
Lab 3 Performance measures of an RTOS with blocking and priority Page 3.1

Lab 3 Performance measures of an RTOS with blocking and priority

Goals • Extend the RTOS to include blocking and priority,
 • Extend the RTOS to include two real-time periodic tasks,
 • Develop minimally invasive tools to determine performance measures,
 • Record debugging/performance data and download this data to the PC.

Starter files Lab2.c and OS.h

Background
 In this lab you will convert your spinlock semaphores to blocking semaphores, and convert your round robin
scheduler to a priority scheduler. A priority field will be added to the TCB, which is set at the time the user calls
OS_AddThread. In Lab 2, you implemented a single periodic task using a timer interrupt and a single aperiodic
task using the PF4 interrupt. In this lab, you will add the possibility of two periodic tasks and two aperiodic tasks. An
additional parameter will allow the user to set the priority of the four background tasks. In the example user program,
Lab2.c, one periodic task will sample the ADC and a second periodic task will run a digital PID motor controller.
The two aperiodic tasks will be triggered by the two buttons on the board (PF4=SW1 and PF0=SW2). The
background tasks should have priority (preempt) any foreground task, regardless of the user-defined priorities. When
modifying your Lab2, you will need to uncomment this line in the main() program

 OS_AddSW2Task(&SW2Push,2); // add this line in Lab 3

 A thread is in the blocked state when it is waiting for some external event like input/output (serial input data
available, LCD free, I/O device available.) If a thread communicates with other threads then it can be blocked
waiting for receive data or waiting for there to be room in the transmit buffer. Both types of blocking that will be
implemented in the part of this lab. If a thread wishes to output to the LCD display, but another thread is currently
outputting, it will block. We will use a blocking semaphore to implement the sharing of the display output among
multiple threads.

All of these features can be implemented by changing OS_Wait, OS_Signal, OS_bWait, OS_bSignal,
and your scheduler. One possible way to implement blocking semaphores uses linked-list data structures to hold the
ready and blocked threads. You will need to create multiple blocked linked lists. In general, you would have one
blocked list with each blocking semaphore. You could extend the semaphore structure to include both the semaphore
value and a pointer to a TCB list containing threads that are blocked on the semaphore. The semaphore initialization
should be extended to clear the linked-list of blocked threads on that semaphore. Except for the semaphore structure,
everything else in the user program should remain exactly the same.

New OS_Wait
 1) Save the I bit, then disable interrupts
 2) Decrement the semaphore counter, (*pt->Value) = (*pt->Value)-1
 3) If the semaphore counter is less than zero then this thread will be blocked
 set the status of this thread to blocked,
 specify this thread is to be blocked onto the linked list of this semaphore (semaphore pointer)
 suspend thread causing the thread switch operation to occur
 4) Restore I bit to its previous value

Add this step somewhere in your thread switch process
 1) If this thread is to be blocked
 move the TCB of this thread from the active list to the end of the blocked list of the specified semaphore

New OS_Signal
 1) Save the I bit, then disable interrupts
 2) Increment the semaphore counter, (*pt->Value) = (*pt->Value)+1
 3) If the semaphore counter is less than or equal to zero then

J. W. Valvano, A. Gerstlauer 1/28/2015

Lab 3 Performance measures of an RTOS with blocking and priority Page 3.2

 wake up one thread from the TCB linked list

with Round Robin, choose the one waiting the longest (bounded waiting)
with Priority, wake up the highest priority thread

 move the TCB of the “wakeup” thread from the blocked list to the active list
 what to do with the thread that called OS_Signal
 with Round Robin, do not suspend execution
 with Priority, do suspend execution if you wake up a higher priority thread
 be careful not to suspend a background thread
 4) Restore the I bit to its previous value

 There is a second simpler implementation. In this implementation, a BlockPt field is added to the TCB. If the
BlockPt is null, the thread is not blocked. If the BlockPt contains a semaphore pointer, it is blocked on that
semaphore. This simple implementation will not allow you to implement bounded waiting. There are other ways to
implement blocking, and you are free to implement other blocking schemes. Although bounded waiting is important,
it is not necessary for you to implement it.

 In uCOS-III, if a low priority thread signals a semaphore that wakes up a higher priority thread, the thread
switch occurs immediately, and the higher priority thread is run, without waiting for the time slice of the lower
priority thread to finish. This is a good feature, but you do not have to implement it in this lab.

 You will implement a blocking scheduler. If multiple threads are blocked, when it is time to wakeup a thread,
one option is to have the OS wakeup the one that has been blocked the longest (bounded waiting). If a thread
requests a resource that is unavailable, your system should move the thread to the appropriate blocked linked-list.
Careful thought should go into when to remove a thread from the blocked list. There are lots of ways in which to
implement blocking semaphores. You are allowed to choose whichever way you wish as along as

 1) Blocked threads are not allowed to run;
 2) The Lab3.c user program runs for 30 minutes without crashing;
 3) The Lab3.c user program runs for 30 minutes without hitting a deadlock; and
 4) You understand how to implement blocking as described in class and as implemented in uCOS-II.

Preparation
1) Consider at least two ways to implement the second periodic background thread. A priority parameter in the
OS_AddPeriodicThread function allows the user to specify the relative priority of the four background threads.
This priority does not affect the fact that all background threads (two periodic, two aperiodic) will preempt any
foreground thread. In this lab, OS_AddPeriodicThread will be called 0, 1, or 2 times. Think about how would
your implementation be different if there were 10 background threads? Write C code to implement this new
expanded periodic thread feature.

2) Add features to the OS to measure and record time jitters for the two periodic threads. Record two maximum
jitters and two histograms of jitter values. In particular, move the jitter measurements from Lab2 into the OS, and
make two copies of it. Feel free to change any of the user code in Lab2.c so they are compatible with your RTOS.

3) Write C code to implement the second aperiodic background thread, triggered by a falling edge on PF0. In
hardware this is implemented with the SW2 button. On the robot, you could add a bumper switch and use this feature
to detect collisions. Your OS should allow the user to activate and arm this feature by passing a user function to
execute, and using the external event mechanism to trigger the background task. You should also provide an OS
function to disarm this feature. The priority parameters for OS_AddPeriodicThread OS_AddSW1Task
and OS_AddSW2Task allow the user to specify the relative priority of the four background threads.

4) Consider at least two ways to implement blocking semaphores. In this class, we have 1 to 10 foreground threads.
How would your implementation be different if there were 100 foreground threads? Write C code to implement the
blocking semaphores. Take one of the test programs from Lab2.c and modify it to test the blocking semaphores. In
particular, there should be multiple threads signaling the same semaphore, and multiple threads waiting on that same
semaphore. You should signal both in the background and in the foreground, but you can only wait in the
foreground. Use counters to make verify the total number of times signal is called matches the total number of times

J. W. Valvano, A. Gerstlauer 1/28/2015

Lab 3 Performance measures of an RTOS with blocking and priority Page 3.3

wait allows a thread to pass. The key is to run the system in an exhaustive manner increasing the likelihood of
finding bugs. For example, if there is a 1 in 104 chance of Condition A occurring (e.g., PC is executing at a
particular spot) and a 1 in 104 chance of Condition B occurring, there will be a 1 in 108 chance of Conditions A and
B occurring at the same time. You also have to be careful not to introduce critical sections in the test program itself.
Edit Lab2.c so it is compatible with your RTOS. Modify the numbers in Signal2() so that the period of this
thread is variable.

5) Consider at least two ways to implement the priority scheduler. Again, think about how would your
implementation be different if there were 100 foreground threads? Write C code to implement the priority scheduler.

Procedure
1) Debug the second periodic task feature (preparation 1). See Lab2.c.
2) Write the function jitter called by Thread7. Using main program maintest5 evaluate the time jitters over
a finite amount of time (e.g., 10 seconds) for these six conditions (prep 2). Make Task A higher priority than Task B.
Feel free to adjust the specific times. The 2.99 ms means any value slightly different than 3ms, not related to 2ms.
 - Three periodic times pA ={1, 2.99 ms} for Task A, i.e., Task A is invoked every pA,
 - Three execution times tA = {5, 50, 500 µs} for Task A, i.e., Task A takes tA to complete,
 - One periodic time pB= 2 ms for Task B, i.e., Task B is invoked every pB,
 - One execution time tB = 250 µs for Task B, i.e., each time it runs, Task B takes tB to complete, with tB = ¼ pB
You are allowed to change any of these numbers to be compatible with your OS.

3) Debug the second aperiodic task feature (preparation 3). See Lab3.c.

4) Debug the blocking semaphore implementation with the round-robin scheduler using test program written in
preparation 4. Using Lab3.c, test the blocking semaphore solution on the same five test cases you ran in Lab 2
procedure 5. An example performance data is shown in the middle of Table 3.1.

5) Debug the blocking priority implementation. Using Lab 2.c, test the blocking/priority solution on the same test
cases you ran in Lab 2 procedure 5. Create a side by side table of the performance data (E.g., Table 3.1) of
 - spinlock semaphores, round robin scheduler (Lab 2)
 - blocking semaphores, round robin scheduler (Lab 3 procedure 4)
 - blocking semaphores, priority scheduler (Lab 3 procedure 5)

 Spinlock/Round Robin Spin/Round Robin/Cooperative Block/Priority
FIFO
Size

Tslice
(ms)

Data
Lost

Jitter
(µs)

PID
Work

Data
Lost

Jitter
(µs)

PID
Work

Data
Lost

Jitter
(µs)

PID
Work

4 2
32 2 0 0.4 3230 0 0.4 11949 0 11.6 11559
32 1
32 10

Table 3.1. Example performance data for Labs 2 and 3 (collected with no interpreter or switch input). Data from
Valvano’s Spring 2014 lab solutions running 20 seconds.

6) Add features to the OS to record the following information.
 - Maximum time the system runs with interrupts disabled
 - Percentage of time the system runs with interrupts disabled
Add interpreter commands to clear and restart the measurements and to dump results to the PC. The 10-second time
jitter measurements performed in Lab 2 and procedure 2 are not long enough to capture rare events. For example,
what if the timer interrupt is triggered during the time a thread is being killed? Recording jitter itself (procedure 2) is
a direct measure of the latency. Conversely, recording the times when interrupts are disabled is an indirect
measurement of latency. The maximum time running with interrupts disabled provides an upper bound on the latency
of your real-time system. You can run maintest7 to measure the time is takes to switch from one foreground task
to another foreground task (assuming no I/O interrupts); but you do not need to add interpreter commands to print
out the task switch time.

J. W. Valvano, A. Gerstlauer 1/28/2015

Lab 3 Performance measures of an RTOS with blocking and priority Page 3.4

7) Create a thread profile recorder. Using Lab3.c, collect timestamp data for the first 100 events. In this recording,
you can ignore aperiodic events (i.e., no Select, Down, or UART I/O). For each event, record the time and the
thread effected. The events include
 - A foreground thread is started (whenever PendSV is triggered)
 - A periodic thread is started
 - A periodic thread finishes (observing if one periodic event suspends another periodic event)
Add an interpreter command to clear buffers and restart the measurements. Add another command to dump results to
the PC. Organize these profile data in a graphical manner.

Checkout (show this to the TA)
 1) Demonstrate the final system to the TA.
 2) Show the TA where in your final system the worst case time jitter arises.
 3) Demonstrate your method to visualize the real time execution pattern.
 4) Discuss your results of the three tables (e.g., Table 3.1 with data from lab 2, procedures 4 and 5).

Deliverables (exact components of the lab report)
A) Objectives (1/2 page maximum)
B) Hardware Design (none for this lab)
C) Software Design

- Printout of main program used to measure time jitter in Procedure 2
- Printout of main program used test the blocking semaphores Preparation 4
- Printout of your blocking/priority RTOS, os.c and any associated assembly files

D) Measurement Data
 - plot of the logic analyzer running the blocking/sleeping/killing/round-robin system (Lab 3.c)
 - plot of the scope window running the blocking/sleeping/killing/priority system (Lab 3.c)
 - table like Table 3.1 each showing performance measurements versus sizes of the Fifo and timeslices
E) Analysis and Discussion (2 page maximum). In particular, answer these questions

1) How would your implementation of OS_AddPeriodicThread be different if there were 10 background
threads? (Preparation 1)

2) How would your implementation of blocking semaphores be different if there were 100 foreground threads?
(Preparation 4)

3) How would your implementation of the priority scheduler be different if there were 100 foreground threads?
(Preparation 5)

4) What happens to your OS if all the threads are blocked? If your OS would crash, describe exactly what the
OS does? What happens to your OS if all the threads are sleeping? If your OS would crash, describe exactly
what the OS does? If you answered crash to either or both, explain how you might change your OS to prevent
the crash.

5) What happens to your OS if one of the foreground threads returns? E.g., what if you added this foreground

void BadThread(void){ int i;
 for(i=0; i<100; i++){};
 return;
}

What should your OS have done in this case? Do not implement it, rather, with one sentence, say what the OS
should have done? Hint: I asked this question on an exam.

6) What are the advantages of spinlock semaphores over blocking semaphores? What are the advantages of
blocking semaphores over spinlock?

7) Consider the case where thread T1 interrupts thread T2, and we are experimentally verifying the system
operates without critical sections. Let n be the number of times T1 interrupts T2. Let m be the total number of
interruptible locations within T2. Assume the time during which T1 triggers is random with respect to the place
(between which two instructions of T2) it gets interrupted. In other words, there are m equally-likely places

J. W. Valvano, A. Gerstlauer 1/28/2015

Lab 3 Performance measures of an RTOS with blocking and priority Page 3.5

within T2 for the T1 interrupt to occur. What is the probability after n interrupts that a particular place in T2
was never selected? Furthermore, what is the probability that all locations were interrupted at least once?

Hints
0) Run the test mains and debug each component separately before combining into one system. If something doesn’t
work create a set of test mains and debug each component separately. Remember to use the logic analyzer to see
what is running when.

1) Feel free to change how the user programs are organized (Lab2.c).

2) Since each of the labs is built on top of the previous lab, time spent debugging this lab will greatly simplify
subsequent labs. In other words, some students report that significant time is wasted during Labs 4, 5 and 6 because
their Lab 3 OS has bugs.

J. W. Valvano, A. Gerstlauer 1/28/2015

	Lab 3 Performance measures of an RTOS with blocking and priority

