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EE445M/EE380L.12
Embedded and Real-Time Systems/ 

Real-Time Operating Systems

Lecture 12:

Memory Protection, Virtual Memory, 
Paging
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References: T. Anderson, M. Dahlin, “Operating Systems: Principles and Practice”
R. & A. Arpaci-Dusseau, “Operating Systems: Three Easy Pieces”, http://ostep.org

Recap: Memory Management
• Sharing

– Per-thread: stack
– Per-program/-process: 

code, data
• Allocation

– Static, permanent
• OS code & data

– Dynamic, temporary
• Stacks & heaps, 

process code & data 

• Protection
– Access control
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Memory Protection
• Divide memory into regions

– Allocated heap blocks

– Thread/process data & code segments

• Define access control per region
– Read-only/read-write

– Execute/no-execute

• Enforce access control in hardware
– On every memory access (load/store)

– Permission fault exception
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TM4C123 Memory Protection
• Memory Protection Unit (MPU)

– 8 separate memory regions
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Memory Region Attributes
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Access Privileges

• Memory management fault on violation
– Can be caught by OS in an interrupt handler
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Thread-Protected Mode

• Only current thread
has memory access
– Code

– Data/heap, stack

– OS kernel traps

• On context switch
– Re-assign MPU

permissions

– Extra overhead
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μCOS Thread Groups

• Group of threads
protected jointly
– Called “process” in 
μCOS-II

– Group-local shared
memory region

• Inter-group communication
– Through OS kernel

– Special shared memory areas
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Multi-Processing
• Process

– Whole program in execution
– Code, data, heap
– One or more threads

• Multi-processing
– Multiple processes/programs 

in main memory
– OS schedules processes & 

threads
– Process-level protection
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Recap: Processes
• OS manages processes

– CPU scheduling

– Code/data memory

• Independent programs
– Separately compiled

– Virtual address space

• Brought in/out of memory
– On load/exit, swapped in/out by OS

– Address translation
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Recap: Address Translation

• Virtual addresses in process
– Compiler generated programs on disk

– Location of & references to code and data

• Physical addresses in main memory
– Need to map virtual into physical addresses

– Compile time: generate for known location

– Load time: relocation by OS, dynamic linking

– Run time: software or hardware, virtual memory
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Memory Management Unit (MMU)

• Fast & efficient address translation
– Hardware supported, at run-time
– Start with old, simple ways
– Progress to current techniques

MMUProcessor
Physical
memory

Virtual
addresses

Physical
addresses
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Variable Partitions
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Segmentation
• Partition memory into logically related units

– Module, procedure, stack, data, file, etc.
– Virtual addresses become <segment #, offset>
– Units of memory from programmer’s perspective

• Natural extension of variable-sized partitions
– Variable-sized partitions = 1 segment/process
– Segmentation = many segments/process

• Hardware support
– Multiple base/limit pairs, one per segment 

(segment table)
– Segments named by #, used to index into table
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Segmented Address Space
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Segment Lookups
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Paging
• Paging solves the external fragmentation 

problem by using fixed sized units in 
both physical and virtual memory

Virtual Memory
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Virtual Memory
• Programmers (and processes) view memory 

as one contiguous address space 
– From 0 through N
– Virtual address space (VAS)

• In reality, pages are scattered throughout 
physical storage

• The mapping is invisible to the program
• Protection is provided because a program 

cannot reference memory outside of its VAS
– The address “0x1000” maps to different physical 

addresses in different processes
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Demand Paging / Swapping
• Pages can be moved between memory and disk

– Use disk to provide more virtual than physical memory

• OS uses main memory as a page cache of all the 
data allocated by processes in the system
– Initially, pages are allocated from memory
– When memory fills up, allocating a page in memory 

requires some other page to be evicted from memory
• Why physical memory pages are called “frames”

– Evicted pages go to disk
• Where? The swap file/backing store

– The movement of pages between memory and disk is 
done by the OS, and is transparent to the application

• But: expensive!
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Page Lookups

Page frame

Page number Offset

Virtual Address

Page Table
Page frame Offset

Physical Address

Physical Memory

0x2

4680x7

468

32-bit address, 4K pages
Offset is 12 bits
220 pages
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Page Tables
• Page tables completely define the mapping between 

virtual pages and physical pages for an address space
• Each process has address space & page table
• Page tables are data structures maintained in the OS
• Accessible by MMU for hardware translation
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Page Table Entries (PTEs)

• Page table entries control mapping
– The Modify bit says whether or not the page has been written

• It is set when a write to the page occurs

– The Reference bit says whether the page has been accessed
• It is set when a read or write to the page occurs

– The Valid bit says whether or not the PTE can be used
• It is checked each time the virtual address is used, set when page is in memory

– The Protection bits say what operations are allowed on page
• Read, write, execute

– The page frame number (PFN) determines physical page

R VM Prot Page Frame Number

1 1 1 2 20
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Segmentation and Paging
• Can combine segmentation and paging

– The x86 supports segments and paging

• Use segments to manage logically related units
– Module, procedure, stack, file, data, etc.
– Segments vary in size, but usually large (>1 page)

• Pages to partition segments into fixed size chunks
– Segments easier to manage within physical memory

• Segments become “pageable” – rather than moving segments into and out of 
memory, just move page portions of segment

– Need to allocate page table entries only for those 
pieces of the segments that have themselves been 
allocated

• Tends to be complex…
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Paging Limitations

• Can still have internal fragmentation
– Process may not use memory in multiples of a page

• Memory reference overhead
– 2 references per address lookup (page table, then memory)
– Solution – use a hardware cache of lookups (more later)

• Memory required to hold page table can be significant
– Need one PTE per page
– 32 bit address space w/ 4KB pages = 220 PTEs
– 4 bytes/PTE = 4MB/page table
– 25 processes = 100MB just for page tables!
– How to reduce page size?

• How do we only map what is being used?
– Dynamically extending page table, but fragmentation
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Two-Level Page Tables

Page table

Master page number Secondary

Virtual Address

Master Page Table

Page frame Offset

Physical Address

Physical Memory

Offset

Page frame

Secondary Page Table
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Two-Level Page Tables
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Addressing Page Tables
• Where do we store page tables?

– Physical memory
• Easy to address, no translation required
• But, allocated tables consume memory for lifetime of VAS

– Virtual memory (OS virtual address space)
• Cold (unused) page table pages can be paged out to disk
• But, addressing page tables requires translation
• How do we stop recursion?
• Do not page the outer page table (called wiring)

– If we’re going to page the page tables, might as 
well page the entire OS address space, too

• Need to wire special code and data (fault, int handlers)
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Efficient Translations
• Original page table scheme already doubled the 

cost of doing memory lookups
– Lookup into page table + fetch the data

• Two-level page tables triple the cost!
– 2x lookups into page tables, a third to fetch the data
– And this assumes the page table is in memory

• How can we use paging but also have lookups 
cost about the same as fetching from memory?
– Cache translations in hardware
– Translation Lookaside Buffer (TLB)
– TLB managed by Memory Management Unit (MMU)

Lecture 12 J. Valvano, A. Gerstlauer 
EE445M/EE380L.12

29Source: G. M. Voelker, UCSD, 
CSE 120 – Lecture 10 – Paging

Translation Lookaside Buffer (TLB)
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Memory Access Example

• Process is executing on CPU, issues a read to an address
– What kind of address is it?  Virtual or physical?

• The read goes to the TLB in the MMU
1. TLB does a lookup using the page number of the address

2. Common case is that the page number matches, returning a page 
table entry (PTE) for the mapping for this address

3. TLB validates that the PTE protection allows reads (in this case)

4. PTE specifies which physical frame holds the page

5. MMU combines physical frame and offset into a physical address

6. MMU then reads from that physical address, returns value to CPU

• Note: This is all done by the hardware
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TLB Miss
• If the TLB does not have mapping:

1. MMU loads PTE from page table in memory 
• Hardware managed TLB [x86] 

• OS has already set up the page tables so that the hardware can 
access it directly, otherwise not involved

2. Trap to the OS 
• Software/OS managed TLB [MIPS, Alpha, Sparc, PowerPC]

• OS does lookup in page table, loads PTE into TLB

• OS returns from exception, TLB continues

• Replace existing PTE in TLB
– Done in hardware, e.g. least recently used

– At this point, PTE for the address in the TLB
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Page Fault
• PTE can indicate a protection fault

– Read/write/execute – operation not permitted
– Invalid – virtual page not allocated/not in memory

• TLB traps to the OS (OS takes over)
– R/W/E violation

• OS sends fault back up to process, or intervenes

– Invalid
• Virtual page not allocated in address space

– OS sends fault to process (e.g., segmentation fault)

• Page not in physical memory
– OS allocates frame, reads from disk (swap space)
– Maps PTE to physical frame, update TLB
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Page Replacement

• Which page to evict on invalid page fault?
– Page replacement policies

– Avoid thrashing (if possible)

• Exploit locality
– Temporal and spatial locality

– Working set (pages most recently referenced)

– FIFO, Least Recently Used (LRU), …

• Dirty vs. clean pages (marked in PTE)
– Only write back dirty pages to disk
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Advanced Functionality

• Shared memory
– PTEs of two processes point to same page

• Copy on Write (fork() a process)
– Copy only page table to clone process

– Copy memory frame only on first write

• Mapped files
– Map pages from file on disk into memory
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Shared Memory
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Copy on Write: Before Fork
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Copy on Write: Fork
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Copy on Write: On A Write
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Mapped Files

• Bind file to memory region
– Linux: mmap()

• File acts as backup store
– Instead of swap space
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Virtual Address 
Space Mapped File
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PTEs initially invalid

Read into memory on page fault

Write back when dirty on eviction

Similar approach used by OS when 
loading process/program from disk 
(copy to swap space, then map)
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Memory Management Summary
• Often not used in embedded devices

– Overhead
• Page table storage, Context switching

– Unpredictable timing
• TLB misses, Page faults

• Static memory management
– Static data allocation, no heap
– No MMU/paging

• Compile/load time relocation (optionally segmented)
• Hardware support for protection & translation
• Swapping under program control (overlays)
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