
1

Basic C++ for SystemC
A Rapid Review / Introduction

www.doulos.com

Info@Doulos.com

Version 1.5

David C Black

• Provide a quick C++ review
•  Assumes a knowledge of C

• Make it easier to learn SystemC
•  Focus on elements used by SystemC

• NOT a ground up tutorial
•  See references for that

•  Use as a guideline on what to learn

Fasten your seatbelts!

Objectives - C++ for SystemC

2

Agenda - C++ for SystemC

•  Nature of C++
•  Data Types & Strings
•  Streaming I/O
•  Namespaces
•  Functions
•  Defining & using
•  Pass by value & reference
•  Const arguments
•  Overloading
•  Operators as functions

•  Templates
•  Defining
•  Using

•  Classes (OO)

•  Data & Methods

•  Constructors

•  Destructors

•  Inheritance

•  Polymorphism

•  Constant members

•  Static members

•  Guidelines

•  STD Library tidbits

•  1980 Bjarne Stroustrup of Bell labs begins work on better C
•  1983 named C++

•  1985, 1st commercially released compiler
•  1985 publication of "The C++ Programming Language”

•  1989 ANSI standard for the C language
•  Used many contributions of C++ to structured programming

•  1990 ANSI committee X3J16 begins standard for C++
•  1998 ISO/IEC 14882:1998

•  2003 ISO/IEC 14882:2003(E) update

•  2011 ISO/IEC 14882:2011 – aka C++0xB or C++11
•  2014 ISO/IEC 14882:2014 – aka C++14

History of C++

3

typedef enum { German, Spanish, English } language_t;

char* Hello_world(language_t language) {

 if (language < 0) return "Hoy, Mars!";

 switch(language) {

 case German: return "Hallo, Wult!";

 case Spanish: return "Hola, Mundo!";

 default: return "Hello World!";

 }

}

int main(int argc, char* argv[])

{

 printf("%s\n", Hello_world(English));

 return 0;

}

C Example

•  Procedural programming - C

•  Simple data, Conditionals, Loops & Functions

•  Modular programming

•  Namespaces, Exception handling

•  Data abstraction

•  Structures, User defined types (enums & simple classes)

•  Concrete types & abstract types

•  Object Oriented

•  Class hierarchies, inheritance, overriding, polymorphism

•  Generic Programming

•  Templates, Containers, Algorithms

Multi-paradigm language

4

char* msg = “Hello there”;

char mesg2[80];

C-style “strings”

•  Really just pointer to unchecked array
– Danger, Will Robinson! Danger!

typedef char* cstr;
cstr name = “K&R”; // Array of 4 chars
#include <cstring>
strcpy(cstr,cstr), strcat(cstr,cstr),
strcmp(cstr,cstr), strlen(cstr), strchr(cstr,c)
#include <ctype.h>
isalpha(c), isupper(c), isdigit(c), isspace(c),
isalnum(c), toupper(c), tolower(c)

#include <string>
std::string mesg3(“Hello”);
std::string mesg4;

std::string

•  Much better/safer than C-strings
– Assign operator= and Concatenate operator+

•  Dynamically resizes
– s.length()<string::npos, s.size(),
s.capacity(), s.resize(N), s[pos]

– Compare with operators ==, !=, >, <, <=, >=
– Methods .insert(), .find(), .replace(),
 .substr(), swap()

5

•  Terse format limited to predefined types

• “%d %s %f %x %c”

•  Not type checked at compile-time

• Guidelines
•  Discouraged in C++ (see next slides)

C-style I/O

printf(char* fmt,var1, var2, …);

•  Streaming I/O makes it more natural

•  Objects "output themselves in an appropriate format."

•  No need to remember the correct %d %f %s

•  All output is consistent

Streaming I/O

#include <iostream>

cout << "Heading: " << obj << endl;

6

• Define for every data type:
struct Coord{ int x, y, z };
ostream& operator<<(ostream& s, const Coord& c)
{
 os << "(" << c.x << "," << c.y << "," << c.z << ")";

 return os; // no endl please
}

•  Simplifies I/O:

cout << c1;

•  Use boost::format if you desire printf style controls

Streaming I/O guidelines

1.  float joe(3.14159);
2. 

3.  extern float joe;

4.  void func(void) {
5.  signed joe;

6.  for (long joe = 0; joe!=3; ++joe)

7.  cout << joe << ' ' << ::joe << endl;
8.  }
9.  int main(void) {

10.  char joe = 'c';

11.  { BLOCK:

12.  double joe = 6.28318; // Hides main joe
13.  cout << joe << ‘ ‘ << ::joe << endl;
14.  func();

15.  }
16.  }

C Scope

6.28318 3.14159
0 3.14159
1 3.14159
2 3.14159

7

float joe(3.14159); // global
namespace gi { complex joe(2007,1984); }
namespace your { string joe(“your”); }
namespace my { namespace gi { short joe(42); }}

#include ”some.h” // externs to above
using namespace your;
namespace my {
 string joe(“along”);
 void mo() {
 long joe = 96;
 { NESTED:
 char joe = ‘c’; // Hides long joe
 cout << ::joe << ‘ ‘ << joe << ‘ ‘ << gi::joe << ‘ ‘
 << ::gi::joe << ‘ ‘ << my::joe << endl;
 }
 }
}
int main() { my::mo(); }

Namespaces - powerful

3.14159 c 42 2007+1984j along

Namespaces - anonymous

• Good for hiding
• Preferred alternative to file static
namespace {
 int magic = 42;
}
void use_magic(void) {
 cout << magic << endl;
}

8

•  Some EDA vendors have restrictions
•  Cadence disallows sc_module inside namespace

•  Use, but don’t abuse
•  Good for modular programming
•  Keeps nests < 2 deep
•  Use a top-level ::COMPANY for your own library

•  Use anonymous instead of static
•  For file scoped variables

•  Use ::global for clarity
•  Identifies globals & discourages their use

•  Convenience of using
•  Do using ::SPACE::MEMBER; as needed
•  Don’t using namespace SPACE; in header files (.h)

Namespace - Guidelines

• C++ supports procedural programming

• Functions are the basis for procedures

• The following topics will be covered:
•  Declaring, defining and using functions

•  Passing arguments by value

•  Pass arguments by reference

•  Const arguments

•  Overloading function names

•  Operators as functions

Agenda - Functions

9

Declaring functions

•  Simple indicates the syntax for usage and makes it available for use

•  Often included in header (.h) files

•  May be repeated without causing errors

int main(int argc, char* argv[]);

void display(string message);

float sum(vector v);

void status(void);

Defining functions

• Defines (implements) behavior

• May only be done once

void display(string message) {
 cout << message << endl;
}
 typedef vector<int>::iterator vi_t;// Simple alias
 int sum(vector<int> v) {
 int total = 0;
 for (vi_t e=v.beg();e!=v.end();++e) {
 total+=*e;
 }
 return total;
}

10

Using functions

• Straight forward

•  It is possible to pass address of function

• Use in lookup tables

• As a parameter to a generic algorithm

display(“Hello there”);
int y = sum(v) + 3;
status();

Passing arguments by value

• Copy supplied arguments into variables
•  Only way in C

• Example

void f(int a) {
 a = a+1;
 cout << “a=“ << a << endl;
}
int main(void) {
 int x = 42;
 f(x);
 f(5);
 cout << “x=“ << x << endl;
 return 0;
}

a=43
a=10
x=42

11

Passing arguments by reference

• Make variables point to original argument
•  Had to use messy pointers in C

•  Preferred over pointers – avoids common bugs

• Example

void f(int& a) {
 a = a+1;
 cout << “a=“ << a << endl;
}
int main(void) {
 int x = 42;
 f(x);
 // f(5); ILLEGAL - Cannot modify “5”
 cout << “x=“ << x << endl;
 return 0;
}

C++ syntax

a=43
x=43

Const arguments

• Compiler enforces “read-only” use

• Similar to task input in Verilog

• Good for passing large values by reference

• Documents intent

int sum(const std::vector<int>& v);

C++ syntax

12

Overloading function names

• Use same name for several different functions
•  Distinguished by number of arguments -or-

•  Distinguished by types of arguments

•  This is illegal in C
int add(const std::vector<int>& v);

float add(const std::vector<float>& v);

int add(int* a, int size);

int add(int a, int b);

int add(complex a, int b);

int add(int b, complex a);

void add(float a, complex a, complex& result);

• Return type not considered as part of signature

Operators as functions

•  a+b is another way of saying add(a,b)

•  C++ allows you to overload operators
•  May only use existing operators

•  May not change # arguments or precedence

•  May not redefine existing combinations

• E.g. may not redefine int + int (this is goodness)

•  Some operators require reference or const

•  Example
• complex operator+(complex lhs, complex rhs);

•  Use only where it makes intuitive sense
•  What does car + car = mean?

13

Topics - Templates

• C++ supports generic programming

• The following topics will be covered:
•  Using

•  Defining

•  Guidelines

Why generic programming?

• Suppose you want to create a struct/class that can hold
several data types and perform operations on them
cleanly.
•  Could use union, but code has to store information about which

data type is currently active, and code has to be duplicated to do
different tasks.

14

Templates (generic programming)

• Using templates is fairly easy & powerful
•  Standard template library (STL) is based on (drum roll) . . .

Templates!

•  SystemC uses templates a lot

• Defining templates is a bit messy
•  Guideline: Design a class without templates before you add the

details of templatization

• Functions and classes may be templated
•  Most folks familiar with class templates

Ex: using templates

• From STL
• std::vector<int> mem(20); // array
• void std::sort(T&); // sort any container
• std::list<pixel> image_list; // pixel list
• std::map<string,bool> used;
• From SystemC

• sc_int<12> reg; // 12 bit integer
• sc_fifo<int> int_fifo; // FIFO of int’s
• sc_fifo<packet> pkt_fifo; // FIFO of packets
• sc_fixed<8,4> scale; // xxxx.xxxx

15

Defining templates

• To define a template class
use the template
reserved word and include
argument specifications in
angle brackets (<>) as
shown here

template<typename T, int N>

struct fifo {

 T buff[N];

 void push(T v);

 T pop(void);

};

int main(void) {

 fifo<string,5> s_fifo;

 fifo<int,32> i_fifo;

 s_fifo.push(“hello”);

 i_fifo.push(50);

}

Templates are powerful

• Several types of templates
•  Template classes
 template<typename T> CLASSNAME {…};

•  Template functions
 template<typename T> RETURN FUNC(ARGS) {…};

• Get basic class working before making a template version

• Can have several arguments
•  Both typename’s and integral values

•  Latter arguments may have defaults

16

Defining templates can hurt

• Entire books devoted to the subject!
• Must consider disambiguation
•  C++ rules can be challenging
• Will two classes/functions suffice?

• Quite a few idiosyncrasies
•  Best to use template<typename T>

• #include "CLASSNAME.cpp"
•  Use this-> for members

• Partial & complete specialization

Agenda - Object-Oriented C++

• C++ supports the Object-Oriented (OO) paradigm

• The following topics will be covered:

- Multiple inheritance
- Protection & friends
- Virtual methods
- Pure virtual
- Abstract classes
- Interface classes
- Virtual inheritance
- Constant members
- Static Members

- Defining a class
- Methods
- Access types
- Constructors & initialization
- Destructors
- Inheritance
- Initializing base classes
- Adding members
- Overriding methods

17

Properties of objects

• Objects are instances of data types
•  Examples: integer count; laptop my_machine; complex number;

creature dino; shape square4x4; window main;

• Objects have state - attributes
•  Examples: count's value; my_machine's disk contents; real &

imaginary portion of number; size & orientation of square4x4;
main window's view, type & background

• Objects have behavior - methods
•  Examples: count can be added, subtracted, multiplied;

my_machine can execute programs; number can be added,
multiplied (scalar & cross); square4x4 can be drawn, inquired of
size; main can be moved, resized, drawn, closed

What is a class?

• Classes are custom data types
•  Effectively extend a programming language

• Classes define object types
•  Define attributes such as properties, and state

•  Define behaviors and capabilities

• Classes have:
•  State contained in attributes (member data)

•  Behavior defined in methods (member functions)

18

Member Data & Member Functions

•  In C++, all data types are classes

•  Instances of a data type are called objects

• int a; // creating an object instance
• Objects have functions they can perform

• a = 5; // store
• a = a + 5; // retrieve, add & store

• C++ uses keywords struct or class

•  Functions are allowed as members

What is a class in C++?

•  In C++, a class is simply a struct that has at least one
member function (aka method).

struct NAME {

 void METHOD(void); // makes NAME a class

}; //<- notice the semi-colon (easy to forget)

• By default, all members of a struct or public (i.e. accessible
directly from the outside using the “dot” operator.)
• The keyword class was introduced to help document intent

and almost synonymous to struct except for a minor detail of
access that will be discussed later.

class NAME2 { // also a class

 void METHOD(void); // makes NAME a class

}; //<- notice the semi-colon (easy to forget)

19

Creating a class

• Separate specification (declaration) from implementation
(definition)
•  Use header file (.h) to specify

•  Use implementation file (.cpp) to define

• Use struct or class
•  OO purists prefer class

•  SystemC historically used struct, but changed its tune during the
standardization process

Class suggestions (best practices)

• Comments in the implementation file (cpp) should be limited to
internal how or why things are done (i.e. implementation notes)

• Separate data from functions

•  Strict OO programming dictates all access to an object should be
through member functions.

•  Considered taboo to directly modify member data of a class

• C++ convention

•  Prefix member data variables with m_.

• Put plenty of usage comments in the header file
•  The header is the file that users will see

20

Ex: tail_light.h (specify a class)

#ifndef TAIL_LIGHT_H

#define TAIL_LIGHT_H

class tail_light {

 public: // Member functions - behavior

 bool is_on(void);

 void set_on(void);

 void set_off(void);

 void set_rate(float duty_cycle); // 0.0 to 1.0

 void set_rate(std::vector<bool> light);

 float get_rate(void);

 // Member data – internal state

 bool m_on;

 std::vector<bool> m_light; // duty cycle status

};

#endif

Using a class

• Treat a class as a new data type (like int)
•  Happens to be user-defined

•  Has unique behaviors

• CLASSNAME IDENTIFIER(void);
• Use of the member functions follows the same syntax we

use with member data in a struct
•  Uses the dot operator

• OBJECT.FUNCTION(ARGS…)

21

Ex: main.cpp (use a class)

#include “headlight.h”

#include “tail_light.h”

int main(void) {

 // create objects (instantiate)

 headlight left_front, right_front;

 tail_light left_rear, right_rear;

 // call member functions

 left_rear.set_rate(0.5);

 left_rear.set_on();

 right_rear.set_off();

 if (left_rear.is_on()) {

 cout << “Left tail light is on” << endl;

 }

}

Implementing a class

•  Implementation means defining the behaviors of member
functions (methods)

• Place implementation in separate .cpp file

•  Include the header file

• Use of a namescope operator (::) to identify methods
(member functions)
•  Indicates function belongs to the class

• TYPE CLASSNAME::METHODNAME(ARGS){BODY}

22

Ex: tail_light.cpp (1 of 3)

#include “tail_light.h”

// Define methods in tail_light

bool tail_light::is_on(void) {

 return m_on;

}

void tail_light::set_on(void) {

 m_on = true;

}

void tail_light::set_off(void) {

 m_on = false;

}

Ex: tail_light.cpp (2 of 3)

void tail_light::set_rate(float duty) {

 if (duty < 0.0 || 1.0 < duty) {

 cout << “ERROR: Illegal rate “

 << duty << endl;

 } else {

 m_light.resize(10);
 for (int i=0;i!=10;++i) {

 m_light[i] = (i >= 10*duty);

 }//endfor

 }//endif

}

23

Ex: tail_light.cpp (3 of 3)

float tail_light::get_rate(void) {

 float rate = 0;

 for (int i=0;i!=m_light.size();++i) {

 if (m_light[i]) {

 rate += 1.0/m_light.size();

 }//endif

 }//endfor

 return rate;

}

The “has a” relationship

• Data members of a class are objects
• Hierarchies of class instantiations are a powerful way of

creating complex classes
• This is known as composition
• This establishes a “has a” relationship
• For instance:

struct T1 { int k; };
struct T2 { T1 o2; };
struct T3 { T2 o3a; T1 o3b};

• Class T1 has a int
• Class T2 has a T1
• Class T3 has a T1 and has a T2

T1
int k

T2
T1 o2

T3
T2 o3a
T1 o3b

UML class diagrams

24

Inline methods

•  In the preceding, class declaration (header) was kept separate from class
implementation (cpp)
•  It is possible to do both in one step

struct A {

 int m_v;

 void print(void) { cout << "v=" << v << endl;}

};

•  The method print is created inline with the code where it is invoked (if
possible).
•  Creates very fast code - good

•  Larger executable - ok

•  Exposes implementation to end user

•  Use only for extremely simple methods
•  get & set methods are good examples

Ex: inline

#ifndef TAIL_LIGHT_H

#define TAIL_LIGHT_H

struct tail_light {

 // Member functions - behavior

 bool is_on(void) { return m_on; }

 void set_on(void) { m_on = true; }

 void set_off(void) { m_on = false; }

 void set_rate(float duty_cycle); // 0.0 to 1.0

 void set_rate(std::vector<bool> light);

 float get_rate(void);

 // Member data – internal state

 bool m_on;

 std::vector<bool> m_light; // 1/10th of duty cycle status

};

#endif /* TAIL_LIGHT_H */

25

Class Accessibility

• By default all members of a struct are public
•  It is desirable to hide parts of class from users (e.g.

member data or private functions)

• Three keyword labels control access to members of a
class:
• public: // anyone can access
• private: // only for members & objects of this class
• protected: // available to family members
• More on this later

• By default
• struct starts out as public

• class starts out as private

Adding access to a struct

• struct default is public

• Public members on right
• func(), help(), m_y
• Private member on right
• sub() m_x, m
• T2 is not very useful
•  Cannot acces m!

struct T1 {

 int func(float rate);

 void help(void);

 private:

 int sub(char c);

 int m_x;

 public:

 int m_y;

};

struct T2 {

 private:

 int m;

};

26

Adding access to a class

• class default is public

• Public members on right
• display(), m_y, m
• Private member on right
• task(), help(), sub()
m_x

• T4 acts like a struct

class T3 {

 void task(int& w);

 void help(void);

 private:

 int sub(char c);

 int m_x;

 public:

 void display(void);

 int m_y;

};

class T4 {

 public:

 int m;

};

Ex: Public & Private

#ifndef TAIL_LIGHT_H

#define TAIL_LIGHT_H

class tail_light {

public: // Member functions - behavior

 bool is_on(void) { return m_on; }

 void set_on(void) { m_on = true; }

 void set_off(void) { m_on = false; }

 void set_rate(float duty_cycle); // 0.0 to 1.0

 void set_rate(std::vector<bool> light);

 float get_rate(void);

private: // Member data – internal state

 bool m_on;

 std::vector<bool> m_light; // duty cycle status

};

#endif /* TAIL_LIGHT_H */

27

Notes on Using Public and Private

• Always precede members of a class with access
designations (i.e. public, private)

• When defining classes, the keyword class helps reader

• Place public stuff first, private last
•  It’s what the user wants to know

• Minimize private stuff

Constructors

• Our tail_light class is missing something
•  Initial values of the member data are unknown

•  Need initialize

• Functional programming suggests adding a member
method called reset() or initialize() or init()
•  Problematic
• Requires user call every time object is created

• Experience shows the user will eventually forget

• Failure to initialize variables difficult to debug

28

Initialization - the wrong way

• Perhaps we can just initialize?
struct tail_light {

 bool m_on(true);

 std::vector<bool> m_light = {false,
 /*etc*/, false };

};

• Problematic
•  C++98 doesn’t allow this syntax

•  m_on(true) syntactically looks like a function defn

Changes
in C++11

Solution: Use a constructor

• C++ has a special syntax for initialization

•  Special method called a constructor

• A constructor is a member function that has the same
name as the class name, and returns no value:

struct CLASSNAME {

 CLASSNAME(ARGS…);

};

• Constructor with no args is “default constructor”

29

Ex: Default Constructor

struct tail_light {

 …

 // default constructor

 tail_light(void);

 …

};

No return type Class name No arguments

tail_light::tail_light(void) {
 m_on = true;
m_light.resize(10);

 // Default 50% duty cycle
 for (int i=0;i!=m_light.size();++i) {
 m_light[i] = (I<5);
 }//endfor
}

No arguments No return type Class name Class name

Constructors with arguments

• Possible to have a constructor take an argument
•  Useful to establish a tail_light with a different initial duty cycle

• Because constructors are simply functions
•  Can overload them the same way as any function

•  Might have both a default constructor (50% duty cycle), and the
constructor that takes an argument. A constructor is always
invoked when objects are instantiated.

30

Ex: Constructor (non-default)

struct tail_light {

 …

 // constructor with args

 tail_light(int percent);

 …

};
No return type

tail_light::tail_light(int pct) {
 m_on = true;
 int div = int(10*pct/100+0.5);
 for (int i=0;i!=10;++i) {
 m_light[i] = (i<div);
 }//endfor
}

Default constructors

•  If you do not provide a constructor, then the “default
constructor” is provided for you.
•  Default constructor simply allocates space for the data members

(i.e. no initial values).

•  If you specify a constructor with one or more arguments,
then the “default constructor” will not be provided unless
you provide it (i.e. overload).

•  If you do not specify a constructor when instantiating,
then the “default constructor” is invoked for you.

•  If you do not specify a constructor when instantiating and
there is no default constructor, then it is an error.

31

Choosing the constructor

• There is still a potential problem with our approach to
initialization

• Consider a class that instantiates a class

struct Complex {
 double re; double im;
 // No default constructor
 Complex(double r, double i);
};
struct Amplifier {
 Complex x; //< error: Complex lacks default constructor
};

Initializer lists

• A syntactical construct was added to C++ to allow
choosing the constructor for data members

CLASSNAME::CLASSNAME(ARGS…)
: ELT(ARGS),… // initializer list
{
 // BODY
};

32

Initializer list notes

•  Occurs before the body of the
constructor is executed

•  Using empty parentheses
invokes the default constructor
for a class
•  For int, this means set to zero

•  Proceeds in the order data
members are declared
•  HINT: List them in the same

order as declared

•  If order dependences exist,
document them

•  Initialization arguments may be
an expression
•  valid at construction time

class T1 {

 float m_k;

 T1(float k): m_k(k) {

 m_k++;

 }

};

class T2 {

 int m_n;

 T1 m_a1;

 T2(void) : m_n(), m_a1(m_n)

 {}

};

class T3 {

 int x, y, z;

 T3(void): y(1), x(y+1), z(y)
{}

};

Ex: Initializer list

tail_light::tail_light(int pct)

: m_on(true)

{

 int div = int(10*pct/100+0.5);

 for (int i=0; i!=10; ++i) {

 m_light[i] = (i<div);

 }//endfor

}

33

What is a destructor?

• Objects/data are destroyed when
•  Code leaves a scope

•  delete is explicitly called

•  program terminates

•  It is desirable to do cleanup
•  Free storage

•  Output statistics

•  Delete embedded linked list (avoid leaks)

• For this C++ provides a destructor

Defining the destructor

• C++ destructor is a method named after the class with a
preceding tilde (~) that takes no arguments (ever) and
returns no value (where would it go)

•  If you don’t provide a destructor, the compiler will provide

a default that simply frees member data memory.

CLASSNAME::~CLASSNAME(void) {
 BODY
}

34

Ex: Destructor

• Declaration

• Implementation

struct tail_light {
 …
 // destructor
 ~tail_light(void);
};

tail_light::~tail_light(void) {
 cout<<“destroyed tail_light”<<endl;
}

Destructor notes

• Called for every object as it is destroyed

• There is only one destructor per class

•  If you rely on the default destructor, put a comment to that
effect in the header.

35

Inheritance motivation

•  Some classes share common attributes
•  Sedan & hatchback automobiles could be modeled as classes

• Both have 4 wheels, engine, steering, etc.

•  Managers & engineers could be classes

• Both have names, ages, etc.

•  Circles & squares

• Both have sizes, positions & orientations

•  Desirable to write code once only for common features

•  Ability of one class to “inherit” from another
•  Sedan & hatchback inherit from car class

•  Manager & engineer inherit from employee class

•  Circle & square inherit from shape class

How to inherit

• Design the base (parent) class carefully
• Specify the class to inherit with the syntax

class DERIVED_CLASS

: PARENT_CLASS_LIST {

 …

};

• Parent class list
•  Comma separated

•  Name of class
•  Optional access specifier

•  Syntax
public|private|protected CLASSNAME,…

36

Ex: Parent class - light.h

#ifndef LIGHT_H

#define LIGHT_H

#include <string>

class light {

public:

 enum Color {WHITE,RED,YELLOW,GREEN };

 light(Color c); // constructor

 light(std::string k, Color c); // constructor

 bool is_on(void) {return m_on; }

 void set_on(void) {m_on = true; }

 void set_off(void) {m_on = false; }

private:

 Color m_color;

 bool m_on;

 std::string m_kind;

};

#endif

Ex: Inheritance

#ifndef TAIL_LIGHT_H

#define TAIL_LIGHT_H

#include “light.h”

class tail_light : public light {

 public: // Member functions - behavior

 tail_light(void); // default constructor

 tail_light(int percent_on); // constructor

 ~tail_light(void); // destructor

 void set_rate(float duty_cycle); // 0.0 to 1.0

 void set_rate(bool light[10]);

 float get_rate(void);

 private: // Member data – internal state

 bool m_light[10]; // 1/10th of duty cycle status

};

#endif

37

The “is a” relationship

• A parent class (base) & a
child class (derived) use
the “is a” relationship
•  The child class “is a”

parent class

•  The converse is not true

• TG1 is a TG0

• TG2 & TG3 are a TG1

class TG0 {…}

class TG1:TG0 {…}

class TG2:TG1 {…}

class TG3:TG1 {…}

TG0

TG1

TG2 TG3

Initialization of inherited classes

• When constructing a class that instantiates another class
within it
•  Base (parent) classes are constructed first

• What if you need to specify arguments to base class
constructor
•  e.g. parent class has no default constructor

• Use the initializer list!

38

Ex: Initializer list

tail_light::tail_light(int pct)

: light(Red)

{

 int div = int(10*pct/100+0.5);
m_light.resize(10);

 for (int i=0;i!=10;++i) {

 m_light[i] = (i<div);

 }//endfor

}

colon

Adding Members

•  Inheriting class (child or derived class) may define new
behaviors and data
•  Sports car has spoiler

•  Manager has ability to approve raises

•  Square has sides

• Simply add new member functions/data

39

Overriding Inherited traits

• Derived classes may have different data/behaviors for
given function
•  Sports car has 2 doors instead of 4

•  Manager attends more meetings

•  Circle draws differently

• Defining the same method again in the derived class
effectively hides the parent method

Ex: Overriding methods

class tail_light : public light {

 public:

 bool is_on(void); // override

 …

};

bool tail_light::is_on(void) {

 // on if m_on is true and current

 // light cycle is true

 …

}

40

Accessing parent methods

• A derived class can access all the public/protected
members of the base class
•  Even if it overrides the parent

BASECLASS::METHOD(ARGS…)

• This allows modification of base behavior
DERIVEDCLASS::METHOD(ARGS) {

//pre modifications

BASECLASS::METHOD(ARGS); //Call base method

// post modifications

return RESULT;

}

Protected members

• private access specification means private to the class
where used
•  Children may not access parent’s private info

• What about “family” secrets?
•  Use the designation protected

•  Protected information is available to class where declared and
any derived class

• When designing a class must think ahead

41

Ex: Protected

class light {

 public:

 enum Color {WHITE,RED,YELLOW,GREEN};

 light(Color c); // constructor

 bool is_on(void) {return m_on; }

 void set_on(void) {m_on = true; }

 void set_off(void) {m_on = false; }

 protected:

 bool m_on;

 private:

 Color m_color;

};

Friends

• What if we would like to extend access to another
function or class that is not a part of the family?
•  Specify the function or class as a friend

• WARNING: Friends can access everything
class B;

class A {

 friend B;

};

•  Use sparingly

42

What is polymorphism?

• The ability to have a function or method that takes
derived objects as base class arguments and behaves
correctly with respect to overridden behaviors.

Why polymorphism?

• Consider a class of shapes
•  A shape might have an inherent ability to draw itself; however…
•  A circle has a unique draw method
•  i.e. overrides base shape::draw

•  A square has a different draw method
•  i.e. overrides base shape::draw

•  It would be nice to be able to have a list of shapes and then just draw
each one

• Consider a base printer class
•  Both laser and inkjets have the ability to print
•  Print works differently in the laser and inkjet printers
•  A test function might take a generic printer as a parameter and attempt

to print regardless of the sub-class of printer

43

Ex: Without polymorphism

class printer {
 public:
 void print(string s)
{ cerr<<“Base:Oops!”<<endl; }

};

class laser : public printer {
 public:
 void print(string s)
 {cout<<“Laser:”<<s<<endl;}
};
class inkjet : public printer {
 public:
 void print(string s)
 {cout<<“Inkjet:”<<s<<endl;}
};

void f(printer p) {
 p.print(“hello”);
}

int main(void) {
 printer generic;
 laser lj5550;

 inkjet dj2800;

 f(generic);
 f(lj5550);

 f(dj2800);
}

% test_print
Base:Oops!
Base:Oops!
Base:Oops!

Virtual methods

• To enable polymorphism C++ designates the shared
methods as virtual
•  virtual RTN_TYPE METHOD(ARGS);

• This causes C++ to create a lookup table in the class,
which allows a derived class to specify an overridden
function.

44

Ex: With polymorphism

class printer {
 public:
 virtual void print(string s)
 {cerr<<“Base:Oops!”<<endl;}
};

class laser : public printer {
 public:
 void print(string s)
 {cout<<“Laser:”<<s<<endl;}
};

class inkjet : public printer {
 public:
 void print(string s)
 {cout<<“Inkjet:”<<s<<endl;}
};

void f(printer p) {
 p.print(“hello”);
}

int main(void) {
 printer generic;
 laser lj5550;

 inkjet dj2800;

 f(generic);
 f(lj5550);

 f(dj2800);
}

% test_print
Base:Oops!
Laser:hello
Inkjet:hello

Pure virtual methods

•  It would be nice if we could ensure that all printers had a
print function at compile-time instead of a run-time error

• Declaring a method to be pure enables this
•  virtual RTN_TYPE METHOD(ARGS)=0;

• Think of =0 as meaning “This function has no
implementation.”

45

Abstract & Interface classes

• A class containing a pure virtual method is called an
abstract class.

• An abstract class cannot be instantiated because there is
no definition for the pure virtual method.

• An abstract class containing only pure virtual methods
(no data either), is call an interface class.

• An interface class is effectively an API (Application
Programming Interface) for any class derived from it.

Ex: With pure virtual

class printer {
 public:
 virtual void print(string s)
 =0;
};

class laser : public printer {
 public:
 void print(string s)
 {cout<<“Laser:”<<s<<endl;}
};

class inkjet : public printer {
 public:
 void print(string s)
 {cout<<“Inkjet:”<<s<<endl;}
};

void f(printer p) {
 p.print(“hello”);
}

int main(void) {
 //printer generic; ILLEGAL
 laser lj5550;

 inkjet dj2800;

 f(lj5550);
 f(dj2800);

}

% test_print
Laser:hello
Inkjet:hello

46

Multiple inheritance

• C++ allows inheritance from more than one parent class
•  Known as multiple inheritance

•  Used judiciously, it is powerful and useful

• What happens if two base classes have the some
common method signatures?
•  Simply override and specify which one rules…

• What if two base classes share a common ancestor
(famous diamond problem)?

The dreaded diamond

• When inheriting from
multiple classes that
inherit from a base class, it
is possible that duplication
of data occurs.

• TG1 & TG2 have 1 copy
•  TG0::m

• TG3 has 2 copies
•  TG1::TG0::m

•  TG2::TG0::m

class TG0 {T m;}

class TG1:TG0 {}

class TG2:TG0 {}

class TG3:TG1,TG2 {}

TG0
T m

TG1
TG0::m

TG2
TG0::m

TG3
TG1::TG0::m
TG2::TG0::m

47

Virtual inheritance
(Avoiding the dreaded diamond)

• To prevent this, declare
the inherited class as
virtual.

• NOTE: This is a
different concept
from virtual methods.
• The virtual inheritance

designation only needs to
be in one of the classes;
however, doing it in both
provides some safety.

class TG0 {T m}

class TG1 : virtual TG0 {…}

class TG2 : virtual TG0 {…}

class TG3:TG1,TG2 {…}

TG0
T m

TG1
TG0::m

TG2
TG0::m

TG3
TG0::m

Constant members

• Adding the keyword const to a method restricts the
method from modifying any member data

• May not call non-const methods inside a const
•  Use const whenever possible
• Good for get methods

class T1 {
 public:
 int get(void) const { return m; }
 void get(int& v) const { v = m; }
 void set(int v);
 private:
 int m;
};

48

Ex: const members - light.h

#ifndef LIGHT_H
#define LIGHT_H
#include <string>

class light {
public:
 enum Color {WHITE,RED,YELLOW,GREEN };
 light(Color c); // constructor
 light(std::string k, Color c); // constructor
 bool is_on(void) const {return m_on; }

 void set_on(void) {m_on = true; }
 void set_off(void) {m_on = false; }
private:
 Color m_color;

 bool m_on;
 std::string m_kind;

};
#endif

Static members

•  Inside ordinary functions, static
is used to create variables that
have infinite lifetimes. The same
is true for classes.

•  Static member functions may
not alter non-static member
data nor call non-static
methods.

•  Must initialize static member
data externally

•  Use static to gather statistics for
all the objects of an entire class

class T1 {

 T1(void):m(0) {++cnt;}

 ~T1(void) {--cnt;}

 void set(int v) {m=v;}

 static void count(void){

 cout<<k<<endl;}

 int m;

 static int cnt;

};

static int T1::cnt(0);

49

Disabling default methods

• Use private or protected to disable
•  Sometimes you want to prevent copying or construction (e.g.

interfaces)

•  Use comment to clarify intent

class no_copy {
 protected: // Disable the following

 no_copy(void); // Constructor

 private: // Disable the following for everyone

 no_copy& operator=(const no_copy& rhs) {}
 no_copy(const no_copy& old) {}
};

Take control of the class

•  Always define and comment constructor(s)
 CLASSNAME(ARGS…); // Constructor

•  Avoid implicit conversions by using explicit
 explicit CLASSNAME(ARG);

•  Always define or disable the copy constructor & operator=
•  At minimum provide a comment // Default copy
 CLASSNAME(const CLASSNAME&);

 CLASSNAME& operator=(const CLASSNAME);

•  Interface classes define API
•  Pure virtual methods have no implementation
 virtual RETURN METHOD(ARGS) = 0;

•  Destructors are your friend - destroy data leaks
•  Allows correct polymorphism
 virtual ~CLASSNAME(void);

50

Exceptions

• C++ provides a mechanism to handle exceptions
•  Divide by zero

•  System call errors (e.g. read error)

•  User-defined exceptions ("FIFO underflow")

• SystemC uses exceptions for error messages
•  Proposed extensions for modeling do use exceptions

•  Modeling situations may use exceptions

try {
 some_func(void);
}
catch (my_exception& problem) {
 REPORT_ERROR(problem.msg);
 if (unrecoverable) throw; //upward again
}
catch (other_exception& problem) {…}

class my_exception : public std::exception {
 string msg; my_exception(string m):msg(m){}
};

void some_func(void): my_exception {
 if (bad_situation) throw my_exception(“Oops”);
}

Exceptions in 3 parts

•  Easy syntax/concept class to hold information on the exception

Function might throw the exception

Throw it

try it
Catch it

51

Exceptions - Caveats

• Always catch by reference
• May confuse threading, so use with care
•  Always catch if thrown unless desire abort
•  Don’t expect simulator kernel to understand

•  SC_REPORT_ERROR or SC_REPORT_FATAL may be better
for many instances

• Can lead to spaghetti code
•  How much preventative coding do you do?

•  Clean design of classes is important

• Can lead to memory leaks
• Watch those automatic variables

Safe Code Techniques

• Pass by Value or Reference when possible
•  Less error prone to use by reference than pointers

• Use const where possible
•  Avoids possibility of side effects catching you unaware

void Func2(long &v) {
 v = 55;
}
long v;
Func2(v);

void Func1(long *v_ptr) {
 *v_ptr = 55;
}
long v;
Func2(&v);

char const * const RCSID = “Id”;
class myclass {
 double const m_maxval;
 myclass(const double maxval) :m_maxval(maxval) {…}
 bool legal(const double ref&) const;
};

52

Hiding data in a class

• Data hiding provides implementation freedom
• Good for IP (COMPANY library)

class my_private; // no need to #include header!
class my {
 my(void); // Constructor
 virtual ~my(void); // Destructor
 private:
 my_private* m;
};

struct my_private { // no need for private
 int hidden_int;
 my_private(void) {…} // Constructor
 void hidden_func(void) {…}
};
my::my(void): m(new my_private) {…}
// use m->hidden_int or m->hidden_func()

my.h

Forward
declaration

Needs only space
for private pointer

my.cpp

To hide or not to hide

• Hiding speeds up compliation
•  No need to parse headers

• May hide too much
•  If need to debug (waveforms), should expose specific data or

provide methods to do so.

• SYSTEMC GUIDELINES
•  Ports are public

•  Signals that may need tracing are public

53

NIH - Use it!

• Standard Template & BOOST Libraries
•  Free, reviewed, debugged

• Quick Overview
•  History

• cstring vs std::strings

•  Streaming I/O + boost::format
• vector<T>::at(), list<T>
• map<T1,T2>, set<T>
• boost::regex
• boost_shared_ptr

STL General Background (Wikipedia)

•  <http://www.sgi.com/tech/stl/>
•  The C++ Standard Library is based on the STL published by SGI. Both

include some features not found in the other. SGI's STL rigidly specifies a set
of headers, while ISO C++ does not specify header content.

•  The architecture of STL is largely the creation of one person, Alexander
Stepanov. In 1979 he began working out his initial ideas of generic
programming and exploring their potential for revolutionizing software
development. Although Dave Musser had developed and advocated some
aspects of generic programming as early as 1971, it was limited to a rather
specialized area of software development (computer algebra).
•  Stepanov recognized the full potential for generic programming and

persuaded his then-colleagues at General Electric Research and
Development (including, primarily, Dave Musser and Deepak Kapur) that
generic programming should be pursued as a comprehensive basis for
software development.

54

Boost General Background

•  <http://www.boost.org>
•  Free peer-reviewed portable C++ source libraries.

•  Emphasizes libraries that work well with the C++ Standard Library and
intended to be widely useful, and usable across a broad spectrum of
applications.
•  Boost license encourages both commercial & non-commercial use. Not GNU.

•  10 Boost libraries are already included in the C++ Standards Committee's
Library Technical Report (TR1) as a step toward becoming part of a future C
++ Standard. More Boost libraries are proposed for TR2.

•  Why “boost”? Beman Dawes stated “Boost began with Robert Klarer and I
fantasizing about a new library effort over dinner at a C++ committee meeting
in Sofia Antipolis, France, in 1998. Robert mentioned that Herb Sutter was
working on a spoof proposal for a new language named Booze, which was
supposed to be better than Java. Somehow that kicked off the idea of
"Boost" as a name. We'd probably had a couple of glasses of good French
wine at that point. It was just a working name, but no one ever came up with
a replacement.”

Boost List of Functionality - sampler

•  any - Safe, generic container for single values of different value
types, from Kevlin Henney.

•  array - STL compliant container wrapper for arrays of constant size,
from Nicolai Josuttis.

•  assign - Filling containers with constant or generated data has never
been easier, from Thorsten Ottosen.
•  format - Type-safe 'printf-like' format operations, from Samuel

Krempp.
• math - Several contributions in the domain of mathematics, includes

atanh, sinc, and sinhc

•  numeric/conversion - Optimized Policy-based Numeric
Conversions, from Fernando Cacciola.

•  interval - Extends the usual arithmetic functions to mathematical
intervals

55

Boost List of Functionality - sampler

• multi_array - Multidimensional containers and adaptors for arrays of
contiguous data, from Ron Garcia.

•  random - System for random number generation, from Jens Maurer.

•  rational - A rational number class, from Paul Moore.

•  regex - Regular expression library, from John Maddock

•  uBLAS - Basic linear algebra for dense, packed and sparse
matrices, from Joerg Walter and Mathias Koch.

•  smart_ptr - Five smart pointer class templates, from Greg Colvin,
Beman Dawes, Peter Dimov, and Darin Adler.

•  There are many others…

STL Containers

• Vectors, the better array
#include <vector>

std::vector<float> fv(50,0.0);

for(int I=0; I!=fv.size(); ++I) { cin >> fv[I]; }

• Linked lists
#include <list>

std::list<smart_int> sample();

sample.push_back(value);

typedef std::list<smart_int>::iterator ilist;

for(ilist I=sample.begin();I!=sample.end();++I) {

 I->randomize();

}

sample.sort();

56

STL Containers continued

• Maps - associative container, sparse
#include <map>

std::map<packet, int> pstat;

… pstat[pkt]++; …

typedef map<packet,int>::iterator imap;

for(imap i=pstat.begin(); i!=pstate.end(); ++i) {

 cout << i->first.type

 << “ occurred “ << pstat->second << endl;

}//endfor

• Sets
#include <set>

enum BusState {Idle,Rst,SRd,SWr,MRd,MWr};

std::set<BusState> bs; bs.clear();

bs.insert(Idle);

if (bs.count(MWr) == 1) bs.erase(Idle);

std::array Intro

• An ordinary array with STL extensions like vector
•  Doesn’t carry the overhead of resizing that vector does
•  Complete array assignment
•  Range checks optional

• USAGE:
#include <array>
boost::array<T,SIZE> VAR;

• EXAMPLE
using std::array;
array<int,4> a = { (1,2,3,4) };
typedef array<int,4>::iterator iterator_t;
for(iterator_t i=a.begin();i!=a.end();++i){
 *i=f(*i) + a[2]; // silly equation using *i
}

57

Range checked Array

• vector<T> and array<T,N> classes both have range
checking in the form of .at() method
•  Not quite as natural as using operator[]

• Easy to remedy with a derived class
template<typename T, int N>
class Array : public std::array<T,N> {
public:
 Array(void): array<T,N>() {}
 T& operator[](int i) { return at(i); }
 const T& operator[](int i) const {
 return at(i);
}

};

boost::format Intro

• printf with argument checks & more…

• EXAMPLE
#include “boost/format.hpp”

cout << boost::format(

 “Hi %s! x=%4.1f :%d-th step\n”

) % “Toto” % 20.19 % 50 ;

Hi Toto! x=20.2 :50-th step

58

boost::format continued

cout << boost::format(
"%1% %3% %2% %1%\n") % "aa" % 'b' % 'c' ;
 //OUTPUT: “aa c b aa”

boost::format fmt(
 "%|2$3x|:>%|1$=20|<%|30Tx|");

string s = str(fmt % "The title" % 17);

cout<<fmt.size()<<endl<<fmt.str()<< endl;

30
11:> My title <xxxxx
123456789^123456789^123456789^

boost::regex Intro

• Regular expressions for C++
•  grep, sed, perl, vim, emacs searching
• Several varieties of expressions including perl
• Allows for both search and replace

• More general than just character strings
• Can search arrays of data for data patterns

• Lots of methods/syntax
• We’ll limit ourselves to simple string example
#include “boost/regex.hpp”

• Link with -lboost_regex

59

boost::regex methods

• boost::regex_match determines if an expression
matches an entire text

• boost::regex_search finds expression within a text
•  Most likely what you want to use

•  Allows identifying sub-matches

• boost::regex_replace makes replacements
•  Allows for sub-matches in replacement

boost::regex Example

#include “boost/regex.hpp”
string text(“This is some text to search”)
string::const_iterator text_beg = text.begin();
string::const_iterator text_end = text.end();
boost::regex expr(“some text”);
boost::match_results<string::const_iterator> rslt;
bool found = boost::regex_search
 (text_beg, text_end, rslt, expr);
if (found) cout << "Matched ”
 << string(rslt[0].first,rslt[0].second)
 << ” @ posn " << (rslt[0].first - text_beg)
 << ” length " << (rslt[0].second - rslt[0].first)
 << endl;

Regular
expression

What to
search

Where
found

The search

60

scoped_ptr Simple sole ownership of single objects. Noncopyable.

scoped_array Simple sole ownership of arrays. Noncopyable.

shared_ptr Object ownership shared among multiple pointers

shared_array Array ownership shared among multiple pointers

weak_ptr Non-owning observers of an object owned by shared_ptr.

intrusive_ptr Shared ownership of objects with an embedded reference
count.

Shared Pointers Intro

• Pointers are dangerous because it is easy to lose track of
and create memory leaks

• Smart pointers solve this by providing garbage collection

• Shared pointers allow copying without worrying about
dangling pointers. When reference count drops to zero,
the object is destroyed.
•  Caveat: Dangerous if circularly linked (RARE)

• USAGE:
#include “boost/shared_ptr.hpp”
boost::shared_ptr<T> v1_ptr(new T);
boost::shared_ptr<T> v2_ptr;
v2_ptr.reset(new T);
v1_ptr = v2_ptr;
*v2_ptr = value;
std::cout << *v1_ptr << std::endl;
{boost::shared_ptr<TYPE> v3_ptr(new T);}

Normal pointers
would create
memory leaks

boost::shared Intro

As of , this is
moved into std::

61

Questions

References

•  Books on C++

•  Programming: Principles and Practices by Bjarne Stroustrup
•  University textbook that does it right

•  The C++ Programming Language, Special Edition by Bjarne Stroustrup
•  The gory details, but first 3 chapters are easy to read. Must have.

•  Accelerated C++ by Andrew Koenig & Barbara Moo
•  For the experienced programmer and fast learner

•  Exceptional C++ by Herb Sutter
•  A must for the bookshelf

•  Websites covering C++

•  www.cplusplus.com - great reference site

•  www.research.att.com/~bs/bs_faq.html - from the author of C++

•  www.cplus.about.com - tutorials

•  www.doulos.com/knowhow/systemc - as it applies to SystemC

