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Lab 5 Process Loading and Management 
 
Goals  • Integrate a FAT file system and disk driver (Lab 4 or starter code),  
   • Develop or integrate a dynamic heap memory manager,  
   • Integrate capability to load ELF files from disk into dynamically allocated memory, 
   • Enable static or dynamic linking of ELF executables against driver and library code, 
   • Develop capability for OS routines to be invoked via supervisor calls (SVC), 
   • Extend the OS kernel with facilities for process and memory management, 
   • Add commands to your interpreter to load and launch a user program from disk. 
   
Review  • Executable and Linkable Format (ELF) specification. 
 
Starter files • SDCFile_4C123 project (FAT file system and SDC disk driver), 
  • Heap_4C123 project (heap memory manager), 
  • https://github.com/gerstl/elfloader (ELF file loader), 
  • Lab5_Proc.zip project (user test program). 
 
The SDCFile_4C123 starter project will provide its own disk driver (diskio.c). You need to make sure to select 
PB0 as the chip select by setting the proper #define for the SDC_CS.  
 
Background 

The goal of this lab is to add facilities to your OS to load a separately compiled user program from disk, 
dynamically create and launch an associated OS process, enable the user program to make calls to OS routines, and 
manage processes and system memory such that a process is removed from the system and all memory occupied by 
it is reclaimed when its last thread exits. For loading of program files from SD cards, you can build on your Lab 4 
file system driver. However, you need to be able to transfer user programs compiled on your laptop to the SD card. 
This is easiest if your SD card uses a standard FAT filesystem. The SDCFile_4C123 starter code provides a 
complete FAT16 and FAT32 implementation on top of the SD card driver. Unless you already implemented FAT in 
Lab 4, it is best to replace your file system with this starter code. Alternatively, you need to implement a different 
way of transferring (binary) files from your laptop to the LaunchPad’s SD card, e.g. via the UART connection.  

Your OS is required to load and run the test program provided in the Lab5_Proc Keil project. The project 
compiles into a Proc.axf ELF executable that you need to copy onto the SD card. You will add a command to 
your interpreter to load and execute this or other arbitrarily named program files from SD card. The ELF executable 
generated by Keil will contain separate segments for code and data (--split Linker option in Keil).  The 
elfloader starter code on GitHub provides a 

int exec_elf(const char* filename, const ELFEnv_t *env); 

routine that you can call from your interpreter to load such executables into memory. The provided ELF loader code 
can be configured to internally use the SDCFile interface for all file I/O and Heap_Malloc for dynamic memory 
allocation (see loader_config.h; you will need to add a #define VALVANOWARE to compile the loader with this 
setup). You can develop your own heap manager or use the Heap_4C123 starter code to provide an 
implementation of Heap_Malloc/Heap_Free. When called, the exec_elf routine will parse the ELF file, 
dynamically allocate memory on the heap for code and data segments (via calls to Heap_Malloc), load both 
segments from the file into their respective memory regions, perform all necessary relocations (see below) and 
finally call a 

int OS_AddProcess(void(*entry)(void), void *text, void *data,  
                  unsigned long stackSize, unsigned long priority); 

routine in your OS to create and launch a corresponding new process. The routine will be passed the starting address 
of the entry point of code execution, pointers to the program’s code and data segments on the heap, a stack size 
(default 128, can be ignored) and a process priority (default 1). You will need to provide an implementation of 
OS_AddProcess. Your implementation should allocate a Process Control Block (PCB) for the new process, add a 
new main thread associated with this process to start executing at the provided entry point, and return with either 0 

https://github.com/gerstl/elfloader


Lab 5 Process Loading and Management Page 5.2 
 

J. W. Valvano, A. Gerstlauer   3/11/2019 

or 1 in case of error or success. During its execution, the user program will be able to make calls to OS routines, 
including OS_AddThread to create additional threads using the same code and data. Your OS should keep track 
of the threads associated with each process and remove the process, i.e. reclaim all of its resources and free its text 
and data memory regions when its last thread exits (calls OS_Kill). Your OS should be designed to handle 
repeated launching and exiting of processes as well as multiple active processes being loaded and executing at any 
given time.  

The Keil project is setup to compile the test program using position independent code and data (called read-
only and read-write position independence in Keil’s C/C++, assembler and linker settings). This will allow the 
program to execute independently of where it is loaded into memory. The compiler will exclusively use PC-relative 
addressing for all code references (such as branch target addresses or addresses of constants stored in the code 
region). For accesses to global data variables, ARM defines the R9 register to be the static base (SB) register that 
points to the address of the program’s data region in memory. All variable accesses generated by the compiler will 
be relative to this register. In the generated code, addresses for load/store instructions are computed at runtime as 
offsets of the variable location relative to the beginning of the data region added to the value in R9. As such, for the 
code to work, the OS will need to set R9 to the correct value before starting program execution. 

A position-independent approach is not possible for accesses to code or data in the OS kernel. Neither 
addresses nor offsets of OS symbols are normally known when the user program is compiled. There are several 
solutions to resolve such external references. The test program uses supervisor calls (SVCs) to invoke OS kernel 
routines. Special SVC instructions allow triggering of an exception from user software in the ARM. They include an 
8-bit immediate value to differentiate exceptions, where each OS_xxx call is mapped to a different SVC ID. An 
SVC_Handler in the OS kernel can then catch such exceptions and map them to corresponding OS kernel calls 
based on the provided ID. Software-triggered SVC exceptions are handled by the processor just like any other 
interrupt exception. The processor will automatically save R0-R3, R12, LR, PC and PSR registers on the stack 
before invoking the handler. To realize OS calls via SVC exceptions, you will have to implement an 
SVC_Handler that performs the following steps: 

1) Get the location of the SVC instruction that triggered the exception from the PC value of the return 
address on the stack.  

2) Decode and extract the triggered exception ID from the SVC instruction.  
3) Copy the values of R0-R3 saved on the stack into the corresponding registers. This allows up to 4 

function parameters to be passed from the user program into OS routines.  
4) Call the OS routine matching the triggered ID. 
5) Copy the return value in R0 back onto the stack such that it will be made available to the caller.  
6) Return from the SVC exception handler.  

This approach via SVC traps allows user code to transparently call functions in the OS without needing to know 
their addresses. However, trapped functions will be executed in an exception context. No blocking or context 
switches are possible in the middle of such calls. An alternative is to statically or dynamically link the user code 
against actual OS kernel addresses. The test program uses this approach for calls to the ST7735_Message display 
driver function. For static linking, a symbol definition file containing absolute addresses needs to be generated when 
compiling the OS via a –symdefs Lab5.def Linker option. This Lab5.def file then needs to be included as 
object file when compiling the user program (setup is prepared but disabled by default in the provided Keil project). 
However, this requires recompiling of the user program every time addresses in the kernel change. As an alternative 
(and default setup of the provided Keil project), external symbols are declared to be dynamically linked. The 
compiler inserts dummy addresses for each such symbol during generation of the executable, where locations are 
marked as needing to be relocated in the generated ELF file. The ELF loader then patches each such location with 
correct addresses for the referred symbol when loading the binary. In order for this to work, you will need to 
provide an array with mappings of symbol names to OS kernel addresses via the env parameter to the ELF loader’s 
exec_elf call. The advantage of this approach (in combination with SVC calls) is that user programs are 
completely independent of and decoupled from changes in OS kernel internals.  
 
Preparation 
0) Reduce the main program (Lab2.c) from your Lab 2/Lab 3 (or Lab 4) solution down to a bare-bones OS kernel 
that just initializes the OS and launches only a minimally required set of threads, such as the interpreter. You can 
keep the button (SW1/SW2) tasks, but you should remove the data acquisition, ADC and FFT (DAS, Producer, 
Consumer and Display) threads. Replace the CPU-bound PID thread with an always-ready and never-ending 
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IdleTask running an endless loop at lowest foreground priority.  Add debugging instruments to profile when the 
idle task is running.      
 
1) Integrate FAT filesystem code or develop a capability to transfer files from your laptop to your Lab 4 non-FAT 
filesystem. Test correct filesystem and SD card operation by creating a simple text file on your laptop and printing 
that file from your OS interpreter. Implement or integrate a heap manager and test its operation, e.g. by adding 
interpreter commands to allocate/deallocate blocks of memory. Finally, integrate the ELF loader with your OS and 
add an interpreter command to load and launch a program stored on the SD card. Test correct loader operation by 
providing a dummy implementation of OS_AddProcess that immediately removes the process and reclaims its 
memory without executing anything. Compile the Lab5_Proc user program on your laptop, copy the resulting 
Proc.axf ELF file to your SD card, and make sure that you can load it successfully from your interpreter. 
 
2) Study the ELF specification. Draw a diagram of the user program layout both in the ELF file and when loaded 
into the LaunchPad memory. You can examine the generated ELF file using the fromelf utility that comes with the 
Keil installation:  

 C:\Keil\ARM\ARMCC\bin\fromelf.exe –r –y Proc.axf 

The –r parameter will show dynamic linking and relocation information. Illustrate the step-by-step operation of the 
ELF loader including the relocation process for dynamic linking of the ST7735_Message symbol.   
 
3) Define the PCB data structure and sketch the design of how process management will be performed in your OS. 
Write pseudo code for OS_AddProcess and any modifications you need to make to other OS routines. Write test 
code that creates new processes with one more threads from within your OS project itself.  
 
4) Draft code for an SVC_Handler that handles user program calls to all required OS routines. Write test code for 
calling of OS routines via SVC traps from within your OS project itself.  
 
Procedure 
1) Implement and test the process management capabilities of your OS kernel (Preparation 2). Add debugging 
instruments to profile process creation and completion times.  
 
2) Implement and test the SVC_Handler (Preparation 3). Add debugging instruments to profile SVC exceptions.   
 
3) Test the complete system that repeatedly loads, launches and executes Proc.axf via the interpreter.  
 
Checkout (show this to the TA)  

Demonstrate loading and launching of the user program from the interpreter. You should be able to demonstrate 
repeated launching of the program and multiple copies of it being launched to run simultaneously. Stress test the 
system with multiple concurrent process instances to the point of failure. If at all, your system should fail gracefully 
(error message instead of crashing). Be prepared to discuss loader and process management operation (Preparation 1 
and 2) as well as the logic analyzer profile of program launching and execution.  
 
Deliverables (exact components of the lab report and lab submission) 
A) Objectives (1/2 page maximum) 
B) Hardware Design (none) 
C) Software Design (documentation and code) 

1) Pictures illustrating the loader operation, showing: 
∙ ELF file layout of compiled user program on disk; 
∙ heap allocation scheme; 
∙ memory layout of machine after loading the program; and 
∙ dynamic linking and relocation process 

2) Operating system extensions (C and assembly), including SVC_Handler 
3) High level software system (the new interpreter commands) 

D) Measurement Data  
1) Logic analyzer profile of idle task execution 
2) Logic analyzer profile of user program execution: process creation, SVC traps, toggling of PF2 and PF3 

LEDs by the user program’s main and child threads, and process completion.  
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E) Analysis and Discussion (1 page maximum). In particular, answer these questions 
1) Briefly explain the dynamic memory allocation algorithm in your heap manager. Does this implementation 

have internal or external fragmentation? 
2) How many simultaneously active processes can your system support? What factors limit this number, and 

how could it be increased? 
 
Hints 
0) Support for compiling the user test program with position-independent code and data requires a full Keil license. 
Email the Professor or TAs to receive a Keil license code. 
 
1) As mentioned in Lab 4, since the display and SD card share the same SSI port, you need to protect simultaneous 
port accesses, e.g. by reusing the LCDFree semaphore to mutually exclude display, file system and now also ELF 
loader disk accesses. 
 
2) The heap is a resource shared between multiple threads and processes, i.e. you should consider potential critical 
sections and how to handle them. Also make sure that your heap is large enough to load the given program.  
 
3) The following example shows code for an idle task that puts the processor into low-power sleep whenever there 
is nothing to execute:  

void IdleTask(void) { 
  for(;;) {  
    WaitForInterrupt();  
  }; 
} 

Note that you can extend the idle task to also measure processor utilization defined as the ration of busy versus idle 
times. In the same manner as the Windows Task Manger, utilization values can then be reported through additional 
interpreter commands, for example. 
 
4) In Thumb mode, the SVC instruction is 2 bytes long and its immediate value is located within its lower 8 bits. 
When the SVC_Handler is invoked, the return address on the stack will point to the next following instruction, 
i.e. the SVC instruction itself will be located 2 bytes before that address.  
 
5) Due to late arrival and tail chaining in the ARM hardware exception handling, register values can be modified 
between the execution of the SVC instruction and execution of the SVC handler itself, i.e. only the values saved on 
the stack are guaranteed to correctly reflect the register content at the point when the SVC instruction was executed.  
 
6) Processes created within the OS will not have separate code and data segments (Procedure 2). For testing 
purposes, you can just allocate dummy text and data regions on the heap, while having the process’ starting address 
point to code in the ROM itself.   
 
7) Passing a symbol table for dynamic linking to the ELF loader can be done as follows:   

static const ELFSymbol_t symtab[] = { 
 { "ST7735_Message", ST7735_Message } 
}; 
 
void LoadProgram() { 

ELFEnv_t env = { symtab, 1 }; 
  if (!exec_elf(“Proc.axf”, &env)) { … } 
 } 
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