
• Deadline i is period of task i (always real-time)

 Waiting time wi

 Response time ri

 Lateness/slack li

Period i

Ti

Execution time ei

© Margarida Jacome, UT Austin

EE382M.20: System-on-Chip (SoC) Design Lecture 7

© 2018 A. Gerstlauer 6

EE382M.20: SoC Design, Lecture 7 © 2018 A. Gerstlauer 11

Scheduling Metrics

• How do we evaluate a periodic scheduling policy

• Ability to satisfy all deadlines (real-time)

• CPU utilization
– Percentage of time devoted to useful work

• Scheduling overhead
– Time required to make scheduling decision

 Schedulability
 Find a schedule iff one exists that satisfies all deadlines

 Worst-case CPU utilization that guarantees schedulability for any task set

• Constraints

• Set of tasks T with period i each
– Response time ri = finish time fi – arrival time ai

– Deadline di: ri < di, in periodic case often di =i

• Minimize latency
– Lateness li = ri - di

© Margarida Jacome, UT Austin

EE382M.20: SoC Design, Lecture 7 © 2018 A. Gerstlauer 12

• Scheduling Policies
• RMS – Rate Monotonic Scheduling

– Task Priority = Rate = 1/Period
– RMS is the optimal preemptive fixed-priority scheduling policy

• EDF – Earliest Deadline First
– Task Priority = Current Absolute Deadline
– EDF is the optimal preemptive dynamic-priority scheduling policy

• Scheduling assumptions
• Single processor
• All tasks are periodic
• Zero context-switch time
• Worst-case task execution times are known
• No data dependencies among tasks

 RMS and EDF have both been extended to relax these

Periodic Task Scheduling

© Margarida Jacome, UT Austin

EE382M.20: System-on-Chip (SoC) Design Lecture 7

© 2018 A. Gerstlauer 7

EE382M.20: SoC Design, Lecture 7 © 2018 A. Gerstlauer 13

Rate Monotonic Scheduling (RMS)

• Model

• All process run on single CPU.

• Zero context switch time.

• No data dependencies between processes.

• Process execution time is constant.

• Deadline is at end of period.

• Highest-priority ready process runs.

 RMS [Liu and Layland, 73]

• Widely-used, analyzable scheduling policy.

 Rate Monotonic Analysis (RMA)

• Theoretical analysis

© Margarida Jacome, UT Austin

Critical Instant
• Scheduling state that gives worst response time

• All processes become ready at the same time

EE382M.20: SoC Design, Lecture 7 © 2018 A. Gerstlauer 14

P4

P3

P2

P1

Critical
instant

P1 P1 P1 P1

P2 P2

P3

interfering processes

Worst case period for P4…

© Margarida Jacome, UT Austin

EE382M.20: System-on-Chip (SoC) Design Lecture 7

© 2018 A. Gerstlauer 8

EE382M.20: SoC Design, Lecture 7 © 2018 A. Gerstlauer 15

RMS Priorities

• Optimal (fixed) priority assignment

• Shortest-period process gets highest priority
– priority based preemption can be used…

• Priority inversely proportional to period

• Break ties arbitrarily

 No fixed-priority scheme does better.

 RMS provides the highest worst case CPU utilization while
ensuring that all processes meet their deadlines

© Margarida Jacome, UT Austin

EE382M.20: SoC Design, Lecture 7 © 2018 A. Gerstlauer 16

RMS Example 1

Task Execution Time Period
tieiTi

41T1

62T2

123T3

0 2 4 6 8 10 12

T3

T2

T1

(least common multiple of
process periods)

Unrolled schedule

Static priority: T1 >> T2 >> T3

© Margarida Jacome, UT Austin

EE382M.20: System-on-Chip (SoC) Design Lecture 7

© 2018 A. Gerstlauer 9

EE382M.20: SoC Design, Lecture 7 © 2018 A. Gerstlauer 17

RMS CPU Utilization

• Utilization for n processes is

i ei / ti

• Schedulability analysis

i ei / ti ≤ n(21/n – 1)

• As number of tasks approaches infinity, the worst case
maximum utilization approaches 69%
• Yet, is not uncommon to find total utilizations around .90 or

more (.69 is worst case behavior of algorithm)
• Achievable utilization is strongly dependent upon the

relative values of the periods of the tasks comprising the
task set…

© Margarida Jacome, UT Austin

EE382M.20: SoC Design, Lecture 7 © 2018 A. Gerstlauer 18

RMS Example 2

Task Execution Time Period
tieiTi

41T1

86T2

Is this task set schedulable?? If yes, give the CPU utilization.

© Margarida Jacome, UT Austin

EE382M.20: System-on-Chip (SoC) Design Lecture 7

© 2018 A. Gerstlauer 10

EE382M.20: SoC Design, Lecture 7 © 2018 A. Gerstlauer 19

RMS CPU Utilization (cont’d)

• RMS cannot asymptotically guarantee use of 100% of
CPU, even with zero context switch overhead.

• Must keep idle cycles available to handle worst-case
scenario.

• However, RMS guarantees all processes will always meet
their deadlines.

Time0 5 10

T2 period

T1 period

T1

T2

T1 T1

T2

© Margarida Jacome, UT Austin

EE382M.20: SoC Design, Lecture 7 © 2018 A. Gerstlauer 20

RMS Implementation

• Statically fixed priority assignment

• Inversely proportional to period

 Efficient implementation

• Scan processes

• Choose highest-priority active process

© Margarida Jacome, UT Austin

EE382M.20: System-on-Chip (SoC) Design Lecture 7

© 2018 A. Gerstlauer 11

EE382M.20: SoC Design, Lecture 7 © 2018 A. Gerstlauer 21

Earliest-Deadline-First (EDF) Scheduling

• Dynamic priority scheduling scheme.
• Process closest to its deadline has highest priority
• Requires recalculating processes at every timer interrupt

• EDF analysis
• EDF can use 100% of CPU for worst case
 Optimal for periodic scheduling

• EDF implementation
• On each timer interrupt:

– Compute time to deadline
– Choose process closest to deadline

• Generally considered too expensive to use in practice,
unless the task count is small

– Implementation on an OS with only fixed priorities [Margull’08]

© Margarida Jacome, UT Austin

EE382M.20: SoC Design, Lecture 7 © 2018 A. Gerstlauer 22

EDF Example

T2

T1

t

© Margarida Jacome, UT Austin

EE382M.20: System-on-Chip (SoC) Design Lecture 7

© 2018 A. Gerstlauer 12

EE382M.20: SoC Design, Lecture 7 © 2018 A. Gerstlauer 23

EDF Example

T2

T1

t

© Margarida Jacome, UT Austin

EE382M.20: SoC Design, Lecture 7 © 2018 A. Gerstlauer 24

EDF Example

T2

T1

t

© Margarida Jacome, UT Austin

EE382M.20: System-on-Chip (SoC) Design Lecture 7

© 2018 A. Gerstlauer 13

EE382M.20: SoC Design, Lecture 7 © 2018 A. Gerstlauer 25

EDF Example

T2

T1

t

© Margarida Jacome, UT Austin

EE382M.20: SoC Design, Lecture 7 © 2018 A. Gerstlauer 26

EDF Example

T2

T1

t

© Margarida Jacome, UT Austin

EE382M.20: System-on-Chip (SoC) Design Lecture 7

© 2018 A. Gerstlauer 14

EE382M.20: SoC Design, Lecture 7 © 2018 A. Gerstlauer 27

EDF Example

T2

T1

t

No task is
ready…

© Margarida Jacome, UT Austin

EE382M.20: SoC Design, Lecture 7 © 2018 A. Gerstlauer 28

EDF Example

T2

T1

t

© Margarida Jacome, UT Austin

EE382M.20: System-on-Chip (SoC) Design Lecture 7

© 2018 A. Gerstlauer 15

EE382M.20: SoC Design, Lecture 7 © 2018 A. Gerstlauer 29

EDF Example

T2

T1

© Margarida Jacome, UT Austin

Dependent Tasks

• Task graph

 On uni-processor, periodic derived from aperiodic

• All tasks must have same period

• Period(throughput) = 1 / makespan(latency)

EE382M.20: SoC Design, Lecture 7 © 2018 A. Gerstlauer 30© Peter Marwedel, Dortmund Univ.

EE382M.20: System-on-Chip (SoC) Design Lecture 7

© 2018 A. Gerstlauer 16

Simultaneous Arrival Times

• Latest Deadline First (LDF)

• Process task graph from sinks to sources

• Among tasks without successors, insert the ones with the
latest deadline into the schedule

• At runtime, process in generated static reverse order

 Optimal for uni-processor

• Non-preemptive

• If no local deadlines,
just topological sort

EE382M.20: SoC Design, Lecture 7 © 2018 A. Gerstlauer 31© Peter Marwedel, Dortmund Univ.

Different Arrival Times

• Modified EDF*

• Process graph from sinks to sources

• Propagate deadlines adjusted for execution times

• Under global time basis (adjusted for arrival times)

• At each node, deadline = min(original,propagated)

• Run regular EDF schedule for independent taks

 Optimal for uni-processor

• Preemptive

EE382M.20: SoC Design, Lecture 7 © 2018 A. Gerstlauer 32

EE382M.20: System-on-Chip (SoC) Design Lecture 7

© 2018 A. Gerstlauer 17

EE382M.20: SoC Design, Lecture 7 © 2018 A. Gerstlauer 33

Lecture 7: Outline

 Uni-processor scheduling

 Aperiodic tasks

 Periodic tasks

 Dependent tasks

• Special considerations

• Context-switch times

• Interrupts

• Muti-processor scheduling

• MPSoC synthesis

EE382M.20: SoC Design, Lecture 7 © 2018 A. Gerstlauer 34

Performance Evaluation

• Context switch time

• Non-zero context switch time can push limits of a tight
schedule

• Hard to calculate effects
– Depends on order of context switches

• In practice, OS context switch overhead is small

• May want to test

• Context switch time assumptions on real platform

• Scheduling policy

© Margarida Jacome, UT Austin

EE382M.20: System-on-Chip (SoC) Design Lecture 7

© 2018 A. Gerstlauer 18

EE382M.20: SoC Design, Lecture 7 © 2018 A. Gerstlauer 35

What about interrupts?

• Interrupt overhead
• Interrupts take time away from processes
• Other event processing may be masked during

interrupt service routine (ISR)
• Perform minimum work possible in the interrupt

handler

 Device processing structure
• ISR performs minimal I/O.

– Get register values, put register values

• Interrupt service process/thread performs most
of device function

 Sporadic tasks
 Frequent aperiodic tasks
 Turn into periodic tasks via sporadic task server process

T1

OS

P2

OS

intr

T2

© Margarida Jacome, UT Austin

EE382M.20: SoC Design, Lecture 7 © 2018 A. Gerstlauer 36

Caches

• Processes can cause additional caching problems.

• Even if individual processes are well-behaved, processes
may interfere with each other

• Worst-case execution time with bad cache behavior is
usually much worse than execution time with good cache
behavior

 Perform schedulability analysis without caches

• Take any online performance gains as “free lunch”

© Margarida Jacome, UT Austin

EE382M.20: System-on-Chip (SoC) Design Lecture 7

© 2018 A. Gerstlauer 19

EE382M.20: SoC Design, Lecture 7 © 2018 A. Gerstlauer 37

Uni-Processor Summary

• Scheduling
• Dynamic, preemptive & priority-based scheduling

– Real-time operating system (RTOS)

• Independent periodic tasks
– Earliest-deadline-first (EDF)

• Aperiodic or dependent tasks
– EDF or modified EDF*

• Mix of periodic/aperiodic/sporadic
– Split into hierarchy of periodic/independent dynamic schedule with

aperiodic/dependent statically scheduled subgraphs

• What if your set of processes is unschedulable?
• Change deadlines in requirements.
• Reduce execution times of processes.
• Get a faster CPU
 Change the partitioning!

EE382M.20: SoC Design, Lecture 7 © 2018 A. Gerstlauer 38

Lecture 7: Outline

 Uni-processor scheduling

 Aperiodic tasks

 Periodic tasks

 Dependent tasks

 Special considerations

 Context-switch times

 Interrupts

• Muti-processor scheduling

• MPSoC synthesis

EE382M.20: System-on-Chip (SoC) Design Lecture 7

© 2018 A. Gerstlauer 20

EE382M.20: SoC Design, Lecture 7 © 2018 A. Gerstlauer 39

Multi-Processor Scheduling

• NP-complete in general

• Inter-dependency with partitioning/binding

• Use of heuristics

 Independent tasks

• Partition and apply uni-processor scheduling
– Aperiodic tasks: bin packing, longest-processing time first (LPT)

• Uni-processor extensions to homogeneous SMP (multi-core)
– Global EDF (non-optimal), P-Fair (optimal)

 Dependent tasks or heterogeneous processors

• For simple cases, partition first and schedule separately

• In general, solve partitioning & scheduling jointly

 Heuristics from compilers & high-level synthesis (Lecture 12)

MPSoC Synthesis

EE382M.20: SoC Design, Lecture 7 © 2018 A. Gerstlauer 40

MPSoC Synthesis

• Design space exploration (DSE)

• General application MoCs & architectures

• Multi-objective, Pareto optimality

 Traditional HW/SW co-design approaches not sufficient

• Iterative process

• Determine mapping
– Partitioning & scheduling

• Evaluate solutions

 EE382V: Embedded System Design & Modeling

Application Architecture

Mapping

Estimation

© Lothar Thiele, ETH Zürich

