
Retargetable Profiling for Rapid, Early System-Level Design Space
Exploration

Lukai Cai and Andreas Gerstlauer and Daniel Gajski

CECS Technical Report 04-04
October, 2003

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

{lcai, gerstl, gajski}@ics.uci.edu

1

Retargetable Profiling for Rapid, Early System-Level Design Space
Exploration

Lukai Cai and Andreas Gerstlauer and Daniel Gajski

CECS Technical Report 04-04
October, 2003

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425,USA

(949) 824-8059

{lcai, gerstl, gajski}@ics.uci.edu

Abstract

Fast and accurate estimation is critical for exploration of any design space in general. As we move to higher levels of
abstraction, estimation of complete system designs at each level of abstraction is needed. Estimation should provide a variety
of useful metrics relevant to design tasks in different domains and at each stage in the design process.

In this report, we present such a system-level estimation approach based on a novel combination of dynamic profiling and
static retargeting. Co-estimation of complete system implementations is fast while accurately reflecting even dynamic effects.
Furthermore, retargetable profiling is supported at multiple levels of abstraction, providing multiple design quality metrics
at each level. Experimental results show the applicability of the approach for efficient design space exploration.

2

Contents

1. Introduction 1

2. Related Work 1

3. Design Flow 2

4. Profiling 3
4.1 Operation . 3
4.2 Traffic . 4
4.3 Storage . 4

5. Retargeting 4
5.1 Operation . 5
5.2 Traffic . 5
5.3 Storage . 5

6. Experimental Result 6
6.1 Vocoder . 6
6.2 JPEG Encoder. 7

7. Summary and Conclusions 8

i

List of Figures

1 Estimation and exploration flow.. 2
2 Design space exploration.. 2
3 Vocoder specification characteristics GUI.. 6
4 Vocoder design space.. 7

ii

List of Tables

1 Computational complexity of top-level vocoder behaviors.. 6
2 Codebookoperation mix. 6
3 Comparison of implementation characteristics and implementation estimates for JPEG encoder delays.. . . . 7

iii

Retargetable Profiling for Rapid, Early System-Level Design Space Exploration

Lukai Cai and Andreas Gerstlauer and Daniel Gajski
Center for Embedded Computer Systems

University of California, Irvine

Abstract

Fast and accurate estimation is critical for exploration of
any design space in general. As we move to higher levels of
abstraction, estimation of complete system designs at each
level of abstraction is needed. Estimation should provide a
variety of useful metrics relevant to design tasks in different
domains and at each stage in the design process.

In this report, we present such a system-level estimation
approach based on a novel combination of dynamic profil-
ing and static retargeting. Co-estimation of complete sys-
tem implementations is fast while accurately reflecting even
dynamic effects. Furthermore, retargetable profiling is sup-
ported at multiple levels of abstraction, providing multiple
design quality metrics at each level. Experimental results
show the applicability of the approach for efficient design
space exploration.

1. Introduction

Recently, as system design is becoming more and more
challenging due to decreasing time-to-market windows and
increasing system complexities, trends are emerging to
move the design process to higher levels of abstraction.
System-level design, however, demands corresponding ap-
proaches that enable efficient exploration of the complete
system design space in order to rapidly evaluate a large
number of design alternatives in a short amount of time.

One of the most critical aspects is the feedback about
design quality metrics based on which designers can make
decisions. In order to meet the challenges of system-level
design, estimation of metrics must be fast while provid-
ing accurate results in the sense that they are relevant and
useful for evaluating and comparing alternatives. Estima-
tion must be supported at all levels of abstraction, including
early stages of the design process. At high levels of abstrac-
tion, however, absolute accuracy is impossible. Rather, rela-
tive accuracy (fidelity) [10] allows designers to prune design
space of infeasible alternatives. Furthermore, in order to
evaluate complete system architectures in a comprehensive
and unified manner, it must be possible to estimate a wide

variety of target implementations in combination. Also, a
wide range of metrics for performance, traffic, storage, etc.
should be available for use in different design domains.

In this report, we propose a novel profiling and estima-
tion technique for system-level design based on a unique
combination of dynamic profiling and static retargeting.
Initial profiling derives the characteristics of the applica-
tion through simulation of the design specification. By
then coupling application profiles with target characteris-
tics based on the designer’s application-architecture map-
ping, profiling is retargetable for staticco-estimationof
complete system designs in linear time without the need for
time consuming re-simulation or re-profiling. Since the sys-
tem is only simulated once during the entire design process,
the proposed approach isultra-fast yetaccurateenough to
make high-level decisions in that it captures both static and
dynamic effects. Furthermore, at each level of abstraction,
the retargetable profiler delivers a set of results relevant to
the design tasks at that stage of the design process formulti-
level, multi-metric estimation.

The rest of this report is organized as follows. An
overview of related work is shown in Section2. In Sec-
tion 3, the proposed system-level estimation and explo-
ration design flow consisting of profiling, retargeting, and
simulation-estimation stages is introduced. Details of multi-
level, multi-metric system profiling and retargeting are de-
scribed in Section4 and Section5, respectively. In Sec-
tion 6, experimental results that show the applicability of
the approach to design space exploration are presented. Fi-
nally, the report concludes with a summary and an outlook
on future work in Section7.

2. Related Work

The estimation of embedded system has been well stud-
ied for decades. Traditionally, estimation approaches are
based on either a purely static analysis or a purely dynamic
simulation.

In static analysis-based approaches, upper and/or lower
bounds for design metrics are computed by analyzing the
code that will be running on a single target processor. In

1

performance estimation, for example, computing the worst-
case execution time (WCET) of a process [12] requires
an analysis of possible program paths at the basic block
level together with a micro-architecture model to determine
the execution time of each basic block. Given WCETs,
scheduling analysis of a group of tasks running on a proces-
sor can then determine upper bounds for overall response
times [1]. Similarily, static analysis is employed to com-
pute other metrics, e.g. to determine bounds for memory
sizes [15]. In all cases, static analysis can be complex and
time-consuming while the tightness of the bounds often de-
pends on manual interference.

In dynamic simulation-based approaches, metrics are
collected during simulated execution of the code. Tra-
ditional software profiling tools [5] collect profiling data
while running the code on the actual target processor.
Instruction-set simulators, on the other hand, execute the
code on an abstracted model of the target processor. In
both cases, the actual object code compiled into the proces-
sor’s instruction-set has to be available and processors can
only be simulated in isolation. For validation of complete
systems, co-simulation of multiple processors, possibly at
multiple different levels of abstraction, is supported [2, 6].
Finally, there are several approaches speeding up succes-
sive re-simulation of the same design at different abstrac-
tion levels by driving slow low-level simulations with traces
collected from fast, abstract simulation runs [13, 11]. In all
cases, however, time-consuming simulation of the system
design is necessary for each design alternative.

In comparison to the proposed approach, although tra-
ditional approaches can provide more accurate results, they
are too slow for exhaustive initial design space exploration.
The proposed retargetable profiling approach can be used
as their complementary approach at high abstraction levels.
Because it is ultra-fast and relative accurate, it allows de-
signers to exhaustive explore the initial design space and
to prune the design space of infeasible alternatives before
traditional estimation.

In contrast to implementation-dependent estimation,
there is only a limited number of approaches that aim to
derive implementation-independent characteristics of de-
sign specifications for system level design. Traditional
profilers such as [5] and [8] usually provide target/host
machine-dependent characteristics. Even though such pro-
filers can produce some implementation-independent char-
acteristics, they only support operation-related data such as
function call statistics. In comparison, our profiling ap-
proach is targeted for system level design, and it computes
not only operation-related characteristics, but also traffic-
and storage-related characteristics.

� � � � � � � �
� � � � � � � �

Spec

model

Refined

model

Back

annotation

Refining

Instru-

menting

 Profiling

Retargeting

Simulation

Instrumented

model

Simulation

Spec

charcteristics

N_BB

Implt

Characteristics

Implt.

Estimates

Comp.

Libaray

GUI
Estimation
Refinement

Design

decision

P
ro

fil
in

g

R

et
ar

ge
tin

g

S

im
ul

at
io

n-

es
tim

at
io

n

Estimation

Figure 1. Estimation and exploration flow.

Exploration

Space

Design

Time

Profiling

stage

Retargeting

stage

Simulation-

estimation

stage

...

...

One-time

retargeting
 Implt

dependent

simulation

/estimation

Implt

independent

simulation

Profiling

Figure 2. Design space exploration.

3. Design Flow

We propose an estimation and exploration flow, which is
shown in Figure1. The flow is based on aexplore and trim
paradigm for design space exploration (Figure2). As design
progresses through profiling, retargeting, and simulation-
estimation stages, the design space is gradually trimmed
and pruned of unsuitable design alternatives until a final op-
timal solution is reached.

In each step, design starts from a specification of the de-
sired system functionality. In the profiling stage, the spec-
ification is instrumented and simulated to collect execution
counts that capture the dynamic behavior of the application
at the basic block level (NBB). Because this stage requires
simulation for the specification, we call it dynamic. Us-
ing the counters collected during simulation together with
a static analysis of the code, a profiling of the specification
then computes thespecification characteristics. Specifi-
cation characteristics are implementation-independent and
provide information about the inherent characteristics of the

2

application. Based on these specification characteristics, the
design space can be reduced to a large part. For example, if
the specification does not contain any floating point opera-
tions, allocating dedicated floating point processors is coun-
terproductive.

In the retargeting stage, designers allocate a target archi-
tecture of processing elements (PEs) and/or busses from a
component library by matching specification characteristics
and component attributes. Given the allocated architecture
or a predefined platform, designers then map the computa-
tion and communication in the specification onto PEs and
busses, respectively. A retargeting of the specification then
computes theimplementation characteristicsfor compu-
tation and communication by coupling the design decisions
and specification characteristics. These characteristics are
implementation-dependent and represent the characteristics
of the system design reflecting the designer’s decisions. In
an iterative process, the retargeting stage is executed re-
peatedly for different decisions in order to prune the de-
sign space of unpromising design alternatives. Because this
stage doesn’t require simulation, it is a purely static anal-
ysis. As will be explained later, retargeting is very fast in
comparison with simulation and profiling. Therefore, retar-
geting enables designers to explore many alternatives and
trim a large part of the design space in a short amount of
time.

Finally, the most promising design alternatives remain-
ing after the retargeting stage are then evaluated further in
the simulation-estimation stage. For each alternative, a re-
finement tool generates a refined model of the design from
the specification, integrating and implementing the corre-
sponding design decisions. In the process, implementation
characteristics are back-annotated into the resulting model.
By simulating the refined model, accurateimplementa-
tion estimates including dynamic implementation effects
not observable by profiling and retargeting the specifica-
tion (e.g. bus contention or dynamic scheduling) are gen-
erated. In order to derive the accurate implementation esti-
mates, traditional estimation approaches introduced in sec-
tion 2 can also be applied in this stage. Using the imple-
mentation estimates, a final evaluation of the remaining al-
ternatives can be performed, possibly requiring to return to
the retargeting stage. Implementation estimates provide the
accuracy of traditional simulation- or estimation-based ap-
proaches while similarly requiring time-consuming simula-
tion or analysis of each design alternative. However, as the
design space has been reduced down to a few alternatives
through profiling and retargeting, exhaustive simulation and
anlysis becomes feasible.

4. Profiling

The profiling stage generates the specification character-
istics from the system specification model. In general, de-
sign models are usually captured in the form of a system-
level design language (SLDL). In our case, specification
models are written in the SpecC SLDL [14]. However, the
concepts apply equally to any other C-based SLDL such as
SystemC [9].

Profiling computes the specification characteristics for
each computation and communication entity in the speci-
fication. In the case of SpecC, computation in the form of C
code is encapsulated as behaviors. Behaviors can be com-
posed hierarchically in a sequential or concurrent fashion.
Behaviors communicate through ports connected to shared
variables or channels where a channel provides complex
communication services to the behaviors through methods
declared in its interface.

Given the execution counts of each basic block collected
during simulation and the code for the basic blocks in each
entity, profiling attaches raw characteristicsri,d, i ∈ I,
d ∈ D to each behavior, port, variable, and channel in the
specification where characteristics are computed hierarchi-
cally by summation over the characteristics of an entity’s
children. I is the set of possible item types defined by the
characteristics’ category andD is the set of data types found
in the code. SpecC defines 26 basic, standard data types
where data types are further divided into integer data types,
floating point data types, and other data types. In addition,
profiling can optionally treat composite, user-defined data
types (such as arrays or structs) separately, expandingD
dynamically as needed. Otherwise, user-defined data types
will be mapped down to the basic data types of the individ-
ual elements they are composed of.

Specification characteristics are classified into three cat-
egories: operation, traffic, and storage. In each category
static and dynamic metrics are computed. Static character-
istics are derived directly from the code of the specifica-
tion model whereas dynamic characteristics depend on data
collected during simulation. In general, static and dynamic
specification metricsR =

∑
i

∑
d ri,d in each category are

computed by summation of corresponding characteristicsr
over a subset of item and data types.

4.1 Operation

Operation characteristics (spec.) signify the complex-
ity of the computation in the specification. Therefore, they
are attached to behaviors as the computational units of the
system. Each operation characteristic corresponds to a cer-
tain operation of a certain data type (as determined in C
by the type of the result). Item types for operation charac-
teristics are defined as the 84 different operations available

3

in SpecC. They are further classified into ALU operations
(‘+’, ‘ &&’, ‘ <<’, ‘ >=’, etc.), memory access operations (‘=’,
‘ -> , etc.), control operations (‘if ’, ‘ for ’, ‘ f() ’, etc.),
and others (braces and other syntactical overhead). In ad-
dition, similar to data types, profiling can optionally treat
global functions as special operation types instead of map-
ping them down to the operations inside the function. In
any case, operation metrics can be computed for different
classes of operations, different categories of data types, or
as the sum over all operation and data types.

Static operationcharacteristics are defined as the number
of operations in the code of each behavior. They represent
thecode complexitywhich is related to code size or imple-
mentation complexity of the control unit in general.

Dynamic operationcharacteristics are defined as the
number of operations executed by each behavior during
simulation. Note that in the presence of recursive function
calls, dynamic operation characteristics need to be com-
puted by solving a set of linear equations details of which
are omitted due to space reasons [3]. Dynamic opera-
tions represent thecomputational complexity in the sys-
tem which is related to performance issues. By identifying
the most complex behaviors, they can point the exploration
to the most critical aspects and the best candidates for opti-
mization. Furthermore, the mix of operations in all or parts
of the system can be used to determine the type of proces-
sor used for implementation, e.g. a DSP with a hardware
multiplier for multiplication-intensive behaviors.

4.2 Traffic

Traffic characteristics (spec.) signify the complexity
of the communication in the specification as the amount
and type of data exchanged, providing separate input and
output traffic characteristics via corresponding item types.
As behaviors communicate through variables and channels
connected to their ports, traffic characteristics are attached
to behavior ports and variables and channels connected to
them. Furthermore, traffic characteristics for behaviors is
computed as the sum of the traffic over all their ports. Note
that at each abstraction level, communication is modeled
differently. For example, at the transaction level[9], behav-
iors communicate via abstract, complex channels whereas
variables connecting behaviors at the bus-functional level
represent physical bus wires.

Static trafficcharacteristics are defined as the number of
connected ports of a certain type. For a behavior’s ports,
they reduce to the size of the port itself (1 in most cases).
For a variable or channel, they are equivalent to the number
of connected behaviors. In all cases, static traffic charac-
teristics representconnectivity complexity. For example,
at the application level connectivity relates to the message
passing traffic incurred between two dependent behaviors in

order to make the output of a behavior available at the next
behavior’s inputs. At the bus-functional level, on the other
hand, connectivity complexity relates to fan-in/fan-out and
bus wire capacity.

Dynamic trafficcharacteristics are defined as the number
of times a port or a variable/channel of a certain type is ac-
cessed during simulation. An access is generated whenever
a statement in the code reads from a port variable, writes to
a port variable, or calls a port interface method. Note that a
special port-parameter binding algorithm resolves port ac-
cesses in the presence of recursive calls or multiple invo-
cations of the same function. Details of this algorithm can
be found in [3]. In summary, dynamic traffic characteris-
tics representaccess complexity. For example, at the appli-
cation level, dynamic accesses relate to the traffic incurred
for a shared memory implementation of communication be-
tween dependent behaviors. At bus-function level, they re-
late to the traffic over pins of the bus, e.g. data traffic in case
of the data bus.

4.3 Storage

Storage characteristics (spec.) signify the amount of
memory required to hold the system’s data. For each behav-
ior and channel, storage requirements are computed where
item types distinguish between local and global storage.

Static storagecharacteristics are defined as the number
of static variables of a certain data type declared inside the
behavior/channel and its children. In SpecC, this includes
variables declared at the behavior/channel level and static
variables inside functions. Static storage representsstatic
memory requirements, i.e. memory that needs to be allo-
cated globally for the whole lifetime of the system.

Dynamic storagecharacteristics are defined as the num-
ber of variables of a certain data type allocated and deallo-
cated dynamically during runtime. The local item type of
dynamic storage representsstack requirementsbased on
the number of local variables declared inside functions. The
global item type of dynamic storage, on the other hand, rep-
resentheap requirementsbased on the amount of memory
allocated dynamically on the heap during runtime (e.g. via
malloc() calls). Note that in contrast to other charac-
teristics, dynamic storage requirements are computed hier-
archically as the maximum over all children at each level.

5. Retargeting

The retargeting stage computes implementation charac-
teristics of an implementation of each design entity based
on design decisions made by the user. Decisions include
component allocation (PEs and busses) and entity mapping
(behaviors and variables to PEs and channels to busses).

4

Given the design decisions and the specification char-
acteristics computed during profiling, retargeting attaches
implementation characteristicsei,d, i ∈ I, d ∈ D to each
behavior, port, variable, and channel. These characteris-
tics are computed by multiplying specification characteris-
tics ri,d with weightswc

i,d for a mapping of the design en-
tity to componentc. Weight tables have to be defined for
each component in the library. Depending on the compo-
nent, they can be derived from the component’s data sheet
or from accurate simulations of selected, typical code ker-
nels on the target component. In addition to the standard
weights for basic data and item types stored in the library,
the designer can manually tune weights for retargeting. Fur-
thermore, the designer can specify weights for custom data
and item types collected during profiling instead of map-
ping them down to the basic data and item types they are
composed of.

Based on the specification characteristics, implementa-
tion characteristics can be classified into operation, traffic,
and storage categories, and each category can be further
subdivided into static and dynamic metrics. Static and dy-
namic implementation metricsE in each category are then
computed by summation of the weighted characteristicse
over subsets of item and data types:

E =
∑

i

∑

d

(ri,d × wc
i,d)

wherewc is the weight table for componentc from the li-
brary. Becauseri,d has been computed in the profiling stage
andwc

i,d is predefined in the weight table, retargeting avoids
the time-consuming simulation and profiling. Due to the
simplicity of the computation, retargeting is fast and its time
complexity isO(n) wheren is the number of behaviors,
ports, variables, and channels in the system.

Similar to specification characteristics, implementation
characteristics are computed hierarchically by adding im-
plementation characteristics of children at each level. Re-
targeting supports two modes for hierarchical computation:
analysis mode and estimation mode. The analysis mode
provides mapping-independent results. It computes char-
acteristics for each entity on each allocated component as-
suming that the whole entity (including children) is mapped
to the target component. Results can be used by designers
after allocation to select the most appropriate component to
map each entity to. Estimation mode, on the other hand,
computes characteristics based on both allocation and map-
ping decisions. For each entity, it generates characteristics
on each target for those parts of the entity that are mapped
onto this component. Results can therefore be used to eval-
uate mapping decisions.

5.1 Operation

Operation characteristics (implt.) are computed for be-
haviors mapped onto target PEs. Forstatic operationchar-
acteristics, PE weights define the number of instruction or
control words for each operation where, in the case of cus-
tom hardware, the number of control words is equal to the
number of control states. By multiplying the characteris-
tics with the PE’s instruction or control word width, metrics
for program memory size or size of the custom hardware
controller can be computed, respectively. Therefore, static
operation metrics representcode sizerequirements for each
behavior.

PE weights fordynamic operationcharacteristics define
the number of clock cycles needed to execute each opera-
tion. By multiplying the number of cycles with the clock
period, execution time metrics for behaviors can be de-
rived. In a similar manner,power consumption metrics
can be computed through energy per cycle weights.

5.2 Traffic

Traffic characteristics (implt.) are computed for ports of
behaviors mapped to PEs and for variables and channels
mapped to busses. A PE’s traffic weight table is equivalent
to its storage weight table (see Section5.3) and it defines for
each data type the number of machine characters transfered
over the PE’s bus. Together with the PE’s machine charac-
ter width and bus bandwidth, the amount of data and time
needed for each transfer are computed. A bus’ weight table,
on the other hand, defines the number of bus cycles needed
to transfer each data type over the bus. Dividing bus traf-
fic characteristics by the bus bandwidth, required commu-
nication time is computed. In all cases, static and dynamic
traffic characteristics representcommunication delays. For
example, at the application level, communication delays for
message passing or shared memory implementations are es-
timated, respectively. At the bus-functional level, on the
other hand, characteristics for the traffic over the data bus
pins and wires provide actual bus access times.

5.3 Storage

Based on a mapping of behaviors and channels to PEs,
storage characteristics (implt.) determine the memory size
requirements in each PE. A PE’s storage weight table de-
fines the number of machine characters needed to store
variables of different data types. Multiplying storage char-
acteristics with the PE’s machine character bit-width, re-
quired memory size metrics are computed. Static and dy-
namic metrics for local and global storage therefore repre-
sentstatic memory size, stack size, andheap sizerequire-
ments.

5

LP Analysis 377.0 MOp
OpenLoop 337.1 MOp
ClosedLoop 478.7 MOp
Codebook 646.5 MOp
Update 43.6 MOp

Table 1. Computational complexity of top-
level vocoder behaviors.

(* ,int) (+,int) (- ,int) (/ ,int) others

46.2% 33.5% 9.1% 7.1% 4.1%

Table 2. Codebookoperation mix.

6. Experimental Result

A retargetable profiler supporting instrumentation, pro-
filing, and retargeting has been implemented and integrated
into our system design environment. We applied the estima-
tion and exploration methodology using the profiler to the
design examples of a voice codec for mobile phone appli-
cations (vocoder) [7] and a JPEG encoder [4]. The vocoder
example demonstrates the usage of the profiler in the design
space exploration and the profiler’s ultra-fast attribute. The
JPEG example demonstrates accuracy and fidelity [10] of
the retargeting.

6.1 Vocoder

The vocoder is assumed to be part of a mobile phone
baseband platform using a Motorola ColdFire processor as
the CPU. The vocoder specification consists of appr. 13,000
lines of code. It encodes and decodes a frame of speech
every 20 ms. For a testbench that excercises the design with
163 frames, this translates to a total timing constraint of
3.26 s.

The vocoder is a computation-dominated design. There-
fore, design space exploration is focused on computation
design. We estimated an upper bound for the communica-
tion overhead using the profiler by mapping all system com-
munication onto a ColdFire bus. Leaving a margin for the
estimated communication delay of appr. 280 ms, we derived
a timing constraint of appr. 3 s for the vocoder computation.

In the profiling stage, we instrumented, simulated, and
profiled the vocoder specification to generate the specifica-
tion characteristics. Table1 shows the computational com-
plexity for the vocoder’s five top-level behaviors in millions
of operations (MOp). Note that as a typical multimedia ap-
plication, parallelism in the vocoder is limited and at the top
level behaviors execute sequentially in a loop. Therefore,
there is little promise of exploiting concurrency and design
should focus on optimizing the critical parts of the behav-

Figure 3. Vocoder specification characteris-
tics GUI.

ior sequence. As the profiling results show, theCodebook
search behavior is by far the most critical vocoder block.
The profiler also provides the mix of operations in theCode-
bookbehavior (Table2; a screenshot of the operation mix
pie chart and the bar graph of the top-level behaviors as
displayed in the design environment GUI is shown in Fig-
ure 3). The codebook search (and the vocoder in general)
does not contain any floating-point but only integer-type op-
erations, i.e. processors with dedicated floating-point units
are not necessary and processor selection should focus on
integer performance instead. Furthermore, most of the op-
erations are multiplications, i.e. selected processors should
have dedicated hardware multipliers.

For further exploration in the retargeting stage, we al-
located a system architecture with three PEs: in addition
to the Motorola ColdFire CPU running at 60 MHz, we
selected a DSP (Motorola DSP56600 at 60 MHz) and a
custom hardware processor (100 MHz) to explore vocoder
speedups. Mappings of eight top-level behaviors (five top-
level vocoder behaviors plus three levels of hierarchy of be-
haviors insideCodebook) to every PE were evaluated. Us-
ing the scripting capabilities of the design environment to-
gether with the profiler, we ran an exhaustive search of all
38 = 6561 design alternatives. Running on a Pentium IV
Linux PC at 2.0 GHz, the complete search was finished in
3:15 h. It contains one time simulation (2.23 s), one time
profiling (8.41 s) and 6561 times retargeting (0.8 s for each)
and mapping (0.97 s for each) respectively.

Figure4 shows computation time vs. cost for all design
alternatives. For both ColdFire and DSP a fixed cost of 20
each was assigned for the manufacturing cost. For custom
hardware, a linear cost function with a base cost of 20 and

6

1500

2000

2500

3000

3500

4000

4500

5000

10
 20
 30
 40
 50
 60
 70
 80
 90
 100
 110
 120
 130
 140
 150
 160
 170

u

Timing constraint (2990)

T
im

e
(m

s)

Cost

A (20, 4656)

B (73, 2980)

C (144, 1643)

Figure 4. Vocoder design space.

an additional cost of 1$ per 10 static operations of code
complexity was assumed to estimate costs of control logic
and design overhead. If no behavior is mapped to a PE, it’s
cost is assumed to be zero. A pure software solution run-
ning on the ColdFire (A) is the cheapest design but has the
largest delay. A pure hardware solution (C) is the fastest
design. An optimal solution in the sense of the cheapest
design that meets the timing constraint is a mapping of
Openloop, Closedloop, andSearch10i40 (part of Code-
book) behaviors to hardware while the rest of the system is
running on the ColdFire (B). The circled parts of the design
space mark candidates for further evaluation via simulation
of refined implementation models. Comparing retargeting
results with a previously implemented DSP-HW solution of
the vocoder [7], implementation characteristics are accurate
to within 15% of the actual delays.

6.2 JPEG Encoder

JPEG [4] is an image compression standard. It is de-
signed for compressing either full-color or gray-scale pho-
tographic images. The JPEG encoder consists of four be-
haviors running sequentially:HandleData (HD), DCT (D),
Quantization (Q),and HuffmanEncode (HE). The JPEG
specification contains around 2,000 lines of code. The test-
bench for the design encodes pictures with sizes of 116×
96 pixels (corresponding to 180 blocks of 8× 8 pixels).

We allocated a system architecture with two PEs: a Mo-
torola DSP56600 (SW) running at 60 MHz and a custom
hardware (HW) running at 80.8 MHz. By mapping four
behaviors to two PEs in different ways, we derive 16 (24)
design alternatives.

We computed both implementation characteristics and
implementation estimates representing the encoding delays
for all design alternatives. Implementation characteristics

Alternatives Estimates Char. Diff
HD D Q HE (ms) (ms)

SW SW SW SW 205.00 199.44 2.71%
SW SW SW HW 184.77 177.18 4.11%
SW SW HW SW 189.00 180.87 4.30%
SW SW HW HW 168.77 158.61 6.02%
SW HW SW SW 73.35 76.79 -4.69%
SW HW SW HW 53.12 54.53 -2.65%
SW HW HW SW 57.35 58.22 -1.52%
SW HW HW HW 37.12 35.96 3.12%
HW SW SW SW 183.23 176.92 3.44%
HW SW SW HW 163.00 154.66 5.12%
HW SW HW SW 167.23 158.35 5.31%
HW SW HW HW 147.00 136.09 7.42%
HW HW SW SW 51.58 54.27 -5.22%
HW HW SW HW 32.01 29.93 -2.11%
HW HW HW SW 35.70 38.84 -0.34%
HW HW HW HW 15.35 13.44 12.44%

Table 3. Comparison of implementation char-
acteristics and implementation estimates for
JPEG encoder delays.

are computed by the proposed profiler. For the implementa-
tion estimates, we estimated the delays on SW by convert-
ing SpecC to C code, compiling the C code to the assembly
code, and running the assembly code on the DSP56600’s
customized instruction set simulator. We estimated the de-
lays on HW by simulating manually written RTL models.

Table 3 displays the computed encoding delays for 16
design alternatives. The first four columns represent the de-
signer’s behavior-PE mapping decision for the four behav-
iors. The delay in columnEstimatesrepresents implemen-
tation estimates. The delay in columnChar. represents im-
plementation characteristics. Their difference is displayed
in columnDiff.

Table 3 demonstrates that the implementation charac-
teristics computed by the proposed profiler are accurate to
within 12.5% of implementation estimates for the JPEG ex-
ample.

We also computed the fidelity [10] of the proposed ap-
proach. The fidelity is defined as the percentage of cor-
rectly predicted comparisons between design alternatives.
If the estimated values of a design metric for two design
alternatives bear the same comparative relationship to each
other as do the measured values of the metric, then the es-
timate correctly compares the two alternatives. Based on
Table3, we compute the fidelity of the proposed approach
by comparing the implementation characteristics with the
implementation estimates. For JPEG encoder example, the
fidelity of our approach is 100%.

7

7. Summary and Conclusions

In this report, we present a system-level estimation ap-
proach based on a novel combination of dynamic profil-
ing and static retargeting. In an initial profiling stage, one-
time simulation of the specification is done in order to col-
lect specification characteristics about the dynamic behav-
ior of the system. In the retargeting stage, by using speci-
fication characteristics together with a static analysis of the
code, retargeting to different implementations for accurate
co-estimation of whole system designs is done statically in
linear time.

This ultra-fast approach enables initial, exhaustive ex-
ploration of design space with the results that are accurate
enough to prune out infeasible design alternatives. There-
fore, it is an ideal complementary solution for the traditional
estimation approaches. Retargetable profiling is applied to
all computation and communication entities in the descrip-
tion in a general manner. Therefore, the approach can be
applied to models at all levels of abstraction. Furthermore,
it computes a number of useful and relevant quality metrics
for each entity, enabling efficient design space exploration
and guiding the user in the design process.

In the future, we want to extend the retargetable profiler
to provide additional metrics, including statistical informa-
tion (minima, maxima, standard deviations, etc.) for each
metric, and to handle dynamic micro-architecture features
like caching or pipelining more accurately. Furthermore,
we are investigating possibilities for re-profiling of refined
models without re-simulation using profiling data from ear-
lier design steps.

References

[1] G. Buttazzo. Hard Real-Time Computing Systems
Predictable Scheduling Algorithms and Applications.
Kluwer Academic Publishers, 1999.

[2] Cadence. (http://www.cadence.com/products/vcc.html).

[3] L. Cai and D. Gajski. Introduction of Design-Oriented
Profiler of SpecC Language. Technical Report ICS-
TR-00-47, University of California, Irvine, June 2001.

[4] L. Cai, J. Peng, and D. Gajski. Design of a JPEG
Encoding System. Technical Report ICS-TR-99-54,
University of California, Irvine, Nov 1999.

[5] J. Fenlason and R. Stallman. The GNU Profiler
(http://www.gnu.org/manual/gprof-2.9.1/gprof.html).

[6] P. Gerin, S. Yoo, G. Nicolescu, and A. Jerraya. Scal-
able and Flexible Cosimulation of SoC Designs with
Heterogeneous Multi-Processor Target Architectures.

In Proceedings of the Asia and South Pacific Design
Automation Conference, 2001.

[7] A. Gerstlauer, S. Zhao, and D. Gajski. Design of
a GSM Vocoder using SpeccC Methodology. Tech-
nical Report ICS-TR-99-11, University of California,
Irvine, Feb 1999.

[8] R. Grehan. Code Profilers: Choosing a Tool for An-
lyzing Performance. A Metrowerks White Paper.

[9] T. Grotker, S. Liao, G. Martin, and S. Swan.System
design with SystemC. Kluwer Academic Publishers,
2002.

[10] F. Kurdahi, D. Gajski, C. Ramachandran, and
V. Chaiyakul. Linking Register-Transfer in Plysical
Levels of Design.IEICE Transactions on Information
and Systems, Sept. 1993.

[11] K. Lahiri, A. Raghunathan, and S. Dey. Performance
Analysis of Systems With Multi-Channel Communi-
cation Architecture. InProceedings of the Interna-
tional Conference on VLSI Design, pages 530–537,
2000.

[12] Y. Li, S. Malik, and A. Wolfe. Performance Estimation
of Embedded Software with Instruction Cache Mod-
eling. InProceedings of the International Conference
on Computer-Aided Design, May 1995.

[13] P. Lieverse, P. Wolf, and E. Deprettere. A Trace
Transformation Techinique for Communication Re-
finement. InProceedings of the International Work-
shop on Hardware-Software Codesign, 2001.

[14] STOC. (http://www.specc.org).

[15] Y. Zhao and S. Malik. Exact Memory Size Estima-
tion for Array Computation without Loop Unrolling.
In Proceedings of the Design Automation Conference,
1999.

8

