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Abstract

Raising the level of abstraction is widely seen as the solution for closing the productivity gap in system design. They key
for the success of this approach, however, are well-defined abstraction levels and models. In this paper, we present such system
level semantics to cover the system design process. We define properties and features of each model. Formalization of the flow
enables design automation for synthesis and verification to achieve the required productivity gains. Through customization,
the semantics allow creation of specific design methodologies. We applied the concepts to system languages SystemC and
SpecC. Using the example of a JPEG encoder, we will demonstrate the feasibility and effectiveness of the approach.
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Abstract

Raising the level of abstraction is widely seen as the so-
lution for closing the productivity gap in system design.
They key for the success of this approach, however, are
well-defined abstraction levels and models. In this pa-
per, we present such system level semantics to cover the
system design process. We define properties and features
of each model. Formalization of the flow enables de-
sign automation for synthesis and verification to achieve
the required productivity gains. Through customization,
the semantics allow creation of specific design methodolo-
gies. We applied the concepts to system languages Sys-
temC and SpecC. Using the example of a JPEG encoder,
we will demonstrate the feasibility and effectiveness of the
approach.

1 Introduction

It is a well-known fact that designers of heterogeneous
multiprocessor SOCs are facing an increasing productiv-
ity gap between semiconductor technology and methodol-
ogy and tool support. Technological advances allow us to
put complete systems on a single chip. A system-on-chip
(SOC) design integrates heterogeneous architectures con-
sisting of multiple processors, custom hardware blocks, in-
tellectual property (IP) components, memories, and busses.
However, with current methodologies and tools we will not
be able to design such systems under the given time-to-
market pressures.

A lot of efforts have been focussed on raising the level
of abstraction for the design process. With higher levels of
abstraction, the number of objects in the design decreases
exponentially. This allows the designer and tools to fo-
cus on the critical aspects and explore a larger part of the
design space without being overwhelmed by unnecessary
details. Tools will then help the designer in gradually
refining the design to lower and lower levels.

A requirement for any design flow is a set of well-
defined abstraction levels and models. The number of
models and the properties of each model have to be de-
fined such that designers and tools can optimize decisions
and move between models efficiently. The aim is to de-
crease the number of objects to deal with at higher levels
while providing enough detail to direct exploration at each
step, trading off accuracy and efficiency, e.g. in terms of
simulation speed. Furthermore, a clear and unambiguous
definition of these models is then needed to enable design
automation for synthesis and verification. In addition, such
a formalized definition is a necessity for interoperability
across tools and designers.

The rest of this paper is organized as follows: after an
introduction to the system design process and an overview
of traditional modeling approaches, we will define the ab-
straction levels and models for system design in Section 2.
In Section 3, we outline application of these definitions
to different system-level languages. We present a specific
design example and experimental results. The paper con-
cludes with a summary and a brief outlook on future work
in Section 4.

1.1 System Design Process

System design starts with a set of requirements where dif-
ferent parts are possibly captured in different ways. How-
ever, in order to feed a global design and synthesis flow, re-
quirements have to be combined into a single, unambigu-
ous system specification. As shown in Figure 1, the ac-
tual design process then consists of two analogous flows:
(a) mapping of the computational parts of the specification
onto processing elements (PEs) of a system architecture
and (b) mapping of the communication in the specification
onto system busses. Each flow requires allocation of com-
ponents (PEs or busses), partitioning of the specification
onto components, and scheduling of execution on the in-
herently sequential components. The result is the system
architecture of PEs connected via busses. From there on,
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Figure 1: System design tasks.

each of the PEs is then further implemented through soft-
ware and hardware synthesis.

1.2 Traditional Models

There are several approaches dealing with classification
and structuring of the design process [1, 2, 3]. However,
none of these defines an actual flow with models at spe-
cific points.

Traditionally, abstracted models of a design are used
mainly for simulation purposes. In such simulation-
centric approaches, the designer is responsible for manu-
ally rewriting the model at a fixed level of abstraction to
adjust to changes in the design. There has been a lot of
work done on horizontal integration of different models
for simulation. At lower levels, different languages or im-
plementations are integrated for co-simulation [5, 6]. At
higher levels, different models of computation are com-
bined into common simulation environments for specifi-
cation [4]. However, none of these approaches attack the
vertical integration of models that is needed for a synthesis-
centric design flow with refinement of higher-level models
into lower-level ones.

Recently, some research has focussed on abstracting
communication for the purpose of specification and pos-
sibly automatic generation of communication implementa-
tions from such higher-level specifications [7, 8, 10, 12].
Although they are the motivation for our intermediate pro-
cessor model, these approaches focus on abstracting com-
munication and don’t provide as high abstractions for the
computational aspects. For example, in all cases the sys-
tem is described as a netlist of concurrent processes, and
computational units of hierarchy can only be composed in
a parallel fashion, i.e. all blocks are active all the time.

Transistor level

Gate level

Register-transfer level (RTL)

System level

Behavioral Structural

Physical

Figure 2: Y-Chart.

2 Abstraction Levels

A general classification of the design process is available
through the Y-Chart as shown in Figure 2 [1]. It de-
fines system, register-transfer (RT), gate, and transistor lev-
els where each level is defined by the type of objects and
where higher level objects are hierarchically composed out
of lower level ones.

At each level, the design can be described in the form of
a behavioral, a structural model, or a physical model. A
behavioral model describes the desired functionality as a
composition of abstract functional entities. Behavioral ob-
jects are pieces of functionality that get activated, process
input data, produce output data, and terminate. In a behav-
ioral description, those pieces are then arranged to model
data and control dependencies between them. A structural
model, on the other hand, describes the netlist of physical
components and their connectivity. Structural objects rep-
resent real, non-terminating components and wires that are
actively processing data at all times. Finally, a physical
model describes the spatial layout, i.e. the physical place-
ment of the subcomponents on the chip.

Models are points in the Y-Chart. A model is defined
by the amount of implementation detail in the description
of the design at that point. Together with the amount of
structure as defined by the Y-Chart, a model determines the
amount of order in the system. A behavioral description is
partially ordered based on causality, i.e. dependencies only.
In contrast, in a structural description order is increased by
creating a total order in time on the physical objects.

Given two eventse1 ande2, where an eventei is a tu-
ple (ai ; ti) of actionai occurring at timeti , e1 ande2 are
ordered iff it can be determined thatt1 < t2 or t2 < t1. A
system is totally ordered if all pairs of events are ordered
as is the case with real time on the chip, for example. A
system is partially ordered if only subsets of all events are
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Level Computation Communication Structure Order Validate

Requirements Concepts Tokens Attributes Constraints Properties

Specification Behaviors Messages Behavioral Causality Functionality
Multiprocessing Processes Messages Processors Execution delays Performance
Architecture Processes Busses/Ports Bus-functional Timing-accurate Protocols

Implementation FSMDs Signals Microarchitecture Cycle-accurate Clock cycle

Table 1: System design models.

ordered. For example, at higher levels, a relationship be-
tween independent parts is not specified. An abstraction
level employs a model of time to specify order. Real time
is abstracted as discrete logical time. Two unordered events
are modeled to occur at the same logical time, leaving the
freedom of implementing them in any oder in real time.

In the Y-Chart, design is the process of moving from a
behavioral description to a structural description under a
set of constraints where the structural objects are each de-
signed at the next lower level. This process is also called
synthesis, especially when automated. At the system level,
design is therefore the process of deriving a structural de-
scription of the system, the system architecture, from a
behavioral system description, the system specification.
Behavioral objects at the system level are general func-
tions and algorithms that communicate by transferring data
through global variables. Structural objects are processing
elements (PEs), e.g. general purpose processors, custom
hardware, IPs, and memories that communicate via busses.

For each design task, the models at the input and output
of the flow have to be defined such that the transformation
between the models becomes possible. If the gap is too big
to be done in one step, the task needs to be split, creating
additional intermediate models. On the other hand, tasks
should be as independent as possible in order to be able to
solve them separately.

In summary, a model at a certain level of abstraction
trades off accuracy and efficiency, for example in terms
of simulation speed. Models have to be defined with the
right amount of detail to allow rapid and meaningful ex-
ploration, synthesis, and validation.

In general, the system design process is too complex
to be completed in one single step. The gap between re-
quirements and implementation is, for all practical pur-
poses (i.e. using non-exponential algorithms), impossible
to cover. Hence, we need to divide the process into a se-
quence of smaller, manageable steps. As explained in the
introduction, computation and communication refinement
are largely orthogonal. Therefore, it is beneficial to subdi-
vide the design process into the two separate tasks of com-
putation and communication design. However, although
interactions between tasks are minimized, there are still
strong dependencies. Especially, since partitioning of com-
putation influences the amount of communication to be

Specification Architecture

synthesis
Computation

synthesis
CommunicationBehavior Structure

RT Level

System Level

Gate Level

Multiprocessing

Figure 3: System design flow.

performed, computation synthesis needs to be performed
before communication synthesis.

Figure 3 shows the resulting flow and models. System
design starts with the behavioral specification model. In
a first step, computation is implemented on PEs, resulting
in the intermediate multiprocessing model. The multipro-
cessing model is a mixed behavioral/structural description.
It defines the computation structure but leaves communi-
cation at a behavioral level. Finally, communication syn-
thesis completes the design flow and creates the structural
system architecture model.

In the following sections we will define those three ab-
straction models. Table 1 summarizes the characteristics
of the different models for system design.

2.1 Specification Model

The specification is a behavioral description of the system.
It describes the desired functionality free of any imple-
mentation details. The specification is composed without
any implications about the structure of the implementation.
Objects in the specification model are abstract entities that
perform computation on data and terminate. Apart from
timing constraints, there is no notion of time, i.e. behav-
ioral objects execute in zero time. Objects are ordered only
based on their dependencies.

At the specification level, a design consists of compu-
tation and communication. Computation is described by a
hierarchical composition of behaviors. Behaviors commu-
nicate by transferring data messages over channels. More
formally, a specification model is a triple

hB;C;Ri

consisting of a set of behaviorsB, a set of channelsC, and

3



design := computation, communication

computation := behavior
behavior := leaf j ( composition)
composition := sequentialj parallel j pipelined j alternative
parallel := behaviork behaviork . . .
sequential := behavior. behavior. . . .
pipelined := condition: behaviorj behaviorj . . .
alternative := condition: behavior_ behavior_ . . .

communication:= message, message, . . .
message := leaf ! channel! leaf

Figure 4: Specification model definition.

c1

b1

b2 b3

v1

c3

c23c22

Figure 5: Specification model example.

a connectivity relationR� B�C that defines connections
of behaviors to channels.

Behaviors form a semigroup(B;Æ) under the composi-
tion operationÆ 2 f.;k; j;_g. Behaviorsb1;b22 B can be
composed sequentially (b1.b2), concurrently (b1kb2), in
a pipelined loop (c : b1jb2), or in a mutually exclusive way
(c : b1_b2) where the pipelined and alternative composi-
tions are guarded by additional conditionsc. Blocks at the
leaves of the hierarchy contain basic algorithms that per-
form computations. Such leaf behaviors contain a descrip-
tion of the algorithm using, for example, a standard pro-
gramming language like C. Hence, the code in the leaves
describes how the behavior processes its input data to pro-
duce its output data using expressions over variables with
different data types as supported by the programming lan-
guage. Throughout the system design process, leaf be-
haviors will remain untouched, forming indivisible units
for the purpose of exploration and refinement. In general,
models describe how the system is composed out of the
basic building blocks—the leaf behaviors—on top of any
underlying language.

Production rules for terms describing specification mod-
els are given in Figure 4. Note that due to space constraints,
definitions have been shortened and some details have been
omitted. An example a simple yet typical specification
model is shown in Figure 5.

In the example of Figure 5, the specification is a serial-
parallel composition ofb1 followed by the concurrent ex-
ecution ofb2 andb3. Leavesb1, b2, andb3 contain func-

design := computation, communication

computation := PE k PE k . . .
PE := processorj IP
processor := [ behavior]
IP := [ IPbehavior$ wrapper]
behavior := leaf j ( composition)
composition := sequential

communication:= message, message, . . .
message := leaf ! channel! leaf

j leaf ! wrapper j wrapper! leaf

Figure 6: Multiprocessing model definition.

tions over their input data. In summary, in the given nota-
tion the computation of the specification example is

b1. (b2kb3):

In terms of communication, behaviorb1sends data tob2
via channelsc22and tob3via channelsb3andc23. Again,
using the notation defined in Figure 4, the communication
part of our specification model example is

b1 ! c22! b2 ;

b1 ! c23! b3 ;

b1 ! c3 ! b3:

In summary, the purpose of the specification model is
to clearly and unambiguously describe the system func-
tionality. The system is composed of self-contained blocks
with well-defined interfaces enabling easy composition, re-
arrangement, and reuse. All dependencies are explicitly
captured through the connectivity between behaviors and
no hidden side effects exist. The parallelism available be-
tween independent blocks is exposed through their concur-
rent or pipelined composition. Computation and commu-
nication are abstracted as a composition of functions over
data. They are separated into behaviors and channels, re-
spectively, allowing for a separate implementation of both
concepts.

2.2 Multiprocessing Model

The multiprocessing model is the result of mapping com-
putation onto actual processing elements (PEs). It repre-
sents the allocation and selection of PEs and the mapping
of behaviors onto PEs. It is a mix of a structural description
of system computation and a behavioral description of sys-
tem communication. The definition of the multiprocessing
model is given in Figure 6. An exemplary multiprocess-
ing model corresponding to the specification example from
Figure 5 is shown in Figure 7.

The multiprocessing model redefines the computational
part of the design. Formally, a multiprocessing model is a

4



triple
hPE;C;Ri

where computation is described as a set of concurrent PEs.
PEs are structural objects representing physical compo-
nents and as such are non-terminating. In general, the set
of PEs in the system,PE = P[ IP[M, consists of a set of
general-purpose processors, a set of IPs, and a set of mem-
ories, respectively. Communication as the set of channels
C and the connectivity relationR between leaf behaviors
and channels remains essentially untouched.

A processorp2 P is defined as a triple

hBp;Cp;Rpi

that executes the set of behaviorsBp mapped onto it. Be-
haviors inside processors communicate via a set of lo-
cal channelsCp as defined by the connectivity relation
Rp � Bp�Cp. Due to the inherently sequential nature of
structural objects like processing elements, behaviors in-
side a processor have to be serialized. In a static scheduling
approach, the order of behaviors is fixed and represented as
artificial control dependencies of a purely sequential com-
position of behaviors inside the PE, i.e. processor behav-
iors form a semigroup(Bp;.) under sequential composi-
tion only. In a dynamic scheduling approach (not shown
in this paper), the order of behaviors is determined at run-
time. Behaviors are composed into tasks and an abstraction
of the operating system scheduler in the multiprocessing
model dispatches tasks dynamically.

In contrast to general purpose PEs, anip 2 IP is defined
as a pair

hBip;Wipi

where the pre-defined, fixed functionalityBip is encapsu-
lated in a wrapperWip. The wrapper abstracts the IP’s inter-
nal communication interface and provides a set of canon-
ical channel interfaces for communication with the IP at
the behavioral (data message) level. At the system level,
behaviors then can communicate directly with those wrap-
pers, i.e. the system connectivity relationR� B� (C[W)
connects processor behaviorsB =

S
p2PBp to channelsC

or IP wrappersW =
S

ip2IPWip. Note that a special case of
IPs are dedicated memory components which do not pro-
vide any functionality apart from (read and write) access to
stored data

In the case of the example of Figure 7,b1 andb3 are
mapped onto processing elementspe1 and pe2, respec-
tively. b2 is implemented by an existing IP component that
provides the same functionality. A vendor-supplied black-
box descriptionip1 encapsulates a simulation, analysis and
synthesis model of the IP while allowing integration into
the system through a channel interface. A system memory
m1holds variablesv1 andv3 and provides read and write

b3

b13rcv

b34snd

B1b1

b13snd

b34rcv

pe1 pe2

b2snd

b2rcv

ip1

b2

v1

v3

m1

cb13

cb34

c2

c2

Figure 7: Multiprocessing model example.

access through its channel interface. On the other hand,
local copies of the variablev2 have been created inpe1
andpe2. In addition, communication and synchronization
blocksbXXsndandbXXrcvhave been inserted to preserve
the original execution semantics. Execution of formerly se-
quential blocks mapped to concurrent PEs is synchronized,
and updated variable values are communicated to keep lo-
cal copies in sync. Finally, behavioral blocks insidepe1
andpe2communicate via global channelscbXXor by ac-
cessing the channel interfaces ofm1andip1 directly.

In summary:

Computation = m1 k pe1 k ip1 k pe2

m1 = [mip $ mwrapper
1 ]

pe1 = [b1;b
snd
13 ;bsnd

2 ;brcv
2 ;brcv

34 ]

ip1 = [bip
2 $ ipwrapper

1 ]

pe2 = [brcv
13 ;b3;b

snd
34 ]

and

Communication = b1 ! v2 ! bsnd
2 &

bsnd
2 ! ipwrapper

1 &

b1 ! v2 ! bsnd
13 &

bsnd
13 ! cb13! brcv

13 &

brcv
13 ! v2 ! b2 &

b1 $ mwrapper
1 &

Mwrapper
1 ! b3 &

ipwrapper
1 ! b3 &

ipwrapper
1 ! brcv

2 &

bsnd
34 ! cb34! brcv

34 :

In summary, the multiprocessing model refines compu-
tation by grouping behaviors and mapping them onto a PE
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structure while largely preserving the original behavioral
communication. PEs contain a behavioral description of
their functionality. Behaviors inside PEs execute in order
through static or dynamic scheduling. In addition, the mul-
tiprocessing model introduces the notion of time for the
computation mapped onto the PEs, further increasing the
partial order among PEs. Based on estimated execution
times on the target PEs, behaviors are annotated with delay
information. Therefore, true parallelism at the multipro-
cessing level is only available through the set of concurrent
PEs.

The multiprocessing model describes the implementa-
tion of the computation on the PEs of the system architec-
ture. It is a structural view of the system’s computational
aspects. On the other hand, the multiprocessing model con-
tains behavioral descriptions of the PEs that will feed into
the lower parts of the design flow. Finally, at the multipro-
cessing level, communication between the PEs is exposed
for implementation in the following steps.

2.3 Architecture Model

The architecture model is a structural description of the
complete system for both computation and communica-
tion. In addition to allocation and selection of PEs as part
of the multiprocessing model, the architecture model rep-
resents the allocation and selection of busses and the map-
ping of global channels onto busses. As a result, the system
is modeled as a netlist of PEs connected via bus wires. It is
obtained by adding bus protocols to all channels, splitting
channels, and inlining them into each PE as bus drivers.
Figure 8 shows the definition of the architecture model.
The architecture model example corresponding to the pre-
viously shown multiprocessing model is shown in Figure 9.

Based on the multiprocessing model definition, the ar-
chitecture model redefines the global communication part
of the system. An architecture model is defined as a triple

hPE;B;ci

wherePE is the set of PEs,B is the set of bus wires, andc :
S

p2PEOp 7!B is the port mapping function connecting PE
ports to bus wires. In general, the set of architecture model
PEs,PE = P[ IP[M[T [A, is a combination of the sets
of general-purpose processors, IPs, memories, transducers,
and arbiters, respectively.

Behavioral processor descriptions are transformed to
bus-functional models by adding bus drivers. A processor
p2 P in the architecture model is a quintuple

hBp;Cp;Dp;Op;Rpi

whereBp is the scheduled set of behaviors executing on the
processor,Cp is the set of local channels,Dp is the set of

design := computation, communication

computation := PE k PE k . . .
PE := processorj IP j transducer j arbiter
processor := [ behavior$ busdriver$ ports ]
IP := processorj structural
transducer := [ ports$ busdriver$ busdriver$ ports ]
arbiter := [ busdriver$ ports ]

communication:= connectivity, connectivity, . . .
connectivity :=port 7! wire
message := leaf ! channel! leaf

j leaf ! busdriver j leaf  busdriver

Figure 8: Architecture model definition.

bus driver channel interfaces,Op is the processor’s set of
ports, andRp � Bp� (Cp[Dp) is the connectivity relation
that has been extended to define the connection of behav-
iors to channels and bus drivers. Bus drivers describe a
processor’s implementation of the data messages over the
bus protocols on the processor’s ports. Inside the proces-
sor, bus drivers provide a behavioral message interface to
its behaviors and the behaviors connect to those channel
interfaces for all bus communication.

For IP components, bus-functional or structural IP mod-
els can be directly integrated into the architecture model.
Bus-functional IP models are equivalent to the definition
of bus-functional processor models shown above. Struc-
tural IP models, on the other hand, are defined as netlists
of RTL components. A structuralip 2 IP is a quadruple

hUip;Bip;Oip;cipi

whereUip is the set of RTL units,Bip is the set of local
busses,Oip is the set of ports, andcip is the connectivity
function mapping ports of RTL units to busses and exter-
nal IP ports. In the architecture model, bus-functional and
structural IP models can be used interchangeably allowing,
for example, mixed-level co-simulation. Again, note that
memory components can be treated as a special case of
IPs.

If necessary, special transducer PEs that translate be-
tween incompatible protocols need to be inserted into the
architecture model. A transducer interfaces to two busses
via two sets of ports and contains bus drivers for each pro-
tocol. Hence, a transducer is defined as a processor with
two sets of ports and two sets of bus driver channel inter-
faces.

Finally, the architecture model can contain arbiters
which mediate conflicting bus accesses in case of multi-
ple masters on a bus. Arbiters implement a certain arbitra-
tion protocol on their bus ports through internal bus drivers.
Therefore, equivalent to scheduling of computation on PEs
in the multiprocessing model, arbiters serialize accesses to
the inherently sequential busses. Arbiters usually come in

6



b3

b13rcv

b34snd

B1b1

b13snd

b34rcv

b2snd

b2rcv

ip1

b2

v1

v3

m1

arbiter1
bus2

pe1 pe2

t1

bus1

t2

ipbus

c2

c2

Figure 9: Architecture model example.

the form of IPs and as such can be defined as bus-functional
or structural processor models.

In the example shown in Figure 9, the memorym1 is
connected to processorpe1 via the processor’s busbus1
while ip1 and co-processorpe2are connected viabus2. In-
sidepe1andpe2, behavioral blocks connect to bus drivers
that implement message-passing over the bus wires. Trans-
ducerst1 andt2 translate between incompatible bus proto-
cols. t1 acts as a bridge between bussesbus1andbus2. t2
interfaces the IP with its proprietary protocol tobus2. The
channel interface ofip1 in the architecture model is moved
into t2 where it implements communication withip1 over
the exposed wires of the IP bus. Finally, an additional PE
arbiter1 that regulates conflicting accesses ofpe1and t1
onbus1is inserted.

Using the notation defined in Figure 8, the architecture
model example is formalized as follows:

Computation = mip
1 k pep

1 k ipip
1 k pep

2 k

arbiter1 k t1 k t2
pep

1 = [pe1 $ pedriver
1 $ peports

1 ]

pe1 = b1;b
snd
13 ;bsnd

2 ;brcv
2 ;brcv

34

pep
2 = [pe2 $ pedriver

2 $ peports
2 ]

pe2 = brcv
13 ;b3;b

snd
34

t1 = [tports1
1 $ tdriver1

1 $ tdriver2
1 $ tports2

1 ]

t2 = [t
portsip
2 $ t

driverip
2 $ tdriver2

2 $ tports2
2 ]

and

Communication = b1 ! v2 ! bsnd
2 &

bsnd
2 ! pedriver

1 &

b1 ! v2 ! bsnd
13 &

bsnd
13 ! pedriver

1 &

pedriver
2 ! brcv

13 &

brcv
13 ! v2 ! b2 &

b1 $ pedriver
1 &

pedriver
2 ! b3 &

pedriver
2 ! b3 &

pedriver
1 ! brcv

2 &

bsnd
34 ! pedriver

1 &

pedriver
2 ! brcv

34 &

mports
1 7! bus1 &

peports
1 7! bus1 &

arbiterports
1 7! bus1 &

tports1
1 7! bus1 &

tports2
1 7! bus2 &

peports
2 7! bus2 &

tports2
2 7! bus2 &

t
portsip
2 7! busip:

In summary, the architecture model refines communi-
cation into an implementation over busses, ports, drivers,
and transducers. Computation inside the PEs, on the other
hand, remains largely untouched. The structural nature im-
poses a total order on the communication over each bus.
Furthermore, the partial order between busses is refined by
introducing bus protocol timing. Therefore, the architec-
ture model is timing-accurate in terms of both computation
and communication.

3 Experiments

We have applied the system-level abstraction semantics to
several system-level design languages including SystemC
[16, 17] and SpecC [13, 14, 15]. In order to represent the
different models in a language, each model concept was
translated into one or more language constructs. For exam-
ple, specification behaviors map to processes in SystemC
or behaviors in SpecC. Ideally, the mapping of model con-
cepts to language constructs should be unambiguous in or-
der to ease understanding of models written in a language
for both humans or tools. Details of the application of the
abstraction levels to the SpecC language can be found in
[18].

We then modeled several design examples following
the presented flow. In the following, we will outline the
implementation of a JPEG encoder [19, 20]. Note that
the focus was on demonstrating feasibility and effective-
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ness of the models. Therefore, implementation decisions
were made without performing elaborate design space ex-
ploration. Source code for all models in SpecC can be
downloaded from our web pages [21]. In this case, we
chose SpecC as modeling language since, at the time of
development, SpecC supported the most concepts explic-
itly through dedicated constructs.

Figure 10 shows the three models of the JPEG encoder.
At the top of the specification model (Figure 10(a)), the en-
coder consists of two sequential behaviors,JPEGInit fol-
lowed byJPEGEncode. JPEGInit performs initialization
of the two Huffman tables in two parallel subbehaviors,
and writes the output header. Then, the actual encoding is
done in two nested, pipelined loops. The outer pipeline
splits the image into stripes of 8 lines each. The inner
pipeline then splits the stripes into 8� 8 blocks and pro-
cesses each block through DCT, quantization and Huffman
encoding. As an example of communication, Figure 10(a)
shows the two Huffman tablesACEHuffandDCEHuff that
are sent fromJPEGInit to JPEGEncode. Note that since
the two behaviors are composed sequentially, channels can
degenerate to simple variables.

For the purpose of computation synthesis, we assumed a
mapping of the encoder on a Motorola Coldfire processor
(SW) assisted by a custom hardware co-processor (HW)
for acceleration of the DCT (Figure 10(b)). Software and
hardware communicate via two message-passing channels,
sending and receiving 8� 8 blocks from software to the
DCT processor and back. Behaviors inside theSWproces-
sor are statically scheduled and serialized. The two nested
pipelines are converted into two nested, sequential loops.

In Figure 10(b), the software waits for the result of the
DCT before continuing with any processing. By chang-
ing only a few lines of code, we were able to modify the
architecture such that software and hardware operate in a
pipelined fashion (i.e. while the DCT is processing a block
the software continues processing of the previous block
and prepares the next one), resulting in 100% utilization
of theSWprocessor. Similarly, other architectural alterna-
tives can be easily explored in a very short amount of time
with minimal changes in the model.

Finally, for communication synthesis, we connected the
two processors via a single bus using the Coldfire bus pro-
tocol. Furthermore, it was assumed that the protocol of
the DCT IP is fixed and incompatible with the Coldfire
protocol, necessating the inclusion of a transducer (Fig-
ure 10(c)). TheSWprocessor is the master on the bus and
drives the address and control lines. TheHW co-processor
listens directly on the address bus and its associated control
lines while the transducer translates between data transfer
protocols. For synchronization, the hardware signals the
software through the processor’s interrupt lineINTC. In-

PreshiftDCT

ChenDCT

BoundDCT

DCTHandleData

Quantization HffmnEncode

EncodeStripe
ReceiveData

JPEGEncode

ZigzagMtrx

encodeDC

encodeAC

InitTable
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codeTable

orderCodes

SpecifiedHfmAC

InitTable

SizeTable
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SpecifiedHfmDC

DefaultHuffman
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JPEGHeader

JPEGInit
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DCEHuffACEHuff

(a) Specification
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Figure 10: JPEG encoder.
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Lines Lines Simul.
of Code Changed Time

Specification 1,811 3.8 s
Multiprocessing 2,000 (+10%) 235 (13%) 4 s
Architecture 2,493 (+25%) 545 (27%) 48 s

Table 2: JPEG encoder statistics.

side the two PEs, bus drivers and interrupt handlers trans-
late the message-passing calls of the behaviors into bus
transactions by driving and sampling the PE’s bus ports
according to the protocol.

Characteristics of the JPEG encoder models in SpecC
are listed in Table 2. The table shows both the lines of code
and the number of lines added or changed when moving
from one model to the next. As can be seen, refinement
between models is localized and leaves most of the original
code untouched. Most of the changes result from additions
to represent increased implementation detail.

To validate the models, we performed simulations at
all levels. The simulation performance at different levels
for the JPEG encoder (Table 2) and two additional exam-
ples, a JBIG encoder for facsimile applications and a voice
encoder/decoder for mobile telephony, are shown in Fig-
ure 11. As we move down in the level of abstraction, more
timing information is added, increasing the accuracy of the
simulation results. However, simulation time increases ex-
ponentially with lower levels of abstraction. As the results
show, moving to higher levels of abstraction enables more
rapid design space exploration. Through the intermedi-
ate multiprocessing model, valuable feedback about crit-
ical computation synthesis aspects can be obtained early
and quickly.

4 Summary & Conclusions

In this paper, we presented a division of the system-level
design process into three well-defined system-level models
covering the flow from specification to architecture. The
three models define a comprehensive approach at raising
the level of abstraction in embedded systems design, sup-
porting both computation and communication abstraction.
The definition of models is based on a separation of con-
cerns that minimizes interactions between levels, reduces
refinement between models, and supports easy exploration
with a variety of components and IPs. The two-step ap-
proach to the design flow supports rapid design space ex-
ploration by focusing on critical decisions at early stages
while providing quick feedback.

To our knowledge, this is the first approach at properly
defining models in a formalized way. The models define a
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Figure 11: Simulation performance.

framework on top of which system-level languages and de-
sign methodologies can be developed. For example, plat-
form based design predefines the sets of PEs and busses
within the framework of multiprocessing and architecture
models. The formalization of models is the enabler for
interoperability and design automation. Based on the ab-
stract definitions, we can demonstrace automatic model re-
finement between levels. In the future, we want to extend
the formalization to a general algebra with axioms based
on which proofably correct transformations can be defined.
Such a formalized framework of models and transforma-
tions based on the definitions presented in this paper is the
foundation for the vertical integration of models through
synthesis and verification.
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