
Lab 3 RTOS with Blocking and Priority Scheduling  Page 3.1 
 

J. W. Valvano, A. Gerstlauer   1/20/2018 

Lab 3 RTOS with Blocking and Priority Scheduling 
 
Goals  • Extend the RTOS to include blocking and priority, 
   • Extend the RTOS to include two real-time periodic tasks, 
   • Develop minimally invasive tools to determine performance measures, 
   • Record debugging/performance data and download this data to the PC. 
 
Starter files • Switch_4C123 project (SW2 input) 
  • OS.h and Lab2.c 
 
Background 

In this lab you will convert your spinlock semaphores to blocking semaphores, and convert your round robin 
scheduler to a priority scheduler. A priority field will be added to the TCB, which is set at the time the user calls 
OS_AddThread. In Lab 2, you implemented a single periodic task using a timer interrupt and a single aperiodic 
task using the PF4 interrupt. In this lab, you will add the possibility of two periodic tasks and two aperiodic tasks. An 
additional parameter will allow the user to set the priority of the four background tasks. In the example user program, 
Lab2.c, one periodic task will sample the ADC and a second periodic task will run a digital PID motor controller. 
The two aperiodic tasks will be triggered by the two buttons on the board (PF4=SW1 and PF0=SW2). The 
background tasks should have priority (preempt) any foreground task, regardless of the user-defined priorities. When 
modifying your Lab 2, you will need to uncomment this line in the main() program 

  OS_AddSW2Task(&SW2Push,2);  // add this line in Lab 3 

 A thread is in the blocked state when it is waiting for some external event like input/output (serial input data 
available, LCD free, I/O device available). If a thread communicates with other threads, it can be blocked waiting to 
receive data or for room to be available in the transmit buffer. Both types of blocking will be implemented in this 
lab. If a thread wishes to output to the LCD display, but another thread is currently outputting, it will block. We will 
use a blocking semaphore to implement the sharing of the display output among multiple threads. 

All of these features can be implemented by changing OS_Wait, OS_Signal, OS_bWait, OS_bSignal, 
and your scheduler. One possible way to implement blocking semaphores uses linked-list data structures to hold the 
ready and blocked threads. You will need to create multiple blocked linked lists. In general, you would have one 
blocked list with each blocking semaphore. You could extend the semaphore structure to include both the semaphore 
value and a pointer to a TCB list containing threads that are blocked on the semaphore. The semaphore initialization 
should be extended to clear the linked-list of blocked threads on that semaphore. Except for the semaphore structure, 
everything else in the user program should remain exactly the same.  
 
New OS_Wait 
     1) Save the I bit, then disable interrupts 
     2) Decrement the semaphore counter, (*pt->Value) = (*pt->Value)-1 
     3) If the semaphore counter is less than zero then this thread will be blocked 
 set the status of this thread to blocked, 
 specify this thread is to be blocked onto the linked list of this semaphore (semaphore pointer) 
 suspend thread causing the thread switch operation to occur  
     4) Restore I bit to its previous value 
 
Add this step somewhere in your thread switch process  
     1) If this thread is to be blocked 
           move the TCB of this thread from the active list to the end of the blocked list of the specified semaphore 
 
New OS_Signal 
     1) Save the I bit, then disable interrupts 
     2) Increment the semaphore counter, (*pt->Value) = (*pt->Value)+1 
     3) If the semaphore counter is less than or equal to zero then  
                 wake up one thread from the TCB linked list 

with Round Robin, choose the one waiting the longest (bounded waiting) 
with Priority, wake up the highest priority thread 



Lab 3 RTOS with Blocking and Priority Scheduling  Page 3.2 
 

J. W. Valvano, A. Gerstlauer   1/20/2018 

                 move the TCB of the “wakeup” thread from the blocked list to the active list 
                 what to do with the thread that called OS_Signal 
                  with Round Robin, do not suspend execution  
                  with Priority, do suspend execution if you wake up a higher priority thread 
  be careful not to suspend a background thread 
     4) Restore the I bit to its previous value 
 
 There is a second simpler implementation. In this implementation, a BlockPt field is added to the TCB. If the 
BlockPt is null, the thread is not blocked. If the BlockPt contains a semaphore pointer, it is blocked on that 
semaphore. This simple implementation will not allow you to implement bounded waiting. There are other ways to 
implement blocking, and you are free to implement other blocking schemes. Although bounded waiting is important, 
it is not necessary for you to implement it. 
 In uCOS-III, if a low priority thread signals a semaphore that wakes up a higher priority thread, the thread 
switch occurs immediately, and the higher priority thread is run, without waiting for the time slice of the lower 
priority thread to finish. This is a good feature, but you do not have to implement it in this lab. 
 You will implement a blocking scheduler.  If multiple threads are blocked, when it is time to wakeup a thread, 
one option is to have the OS wakeup the one that has been blocked the longest (bounded waiting). If a thread 
requests a resource that is unavailable, your system should move the thread to the appropriate blocked linked-list. 
Careful thought should go into when to remove a thread from the blocked list.  There are lots of ways in which to 
implement blocking semaphores. You are allowed to choose whichever way you wish as along as 
 1) Blocked threads are not allowed to run;  
 2) The Lab3.c user program runs for 30 minutes without crashing;  
 3) The Lab3.c user program runs for 30 minutes without hitting a deadlock; and 
 4) You understand how to implement blocking as described in class and as implemented in uCOS-II. 
 
Preparation  
1) Design at least two ways to implement the second periodic background thread. A priority parameter in the 
OS_AddPeriodicThread function allows the user to specify the relative priority of the four background threads. 
This priority does not affect the fact that all background threads (two periodic, two aperiodic) will preempt any 
foreground thread. In this lab, OS_AddPeriodicThread will be called 0, 1, or 2 times. Think about how would 
your implementation be different if there were 10 background threads? Write (pseudo) code to implement this new 
expanded periodic thread feature. 
 
2) Add features to the OS to measure and record time jitters for the two periodic threads. Record two maximum 
jitters and two histograms of jitter values. In particular, move the jitter measurements from Lab2 into the OS, and 
make two copies of it. Feel free to change any of the user code in Lab2.c so they are compatible with your RTOS. 
 
3) Write (pseudo) code to implement the second aperiodic background thread, triggered by a falling edge on PF0. In 
hardware this is implemented with the SW2 button. On the robot, you could add a bumper switch and use this feature 
to detect collisions. Your OS should allow the user to activate and arm this feature by passing a user function to 
execute, and using the external event mechanism to trigger the background task. You should also provide an OS 
function to disarm this feature. The priority parameters for OS_AddPeriodicThread OS_AddSW1Task 
and OS_AddSW2Task allow the user to specify the relative priority of the four background threads. 
 
4) Design at least two ways to implement blocking semaphores. In this class, we have 1 to 10 foreground threads. 
How would your implementation be different if there were 100 foreground threads? Write (pseudo) code to 
implement the blocking semaphores.  Take one of the test programs from Lab2.c and modify it to test the blocking 
semaphores. In particular, there should be multiple threads signaling the same semaphore, and multiple threads 
waiting on that same semaphore. You should signal both in the background and in the foreground, but you can only 
wait in the foreground. Use counters to make verify the total number of times signal is called matches the total 
number of times wait allows a thread to pass. The key is to run the system in an exhaustive manner increasing the 
likelihood of finding bugs. For example, if there is a 1 in 104 chance of Condition A occurring (e.g., PC is executing 
at a particular spot) and a 1 in 104 chance of Condition B occurring, there will be a 1 in 108 chance of Conditions A 
and B occurring at the same time. You also have to be careful not to introduce critical sections in the test program 
itself. Edit Lab2.c so it is compatible with your RTOS. Modify the numbers in Signal2() so that the period of 
this thread is variable. 



Lab 3 RTOS with Blocking and Priority Scheduling  Page 3.3 
 

J. W. Valvano, A. Gerstlauer   1/20/2018 

 
5) Design at least two ways to implement the priority scheduler. Again, think about how would your implementation 
be different if there were 100 foreground threads? Write (pseudo) code to implement the priority scheduler. 
 
Procedure  
1) Implement, test and debug the second periodic task feature (Preparation 1). See Lab2.c. 
 
2) Write the function jitter called by Thread7. Using main program Testmain5 evaluate the time jitters over 
a finite amount of time (e.g., 10 seconds) for these six conditions (Prep 2). Make Task A higher priority than Task B. 
Feel free to adjust the specific times. The 2.99 ms means any value slightly different than 3ms, not related to 2ms. 
 - Three periodic times pA ={1, 2.99 ms} for Task A, i.e., Task A is invoked every pA, 
 - Three execution times tA = {5, 50, 500 µs} for Task A, i.e., Task A takes tA to complete,   
 - One periodic time pB= 2 ms for Task B, i.e., Task B is invoked every pB,  
 - One execution time tB = 250 µs for Task B, i.e., each time it runs, Task B takes tB to complete, with tB = ¼ pB   
You are allowed to change any of these numbers to be compatible with your OS. 
 
3) Implement, test and debug the second aperiodic task feature (Preparation 3). See Lab2.c. 
 
4) Implement, test and debug the blocking semaphore implementation with the round-robin scheduler using test 
program written in Preparation 4. Using Lab2.c, test the blocking semaphore solution on the same five test cases 
you ran in Lab 2 procedure 5. An example performance data is shown in the middle of Table 3.1. 
 
5) Implement, test and debug the blocking priority implementation. Using Lab2.c, test the solution on the same test 
cases you ran in Lab 2, Procedure 5. Create a side by side table of the performance data (e.g., Table 3.1) of  
 - spinlock semaphores, round robin scheduler (Lab 2) 
 - blocking semaphores, round robin scheduler (Lab 3 Procedure 4) 
 - blocking semaphores, priority scheduler (Lab 3 Procedure 5) 
 

  Spinlock/Round Robin Spin/Round Robin/Cooperative Block/Priority 
FIFO 
Size 

Tslice 
(ms) 

Data 
Lost 

Jitter  
(µs) 

PID 
Work 

Data 
Lost 

Jitter  
(µs) 

PID 
Work 

Data 
Lost 

Jitter  
(µs) 

PID 
Work 

4 2          
32 2 0 0.4 3230 0 0.4 11949 0 11.6 11559 
32 1          
32 10          

Table 3.1. Example performance data for Labs 2 and 3 (collected with no interpreter or switch input). Data from 
Valvano’s Spring 2014 lab solutions running 20 seconds. 
 
6) Add features to the OS to record the following information. 
 - Maximum time the system runs with interrupts disabled 
 - Percentage of time the system runs with interrupts disabled 
Add interpreter commands to clear and restart the measurements and to dump results to the PC. The 10-second time 
jitter measurements performed in Lab 2 and Procedure 2 are not long enough to capture rare events. For example, 
what if the timer interrupt is triggered during the time a thread is being killed? Recording jitter itself (Procedure 2) is 
a direct measure of the latency. Conversely, recording the times when interrupts are disabled is an indirect 
measurement of latency. The maximum time running with interrupts disabled provides an upper bound on the latency 
of your real-time system. You can run Testmain7 to measure the time is takes to switch from one foreground task 
to another foreground task (assuming no I/O interrupts); but you do not need to add interpreter commands to print 
out the task switch time. 
 
7) Create a thread profile recorder. Using Lab2.c, collect timestamp data for the first 100 events. In this recording, 
you can ignore aperiodic events (i.e., no Select, Down, or UART I/O).  For each event, record the time and the 
thread effected. The events include 
 - A foreground thread is started (whenever PendSV is triggered) 
 - A periodic thread is started 
 - A periodic thread finishes (observing if one periodic event suspends another periodic event) 



Lab 3 RTOS with Blocking and Priority Scheduling  Page 3.4 
 

J. W. Valvano, A. Gerstlauer   1/20/2018 

Add interpreter commands similar to 6) to clear buffers, restart the measurements and dump results to the PC. 
Organize these profile data in a graphical manner.  
 
Checkout (show this to the TA)   
1) Demonstrate the final periodic thread system running to the TA. 
2) Show the TA where in your final system the worst case time jitter arises. 
3) Demonstrate your method to visualize the real time execution pattern.   
4) Discuss your results of the three tables (e.g., Table 3.1 with data from Lab 2, Procedures 4 and 5). 
 
Deliverables (exact components of the lab report and lab submission) 
A) Objectives (1/2 page maximum) 
B) Hardware Design (none for this lab) 
C) Software Design  

1) Documentation and code of main program used to measure time jitter in Procedure 2 
2) Documentation and code of main program used test the blocking semaphores Preparation 4 
3) Documentation and code of your blocking/priority RTOS, OS.c and any associated assembly files 

D) Measurement Data 
1) Plot of the logic analyzer running the blocking/sleeping/killing/round-robin system (Lab2.c) 
2) Plot of the scope window running the blocking/sleeping/killing/priority system (Lab2.c) 
3) Table like Table 3.1 each showing performance measurements versus sizes of the Fifo and timeslices 

E) Analysis and Discussion (2 page maximum). In particular, answer these questions 
1) How would your implementation of OS_AddPeriodicThread be different if there were 10 background 

threads? (Preparation 1) 
2) How would your implementation of blocking semaphores be different if there were 100 foreground threads?  

(Preparation 4) 
3) How would your implementation of the priority scheduler be different if there were 100 foreground threads?  

(Preparation 5) 
4) What happens to your OS if all the threads are blocked? If your OS would crash, describe exactly what the 

OS does? What happens to your OS if all the threads are sleeping? If your OS would crash, describe exactly 
what the OS does? If you answered crash to either or both, explain how you might change your OS to prevent 
the crash. 

5) What happens to your OS if one of the foreground threads returns? E.g., what if you added this foreground 

void BadThread(void){ int i; 
  for(i=0; i<100; i++){}; 
  return; 
} 

What should your OS have done in this case? Do not implement it, rather, with one sentence, say what the OS 
should have done? Hint: I asked this question on an exam. 

6) What are the advantages of spinlock semaphores over blocking semaphores? What are the advantages of 
blocking semaphores over spinlock? 

7) Consider the case where thread T1 interrupts thread T2, and we are experimentally verifying the system 
operates without critical sections. Let n be the number of times T1 interrupts T2. Let m be the total number of 
interruptible locations within T2. Assume the time during which T1 triggers is random with respect to the 
place (between which two instructions of T2) it gets interrupted. In other words, there are m equally-likely 
places within T2 for the T1 interrupt to occur. What is the probability after n interrupts that a particular place 
in T2 was never selected? Furthermore, what is the probability that all locations were interrupted at least 
once? 

 
 
Hints  
0) Run the test mains and debug each component separately before combining into one system. If something doesn’t 
work create a set of test mains and debug each component separately. Remember to use the logic analyzer to see 
what is running when. 
 
1) Feel free to change how the user programs are organized (Lab2.c). 



Lab 3 RTOS with Blocking and Priority Scheduling  Page 3.5 
 

J. W. Valvano, A. Gerstlauer   1/20/2018 

 
2) Since each of the labs is built on top of the previous lab, time spent debugging this lab will greatly simplify 
subsequent labs. In other words, some students report that significant time is wasted during Labs 4, 5 and 6 because 
their Lab 3 OS has bugs. 
 
3) Port F, Pin 0 (PF0 for SW2) is protected by the GPIO Lock/Commit Control registers, i.e. needs to be unlocked 
and uncommitted before it can be reprogrammed (see Switch_4C123 starter code).  
 
 


	Lab 3 RTOS with Blocking and Priority Scheduling

