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Lab 2 RTOS Kernel (Parts 1 & 2) 

 
Goals  • Develop OS facilities for real-time applications, 
   • Coordinate multiple foreground and background threads, 
   • Design a round robin multi-thread scheduler, 
   • Implement spinlock semaphores and use them for thread synchronization, 
   • Implement inter-thread communication. 
 
Starter files • EdgeInterrupt_4C123 project (input switch interrupt) 
  • PeriodicTimer0AInts_4C123 project (periodic interrupts) 

• ADCT0ATrigger_4C123 (timer-triggered ADC) 
  • RTOSVerySimple_4C123 project (simplest OS) 
  • RTOS_4C123 project (basic OS) 
  • RTOS_Lab2_RTOSkernel (starter project for Lab 2) 

– cr4_fft_64_stm32.s and PID_stm32.s (from inc folder) 
– OS.h and OS.c (from RTOS_Labs_common folder) 
– Lab2.c (in RTOS_Lab2_RTOSkernel) 

 
References (good to look at for more background information, but not required) 
1) Signal processing functions from ST Microsystems (FFT and PID used in this labs) 

http://www.ece.utexas.edu/~valvano/EE345M/UM0585.pdf  
2) Micrium µC/OS sample RTOS 

https://www.micrium.com/download/µcos-ii-and-the-arm-cortex-m3-processors/   
Download, install, look at the AppNotes and Software files (choose RealView over IAR) 

3) FreeRTOS 
http://www.freertos.org/ (look at the Cortex M3 port) 

 
This lab has two parts. In Part 1, you will implement basic multi-threading support in your OS. In Part 2, we will 
extend the multi-tasking to support running larger applications with inter-thread communication. See the Hints at the 
end of the document for important information. In particular, start the lab early, it is much harder than Lab 1! 

Background Part 1 
 In the first part of Lab 2 you will first design and test a cooperative, and then you will design and test a 
preemptive thread scheduler. The requirements will be to run the Testmain1 and Testmain2 applications provided in 
Lab2.c, respectively. 
 Testmain1 needs a cooperative thread scheduler with no interrupts. Each thread will suspend itself each time 
through the loop by calling OS_Suspend(). When Testmain1 executes, the PE0, PE1, PE2 outputs will look like 
Figure 2.1, and the three count variables will be equal (±1). In Figure 2.1, each toggle means a thread has started a 
pass through its main loop. For this system, these threads are running every 1.8 μs. Figure 2.1 shows no interrupts 
from the switch, timer, or SysTick. 
 
uint32_t Count1;   // number of times thread1 loops 
uint32_t Count2;   // number of times thread2 loops 
uint32_t Count3;   // number of times thread3 loops 
 
void Thread1(void){ 
  Count1 = 0;           
  for(;;){ 
    PD0 ^= 0x01;       // heartbeat 
    Count1++; 
    OS_Suspend();      // cooperative multitasking 
  } 
} 
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void Thread2(void){ 
  Count2 = 0;           
  for(;;){ 
    PD1 ^= 0x02;       // heartbeat 
    Count2++; 
    OS_Suspend();      // cooperative multitasking 
  } 
} 
void Thread3(void){ 
  Count3 = 0;           
  for(;;){ 
    PD2 ^= 0x04;       // heartbeat 
    Count3++; 
    OS_Suspend();      // cooperative multitasking 
  } 
} 
 

int main(void){  // Testmain1 
  OS_Init();          // initialize, disable interrupts 
  PortD_Init();       // profile user threads 
  NumCreated = 0 ; 
  NumCreated += OS_AddThread(&Thread1,128,1);  
  NumCreated += OS_AddThread(&Thread2,128,2);  
  NumCreated += OS_AddThread(&Thread3,128,3);  
  // Count1 Count2 Count3 should be equal or off by one at all times 
  OS_Launch(TIME_2MS); // doesn't return, interrupts enabled in here 
  return 0;            // this never executes 
} 
Program 2.1. Test system for cooperative thread switching 
 

 
Figure 2.1. Logic analyzer profiling for cooperative thread switching. You may use any free pins for profiling. 
 
 By contrast, Testmain2 needs a preemptive thread scheduler with SysTick interrupts. The SysTick ISR will 
suspend the running thread and run the next active thread in the list in a round robin fashion. When Testmain2 
executes, the SysTick, PD0, PD1, PD2 outputs will look like Figures 2.2 and 2.3, and the three count variables will 
be approximately equal. The values of the counters will be much higher than they were in Testmain1. Think of an 
explanation of why this is true. This OS toggles PF1 three times in each SysTick ISR as it is running the preemptive 
scheduler. In Figure 2.2, each toggle means a thread has started a pass through its main loop. For this system, the 
SysTick ISR runs in about 1.6 μs. Figure 2.3 shows the preemptive thread switch occurs every 2 ms. 

PD0 

PD2 

PD1 
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void Thread1b(void){ 
  Count1 = 0;           
  for(;;){ 
    PD0 ^= 0x01;       // heartbeat 
    Count1++; 
  } 
} 
void Thread2b(void){ 
  Count2 = 0;           
  for(;;){ 
    PD1 ^= 0x02;       // heartbeat 
    Count2++; 
  } 
} 
void Thread3b(void){ 
  Count3 = 0;           
  for(;;){ 
    PD3 ^= 0x04;       // heartbeat 
    Count3++; 
  } 
} 
 
int Testmain2(void){  // Testmain2 
  OS_Init();          // initialize, disable interrupts 
  PortD_Init();       // profile user threads 
  NumCreated = 0 ; 
  NumCreated += OS_AddThread(&Thread1b,128,1);  
  NumCreated += OS_AddThread(&Thread2b,128,2);  
  NumCreated += OS_AddThread(&Thread3b,128,3);  
  // Count1 Count2 Count3 should be equal on average 
  // counts are larger than testmain1 
  OS_Launch(TIME_2MS); // doesn't return, interrupts enabled in here 
  return 0;            // this never executes 
} 
Program 2.2. Test system for preemptive thread switching 
 

 
Figure 2.2. Logic analyzer profiling for preemptive thread switching (zoomed in). You may use any free pins. 
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Figure 2.3. Logic analyzer profiling for preemptive thread switching (zoomed out). You may use any free pins. 
 
Preparation Part 1 (do this before your lab period) (20 points Prep Part 1) 
1.1) Begin the design of the OS by defining the TCB data structure (in C). You may place the stack inside the TCB, 
or place it outside as shown in the book. The following items should be stored in the TCB for each thread: 
 • Current Stack Pointer, SP, for this thread (saved value when not actually running) 
 • One or two pointers to the next/previous TCB in the active list 
 • Id (a unique identifier for the thread, used for debugging) 
 • Sleep state (used to suspend execution) 
 • Priority (used in Lab 3) 
 • Blocked state (used in Lab 3)  
 
1.2) Design OS_AddThread. Sketch the circular linked list of three TCBs that should be created after Testmain1 
calls OS_AddThread three times, but before Testmain1 calls OS_Launch. Leave room to plug in actual numbers 
that will be collected during the testing phase of the project.  
 
1.3) Write code to implement the thread switch triggered by OS_Suspend or a periodic interrupt service routine. 
Draw two rough sketches of the TCB linked list, before and after a thread switch. Leave room to plug in actual 
numbers that will be collected during the testing. 
 
1.4) Make a development plan showing how the components of this lab will be designed and tested. In particular, 
look ahead at Part 2 and the five test configurations at the end of Lab2.c. 
 
Procedure Part 1 
1.1) Implement the OS_AddThread function. Using the debugger, step through the first three calls to 
OS_AddThread and fill in the sketch (preparation 1.2) of the three TCBs with real data (e.g., specify a pointer as 
its actual hexadecimal values). 
 
1.2) Implement and test the OS_Launch and thread switch functions. Using the debugger, step through the launch 
function, until the first thread starts to execute. Show what the three TCBs look like when one thread is running and 
the other threads are active. Fill in with real data the first sketch from preparation 1.3). Set a breakpoint in the thread 
switch routine. Single step through the routine until the next thread is running. Fill in with real data the second 
sketch from preparation 1.3). 
 
1.3) Measure the context/thread switch overhead of the OS kernel. Figure 2.4 shows the logic analyzer occurring 
with only one active thread running (using ThreadmainCS provided in the starter code). If you define the thread-
switch time as the lost time of the PD0 toggling, this OS requires about 2.1 μs to switch threads. 

PD0 

PD2 

PD1 
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Figure 2.4. Logic analyzer output showing the thread-switch time. You may use any free pins for profile. 
 
Checkout Part 1  (show this to the TA) (20 points performance, 20 points oral understanding) 
1.1) Run Testmain1, Testmain2 and TestmainCS and explain the profiling data to the TA. 
1.2) Be prepared to discuss the sketches you created as part of the preparation, and procedure. 
1.3) Discuss the TCB before and after a thread switch. 
 

Background Part 2 
 Your job is to design, implement and test operating system commands that implement a real multi-task 
application with I/O and inter-thread dependencies. The word task in this lab is not a formal term, rather a general 
description of an overall function implemented with a combination of hardware, background threads (ISR), and 
foreground threads (main programs). In real-time applications, the scheduling of tasks is critical for the proper 
operation of the system. There are categories into which tasks may fall. First, there are I/O bound tasks, where the 
bandwidth (data processed each second) is limited by the I/O device. For example, in a data-entry task, it usually 
doesn't matter how fast the computer is, the amount of information entered into the system is limited by the input 
typing rate of the operator. In a similar fashion, the number of pages printed per second is usually limited by the 
printer speed, and not by the speed of the computer. The second category describes tasks with fixed bandwidth, and 
not limited by either software or hardware. For example, the weatherman collects temperature data every hour. 
Temperature measurements once an hour are all we need, so a faster ADC converter, a faster temperature sensor, or 
a faster computer would not enhance the performance of this system.  The third category, CPU bound, describes 
tasks that are limited by the execution speed of the software. For these systems, a better software algorithm, a better 
compiler, and a faster computer will enhance the performance.   

There are five overall tasks to manage in Lab 2 (and later in Lab 3). Figure 2.5 shows the data flow for Lab 2. 
 

 
Figure 2.5. Data flow graph for the user program. 
 
Task 1: Software-triggered data acquisition and filtering 
 For the data acquisition system DAS, the software must start the analog-to-digital converter (ADC) and read the 
result at precise time intervals.  Let t be the time interval, which is one divided by the sampling rate:  

 t=1/fs 
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In Labs 2 and 3, t is 500 s and fs is 2 kHz. 
 A second example of a software-triggered periodic task would be a digital control system. The software must 
read the sensors, perform the digital control equations, then output to the actuators at a fixed rate. A third example of 
a software-triggered periodic task would be signal generation. The software must output to the digital-to-analog 
converter (DAC) at a fixed rate.  
 We can define time-jitter, t, as the difference between when a periodic task is supposed to be run, and when it 
is actually run. Let tn be the time the software task is actually run, and let nt be the time it was supposed to be run, 
then the time-jitter at sample n is 

 tn= tn - nt 

For a real time system with periodic tasks, we must be able to place an upper bound, k, on the time-jitter.  

 -k ≤ tn ≤ +k  for all n 

Sometimes it is more important to control the time difference between periodic events rather than the absolute time 
itself. Let tn be the actual time difference between two executions of a software task (e.g., starting the ADC). The 
desired time difference is 1/fs. For this situation, we define the time-jitter at sample n to be 

 tn= |tn - 1/fs| 

Assuming the OS measures time with a resolution of 12.5 ns, the following line calculates tn with 0.1 s units. 
PERIOD is a constant, in units of bus cycles, that represents the desired 1/fs. diff is a measurement, also with units 
of bus cycles, that represents the actual tn. jitter is the calculation of tn with units of 0.1 s. 

      uint32_t diff = OS_TimeDifference(LastTime,thisTime); 
      if(diff>PERIOD){ 
        jitter = (diff-PERIOD+4)/8;  // in 0.1 usec 
      }else{ 
        jitter = (PERIOD-diff+4)/8;  // in 0.1 usec 
      } 

where OS_TimeDifference calculates the actual difference. The constant PERIOD is 40000 (fs = 2kHz, bus = 
80MHz) is the expected difference. The addition of 4 implements rounding during the divide by 8. To be classified 
as real-time, we must be able to place an upper bound, k, on the time-jitter.  

   tn ≤ +k  for all n  or  jitter ≤  MaxJitter 

 Assume that the DAS task was activated using an OS_AddPeriodicThread(&DAS,PERIOD,1)call (to 
be developed in this lab). A time jitter experiment was performed on the professor’s solution for Lab 2. The time 
resolution of this measurement was 0.1 s. In a 20-sec experiment the DAS task ran 40000 times. Most of the time, 
the DAS task ran every 40000 cycles exactly. This means most of the time the DAS task ran at exactly equal time 
intervals. Following two histograms were collected as the ISR was run 40000 times without any interruptions from 
the switch or serial I/O. The histogram on the left was collected with an OS that disabled and enabled interrupts 
during OS_Wait and OS_Signal. The histogram on the right was collected with an OS that solved the critical 
sections in OS_Wait and OS_Signal using the LDREX and STREX instructions. Under these conditions, we can 
say the time jitter is less than 0.4 s. With interpreter I/O, a time jitter of 0.6 s. Under most situations, this error is 
acceptable, and we are confident to specify this system as real time. 
 
Results with Wait/Signal disabling interrupts   Results with Wait/Signal using LDREX STREX 

Time(us)    Frequency 
  0.0       22213  
  0.1        2770  
  0.2       12900  
  0.3        2118  
  0.4           1 

Time(us)    Frequency 
  0.0       38686  
  0.1        1312  
  0.2           2  
  0.3           0  
  0.4           2 
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Task 2: Aperiodic task triggered by the select switch  
 An aperiodic thread is one that executes frequently, but the rate is not deterministic. In Lab 2, the background 
thread ButtonPush should be run whenever the user touches the select button. This thread will create a 
foreground thread that outputs to the LCD, sleeps for 50ms, outputs again the LCD, and then kills itself. If the user 
pushes the button faster than once every two seconds, then multiple foreground threads will be running at the same 
time. In this case, the time of the request is defined as the touching of the switch (fall of PF4), and the time of the 
service is defined as the time when the PF4 ISR is run. The time difference between request and service is the 
interface latency. If this latency is short and bounded, then this thread is classified as real time. Figure 2.6 shows a 
measurement of latency. The falling edge of PF4 occurs when the switch is touched, and the rising edge of SW1 
occurs in its ISR (a corresponding heartbeat is added in the GPIOPortF_handler – we recommend to use PC4, 
shown as SW1 in the figure). For this instance, the latency is 400ns, and the time to run the ISR is less than 5 s. 
This OS toggles SW1 three times in the ISR.  
 

 

 
Figure 2.6. Logic analyzer output showing the latency of the SW1 real time thread. You may use any free pins. 
 
Task 3: Hardware-triggered data acquisition and FFT 
 The third task also samples the ADC at a regular rate (choose a different sequencer and a different hardware 
pin). In this task, the ADC sampling rate is established with a hardware-triggered timer. This task will continuously 
sample data at 400 Hz. This means the ADC is started every 2.5 ms. It takes 64 ms to collect the block of 64 
samples. An FFT is calculated on this block. This sampling rate is fixed and should not be increased or decreased. A 
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timer runs at 400 Hz and is used to trigger the ADC. This timer does not interrupt. When each ADC is done, an 
ADC interrupt will be requested. This ADC ISR (Producer) will pass data to the foreground using a FIFO queue, 
by calling OS_Fifo_Put. The Consumer foreground thread calculates the FFT, and the Display foreground 
thread outputs to the LCD. A mailbox is used to synchronize the two foreground threads. Because the ADC is 
triggered in hardware, this sampling process has no jitter. We will classify this task as real time if neither the ADC 
hardware FIFO nor the OS software FIFO becomes full. In other words, a real time system does not loose data.  
 
Task 4: Foreground PID controller task 
 The fourth task is a single foreground thread PID, which performs mathematical calculations with 
synchronizing to input or output hardware. This thread does not wait, signal, sleep or kill. Most operating systems 
must have at least one thread like this, so that something can run if all the other threads are blocked, dead, or 
sleeping. As mentioned earlier, a digital controller is typically a real time periodic task that has both input and 
output. However, in this lab, this PID controller runs continuously without I/O. This thread is not real time, so we do 
not calculate any latency or jitter for it.  However, one performance measure for non real-time threads is the rate at 
which is performs calculations. In this lab, the variable PIDWork will specify the number of PID operations in the 
20 second run.  The larger PIDWork is, the more efficient is your OS. FYI, we expect FilterWork to be about 
40000, because it runs at 2000 samples/sec.  
 
Task 5: User interface with a command line interpreter 
 The fifth task is the command line interpreter first developed in Lab 1. This task synchronizes with input and 
output from the UART. For a real-time system with input/output devices, the interface latency is important. For an 
input device, the interface latency is the time delay between when the hardware says the input is ready and the time 
when the software reads the data. Because of the 16-element hardware FIFO in the UART, the software must 
respond to an input within 160 bit times or risk an overrun error (lost data). For an output device, the interface 
latency is the time delay between when the hardware says the output is idle and the time when the software write 
new data to the device. The interface latency for the output task will affect the overall bandwidth, but there is 
usually no hard upper bound above which the system stops working. You are free to implement the UART I/O 
synchronization however you wish. However, you may also use an approach that uses no interrupts, as illustrated in 
Figure 2.7. The busy-wait synchronization uses the 16-element hardware FIFO and checks status bits (RxFE, TxFF) 
in the UART0_FR_R register. If busy, the foreground thread waits by calling OS_Sleep. 
 

 
Figure 2.7. One possible synchronization method for the serial input/output. 
 
If you use interrupts and software FIFO queues, have the UART interrupt on TXRIS, RXRIS or RTRIS. The receive 
operation is illustrated in Figure 2.8. There are two possible ways to get a receive interrupt. The RXRIS bit is set if 
the receive hardware FIFO gets big (e.g., 1/8 full means receive hardware FIFO goes from 1 to 2 elements). The 
RTRIS bit is set if there is a timeout (some data in the receive hardware FIFO and no input for 32 bit times). The 
ISR will copy as much data as it can from the hardware FIFO to the software FIFO. There is a counting semaphore, 
called RxDataAvailable and is initialized to 0. The RxFifo_Put will call signal if data is successfully 
entered, and RxFifo_Get will call wait. To acknowledge the receive interrupt, we write ones to the RXIC and 
RTIC bits in UART0_ICR_R. 
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Figure 2.8. One possible interrupt synchronization for the serial input. 
 
For the transmission channel there is a software FIFO (TxFifo) and the transmit hardware FIFO. The ISR is 
triggered by TXRIS, which occurs when the hardware FIFO goes from 3 to 2 elements (1/8 full). The software FIFO 
has a counting semaphore, TxRoomLeft, which is initialized to the maximum number of elements that can be 
saved in the software FIFO. The TxFifo_Put will wait on the semaphore and TxFifo_Get will signal the 
semaphore when data is successfully removed. The helper function TxCopy will transfer as much data as it can 
from the software FIFO to the hardware FIFO. The TxFifo_Get function is not reentrant, so OutChar disarms 
TXRIS before calling TxCopy. To acknowledge the transmit interrupt, we write 1 to the TXIC bit in 
UART0_ICR_R. 
 

 
Figure 2.9. One possible interrupt synchronization for the serial output. 

 
 Not all software tasks in a real-time system require execution at specified times. For example, in a data 
acquisition and control systems, updating visual displays or saving the results in secondary storage can often be 
performed when the computer is free, i.e., not needed for time critical functions. Specifically in Lab 2, the threads 
DAS and ButtonPush must be real time, and the others are not. Task 3 will be real time if no data is lost. Losing 
data at the hardware level can be found making sure the appropriate bit in ADC0_OSTAT_R is never set. The 
number of data lost at the software level is calculated in the variable DataLost. Task 5 will be real time if the 
hardware FIFO in the receiver never becomes full. We will not specifically test or attempt to overflow the UART 
receive buffer in this lab. However, later in the CAN lab we will attempt to create this type of input overflow. 
 In Lab 2, we will pass data from a background thread (Producer) to a foreground thread (Consumer) using 
a buffered approach, see Figure 2.5. When Consumer needs information, it calls OS_Fifo_Get. If the FIFO is 
empty, it will spin/block on a semaphore FifoAvailable because it can not retrieve any information. On the 
other hand, Producer enters information by calling OS_Fifo_Put. If the FIFO is full, then it will not wait 
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because one can not block or spin in an interrupt service routine. The spinning/blocking occurs in the OS_Wait 
routine.  
 When passing data between two foreground threads, we could use a buffered approach (DataFifo). Another 
name often used for this type of first in first out (FIFO) queue is pipe. The buffered communication between two 
foreground threads will not be used in this lab; it is presented here for information and completeness purposes (and 
for future reference in upcoming labs) only. When using a DataFifo buffer, the two counting semaphores called, 
DataAvailable and DataRoomLeft, contain the number of entries currently stored in the message 
DataRoomLeft and the number of spaces left in the DataFifo respectively. DataAvailable is initialized to 
zero, and DataRoomLeft is initialized to the maximum allowable number of elements in the DataFifo. The 
Send routine, called by a foreground thread when it wishes to transmit data, could execute the following steps: 

  OS_Wait(&DataRoomLeft) 
 OS_bWait(&mutex)  
 Enter data into the DataFifo structure 
 OS_bSignal(&mutex)  
 OS_Signal(&DataAvailable) 

The Receive routine, called by a foreground thread when it wishes to receive data, could execute the following 
steps: 

OS_Wait(&DataAvailable) 
 OS_bWait(&mutex)  
 Remove data from the DataFifo structure 
 OS_bSignal(&mutex)  
 OS_Signal(&DataRoomLeft) 

One thread creates data, and then sends the data to a second thread by calling Send. The second thread receives 
the data from the first thread by calling Receive. The DataFifo is used for interthread communication. In some 
applications there might be multiple producers and multiple consumers. When one of the threads involved in the 
buffered producer-consumer communication is a background thread, we must remove the OS_Wait call from the 
ISR. This is because only foreground threads will be allowed to spin or block.  
 In this lab, instead of using a buffered FIFO, we will pass data from a foreground thread (Consumer) to 
another foreground thread (Display) using an unbuffered approach, see Figure 2.5. A single global (called 
MailBox) will contain the data passed from Consumer to Display. A binary semaphore, DataValid, is 
initialized to zero meaning the MailBox is empty. When DataValid equals one it means the mailbox has data in 
it placed by Consumer that has not been read by the Display. A second binary semaphore, BoxFree, is 
initialized to one meaning the MailBox is free. When BoxFree equals zero it means the mailbox contains data 
that has not yet been received. When Consumer wishes to send data it first waits/blocks on the semaphore 
BoxFree. Next, Consumer puts its data into the MailBox, and signals DataValid. Setting DataValid will 
allow Display to proceed.  When Display executes Receive, it first waits/blocks on the semaphore 
DataValid, gets the data from the MailBox and signals BoxFree. Setting BoxFree will allow Consumer to 
proceed. It doesn’t matter whether the Display or Consumer executes first, they will wait for each other. The 
OS_MailBox_Send routine executes the following steps: 

OS_bWait(&BoxFree) 
 Put data into the mailbox 
 OS_bSignal(&DataValid) 

The OS_MailBox_Recv routine executes the following steps: 

 OS_bWait(&DataValid) 
 Retrieve the data from the mailbox 
 OS_bSignal(&BoxFree) 

 Finally, when we perform LCD output we will need a mechanism to share this resource. You will have to 
implement mutual exclusion (only one thread at a time can call the LCD output functions.) The traditional term for 
this type of semaphore is mutex.  We will call our semaphore LCDFree. It will prevent more than one thread from 
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outputting at the same time. It is initialized to 1 that means the LCD display available. When the LCDFree 
semaphore is zero, it means no displays are free (a thread is currently doing output.) Some operating systems 
provide special support for this true/false type of semaphore, calling it a binary semaphore. For example if you 
wished to output a message, then a thread could call a function like the following (you are free to implement 
whatever syntax you wish for the LCD): 

void ST4773_Message (uint32_t device, uint32_t line,  
                     char *string, int32_t value){  
  OS_bWait(&LCDFree);         // capture resource  
  // output as written in Lab 1 
  OS_bSignal(&LCDFree);  // release resource 

  } 

 Before you begin writing code for this lab, please review the user programs that your OS will be running (i.e., 
the starter file Lab2.c). You are free to change the syntax of the I/O functions and the OS calls, as long as the 
fundamental approach is unchanged.  
 For this part of the lab, you will implement spinlock semaphores, and a preemptive round robin scheduler. 
Threads will be activated at run time. The memory for the TCB and stack can be found by calling malloc, or you 
could have a finite set of buffers and when you need a TCB or a stack you could select a free buffer to use. Many 
students have had problems debugging their software that used malloc. Therefore, we suggest you write your own 
very simple memory manager that handles fixed-sized blocks. The priority field will not be used until Lab 3. The 
OS_Sleep function will temporarily prevent this thread from being run. When a thread calls OS_Kill it will no 
longer be run, and its TCB and stack will made available for adding other threads. The desired endpoint of this lab is 
to be able to run the system to completion without losing any data, and with a small time jitter.  
 
Preparation Part 2 (do this before your lab period) (10 points Prep Part 2) 
2.1) There are five tasks in this system. Look at the user code and categorize the type of these five tasks as I/O 
bound, fixed bandwidth, or CPU bound.  
 
2.2) Design your implementations of the OS_Sleep and OS_Kill functionality.  
 
2.3) Write spinlock implementations for the OS_InitSemaphore, OS_Signal, OS_Wait, OS_bSignal and 
OS_bWait routines. Add these synchronization utilities to your display driver. If you use interrupting serial port 
I/O, add semaphores to the software FIFOs. Be careful to consider critical sections. 
 
Procedure Part 2 
2.1) Implement the OS_AddPeriodicThread routine that executes a background task at a periodic rate:  

  int OS_AddPeriodicThread(void(*task)(void),  
       uint32_t period, uint32_t priority);  

where task is a pointer to the function to execute every period milliseconds, and priority is the value to be 
specified  in  the  NVIC  for  this  thread.  You  are  free  to  specify  the  units  of  period however  you  wish. 
You can simply start with the code provided in the Lab 1 project to launch the DAStask there (see Lab1.c). Note, 
however, that for later labs, we will need to generalize the function to be able to launch multiple periodic 
background threads running at the same time.  
 
2.2) Similarly, implement a OS_AddSW1Task routine that launches a given task whenever SW1 is pressed: 

  int OS_AddSW1Task(void(*task)(void), uint32_t priority);  

You can refer to the EdgeInterrupt_4C123 starter project for example code. In Lab 2, we will only be using 
SW1, but in Lab 3 we will add a similar routine for SW2.  
 
2.3) Implement and test your OS_Sleep and OS_Kill functionality. You can use the provided Testmain3 to test 
your sleep and kill functionality, but you should also develop your own test cases and variants.   
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2.4) Implement and test your semaphores. One way to test them is to call OS_Signal from a periodic interrupt. 
Place OS_Wait in the body main program, then count the number of interrupts and the number of times the body of 
the loop is executed. In particular, see Testmain4 and Testmain5. 
 
2.5) Add Interpreter commands to display performance metrics. These metrics include timer-jitter, the number 
of data points lost, or the number of calculations performed. At minimum, you must be able to display 
NumCreated (number of threads created) and MaxJitter (maximum time jitter) but additional information may 
be useful for debugging.    
 
2.6) Implement, test and profile the complete system (realmain). Connect unused output pins to a logic analyzer and 
add minimally intrusive debugging instruments to profile the RTOS. This profile collects information of both time 
and place (when and which thread is executing). Add a compile time switch to remove these profiling instruments. 
In this way you can determine the degree to which the debugging instruments themselves affect system 
performance. In particular, measure PIDWork with and without the debugging instruments. In addition, once you 
get to the robot in Lab 7, you will need all the I/O pins for interfacing components. 
 
2.7) Try running the system with lots of select pushes.  Increase the size of the OS_Fifo until no data is lost. Test 
the system with operator input to the Interpreter, too. Take measurements for three OS_Fifo sizes and three 
time slices (5 runs) when no input occurs in tamper or the Interpreter. Make a table showing the three 
performance parameters (time-jitter, number of data points lost, number of PIDWork calculations performed) 
versus the TIMESLICE and the FIFOSIZE. Table 2.1 shows an example of the 5 runs required for this part. 
 

FIFOSize TIMESLICE (ms) DataLost Jitter (us) PIDWork 

4 2 3763 7 1285 

8 2 0 7 1285 

32 2 0 7 1285 

32 1 0 7 1283 

32 10 0 7 1287 
Table 2.1. Example performance data for Procedure 2.7 (collected with no interpreter or switch input). 
 
Checkout Part 2  (show this to the TA) (25 points performance, 25 points oral understanding) 
2.1) Run the software system and explain the profiling data to the TA. 
2.2) Be prepared to discuss the sketches you created as part of the preparation, and procedure. 
2.3) Discuss the TCB before and after a thread switch. 
2.4) Identify inefficiencies in your implementation. 
 

Deliverables (components of lab report and submission) (20 points report, 10 points software quality)  
A) Objectives (1/2 page maximum) 
B) Hardware Design (none for this lab) 
C) Software Design (documentation and code of spinlock/round-robin operating system) 
D) Measurement Data 
 1) plots of the logic analyzer like Figures 2.1, 2.2, 2.3, 2.4, and 2.6 
 2) measurement of the thread-switch time 
 3) plot of the logic analyzer running the spinlock/round-robin system (profile data) 
 4) the three sketches (from first preparation parts 1.2 and 1.3), with measured data collected during testing 
 5) a table like Table 2.1 each showing performance measurements versus sizes of OS_Fifo and timeslices 
 6) a table showing performance measurements with and without debugging instruments 
E) Analysis and Discussion (2 page maximum). In particular, answer these questions 

1) Why did the time jitter in my solution jump from 4 to 6 μs when interpreter I/O occurred? 
2) Justify why Task 3 has no time jitter on its ADC sampling. 
3) There are four (or more) interrupts in this system DAS, ADC, Select, and SysTick (thread switch). Justify 
your choice of hardware priorities in the NVIC? 
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4) Explain what happens if your stack size is too small. How could you detect stack overflow? How could you 
prevent stack overflow from crashing the OS? 
5) Both Consumer and Display have an OS_Kill() at the end. Do these OS_Kills always execute, 
sometime execute, or never execute? Explain. 
6) The interaction between the producer and consumer is deterministic. What does deterministic mean? Assume 
for this question that if the OS_Fifo has 5 elements data is lost, but if it has 6 elements no data is lost. What 
does this tell you about the timing of the consumer plus display? 
7) Without going back and actually measuring it, do you think the Consumer ever waits when it calls 
OS_MailBox_Send? Explain. 

 
Hints  
0) Start early! Lab 2 (especially the checkout for part 2) is much harder than Lab 1 because you’ll undoubtedly get 
unexpected hard faults that can stump you for several hours at a time. Many students had to checkout late in 
previous years. Even if you pass Testmain4 and Testmain5, realmain will be a lot harder. 
 
1) Review how the COS-II or COS-III thread switching occurs. Please reference all software you copy/paste. 
 
2) Make small changes and save the changes using new file names, so that when something doesn’t work you can go 
back to a version that does work and try something new. You will have to debug this system in small very parts. The 
comments in the starter code tell you what the expected output for the testmains are and lots of other useful 
information. A mechanism to visualize the real time execution will also be extremely helpful. 
 
3) Look for the most recent files on the class website. (there may be corrections) 
 
4) Please ask the instructor or the TA for help in clarifying any details you don't understand. 
 
5) You do not have to implement OS_Wait and OS_Signal with LDREX and STREX, but you do have to remove 
critical sections. 
 
6) Avoid using breakpoints and single stepping on the real microcontroller. Remember to use the minimally 
intrusive debugging techniques that you have learned. If you store data into global memory, the information should 
be available for viewing even after a crash or a hardware reset. Debuggers get very confused when you change the 
stack pointer. 
 
7) The OS.h starter file includes both binary and counting semaphores. If there is no efficiency advantage of binary 
semaphores over counting semaphores, you are free to delete the binary semaphores and just use counting 
semaphores. 
 
8) You can ignore the thread stack size parameter and simply create a fixed number of fixed size TCB/stacks. This 
will assist you in debugging. You should not use malloc and free, but once a thread calls OS_Kill, its TCB 
and stack should be available to use if the user calls OS_AddThread. 
 
9) Make sure your OS does not return when a thread calls OS_Kill. 
 
10) The starter project already includes the necessary code for hardware-triggered ADC sampling (in the 
Consumer task). You are free to modify the code, but read the errata about timer-triggered ADC sampling. YOU 
MUST USE 16-BIT MODE FOR TIMER-TRIGGERED ADC SAMPLING.  
 
11) Make sure your other timers are in 32-bit mode. Do not use code from the ADCT0ATrigger_4C123 project 
for normal timers, start with any of the periodic timer projects (such as PeriodicTimer0AInts_4C123).   
 
12) The starter code also already has some switch debouncing code, but feel free to write your own. 
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13) Feel free to sample the internal temperature rather than soldering wires, or to sample the real input without 
connecting an analog signal. There are no action items on the ADC data you collect in Labs 1, 2, and 3. However, if 
you have a robot sensor board and an IR sensor, then you can measure distance similar to the robot competition at 
the end of the class. 
 
14) Be careful of any pins that you choose since some are being used by the sensor board already (see the sensor 
board schematic on the Resources tab of the class website). 
 
 
 
 


