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Abstract 

Design Space Exploration is the task of identifying optimal implementation 

architectures for an application. On the front-end, it involves multi-objective optimization 

through a large space of options, and lends itself to a multitude of algorithmic 

approaches. On the back-end, it relies extensively on common capabilities such as model 

refinement, simulation and assessment of parameters like performance and cost. These 

characteristics present an opportunity to create an infrastructure that enables multiple 

approaches to be deployed using generic back-end services. In this work, we describe 

such a framework, developed using the System-on-Chip Environment, and we 

demonstrate the benefits and feasibility of deploying a variety of design space exploration 

approaches built on top of this basic infrastructure. 
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Chapter 1:  Introduction 

Over a short history, embedded systems have grown in their abilities from simple single-

purpose computers to complex systems-of-systems. A showcase example of this trend is the 

progression from devices such as cameras, GPS receivers and MP3 players to an integrated all in 

one device – the Smartphone.  The generic architecture for an embedded system, as shown in 

Figure 1.1, can be described as an application executing on an embedded computing platform. 

 

Platform

Application

System software ( APIs, policies)

HAL ( OS/Scheduler)

Hardware

 

Figure 1.1: Generic Embedded System Architecture 

 

System requirements have multiplied driven by the key factors of higher performance, 

lower power and tighter integration. This has led to an explosion in complexity at a number of 

levels:  

 Hardware: single core microcontroller platforms are being replaced by dual core platforms 

with embedded DSP, hardware accelerators and FPGAs 

 Software: real-time operating systems (RTOS) are replacing single-threaded and simple 

scheduler based systems 
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 System: system-level policies are becoming necessary to manage power and security, 

causing complex interactions between seemingly disconnected applications on an integrated 

platform 

 Network: More and more embedded applications are getting connected to each other and the 

internet 

 

These trends show embedded systems moving to more closely resemble general-purpose 

computing systems (for example, laptop computing) in complexity. It is important to note that 

system design in general-purpose computing is largely a meet in the middle approach. Platform 

design is application independent, and applications are designed within the constraints of the 

available platform. System-level requirements (which span both application and platform) such 

as power consumption and response times are relaxed. As a result, system design complexity is 

isolated within the application domain. 

 

On the other hand, embedded systems are rooted in their application-specific nature. 

Requirements such as application response times, low cost and long battery life are an order of 

magnitude stricter, failing which systems do not serve their intended purpose.  Therefore, system 

design includes both application and platform design. Traditionally, in a low complexity regime, 

static analysis sufficed to predict system-level behavior and guarantee requirements. However, 

the highly complex nature of current and future systems as described above makes static analysis 

infeasible. Executable model-based design techniques are indispensable to be able to identify 

complex interactions and design systems to deal with them. This is referred to as the domain of 

Electronic System Level (ESL) design.  

 

ESL raises the abstraction in the design process to the level of the system. The key 

enablers for ESL are (i) Executable models of system components to serve as collateral, and (ii) 

Design automation tools to drive designer productivity. Some of the broad categories of design 
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automation capabilities are shown in Table 1.1. These capabilities create an ecosystem which is 

leveraged by design automation tools to enable ESL techniques to be used in real-world designs. 

Already, there has been tremendous applied work in the field in academia as well as industry. 

System-level design languages (SLDLs) such as SystemC [1] have pervaded the industry and 

enabled a number of system-level design tools, especially in performance estimation and 

verification.  

 

ESL Enabler Goal 

Modeling Create fast yet accurate models that only represent effects 

necessary and sufficient for a system-level evaluation 

 

Automatically generate models from structural descriptions 

 

Simulation Simulate complex models of complete systems faster 

 

Synthesis Automatically synthesize systems from abstract specifications 

down to hardware (RTL) and software (C code) 

 

Design Space 

Exploration 

Pick the right system architecture to optimize design quality 

metrics while meeting design goals 

Table 1.1: ESL design automation 

 

1.1 BACKGROUND 

Embedded systems designers need to find implementation architectures that satisfy or 

optimize technical requirements such as throughput, latency and power consumption, while also 

meeting cost and time to market goals. Figure 1.2 shows a typical embedded systems platform 

today. While system architectures have traditionally been derived from static analysis and an 

architect‟s domain expertise, these approaches are proving insufficient when faced with a large 

set of increasingly complex system architecture components. Hence, there has been interest in an 

automated approach to system architecture definition, referred to as Design Space Exploration 

(DSE). 
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AMBA Bus

CPU DSP

Timer

TimerInterrupt Controller SPI Audio

Flash

Figure 1.2: Typical embedded system platform 

 

System architects have potentially a large pool of system architectures at their disposal, 

comprising of various combinations of system hardware, software and policy components. This 

is referred to as the Design Space. The key requirement of a DSE system is to take a set of 

system constraints, and be able to identify a set of optimal system architectures from the design 

space through multi-objective optimization. The output of a DSE system is the Pareto-optimal 

front of possible candidate designs, as shown in Figure 1.3. The Pareto-optimal front comprises 

of all the Pareto-optimal points, i.e. every point that is not worse than any other in all the 

measured system metrics. For example, design point „A‟ is equal on objective 1 with point „B‟, 

but exceeds it on objective 2. Design point „C‟ is better than „B‟ on objective 1, but worse on 

objective 2. As a result, „B‟ and „C‟ are both Pareto-optimal points, while „A‟ is not. As can be 

seen, there can and will be many potential architectures that are optimal, and choosing between 

them requires an understanding of system design goals and constraints. For example, only 

optimizing objective 1 as much as possible would yield „D‟ as the optimal design point, while 

neglecting many other equally Pareto-optimal points on the tradeoff front. 
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Also worth noting on Figure 1.3 is the line depicting a system constraint. In this case, this means 

that any possible implementation architectures should lie to the left of this line. Therefore, even 

though „E‟ is a Pareto-optimal point, it exceeds the system constraint and is unsuitable.  

 

 

Figure 1.3: Example Pareto-optimal front 

 

1.2 MOTIVATION 

There are a number of algorithmic approaches to DSE. These range from simple but non-

scalable brute force approaches to complex mechanisms mimicking processes such as genetic 

evolution and the social behavior of ants. All these approaches share a common set of 

capabilities: 

(i) Design Space Generation: The ability to view, represent and encode the complete set of 

potential and feasible design architectures made up of different combinations of platform 

components.   

(ii) Model Refinement: The ability to generate an executable model of the application 

executing on a given platform architecture. 

A 

B 

C 

D 

E 

Constraint  
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(iii) Assessment: The ability to assess a set of parameters for the application executing on the 

given architecture. 

(iv) Selection - The ability to test the fitness of a pool of design points, and to eventually 

prune the design space from a large pool to a smaller, Pareto-optimal set.  

 

While selection policies vary from one DSE system to another, other capabilities – design 

space generation, model refinement and assessment – are the same and are only exercised in 

different ways. While Chapter 3 describes this in more detail, it is important to mention here that 

there is no “best” selection algorithm, and system performance depends on the design under test.  

Additionally, all the capabilities described above are active research areas and are constantly 

being improved. Therefore an ideal DSE approach is one that:  

 Supports a number of algorithmic approaches using common lower level infrastructure. 

 Supports abstraction of each capability to allow for advancements in each to be brought into 

the system without affecting other capabilities. 

 

Our work focuses on developing a framework that enables such a modular and extensible 

approach to design space exploration using the System-on-Chip (SCE) environment [2]. Using 

this framework, various algorithmic approaches can be rapidly implemented and incorporated 

under the same umbrella. The remainder of this report is organized as follows: Chapter 2 details 

the capabilities of SCE as well as some of the existing DSE tools. Chapter 3 provides an 

overview of sce_explore, our DSE environment, and describes each of the services provided by 

sce_explore – sce_gds, sce_refine and sce_simulate - in detail. Then, Chapter 4 describes the 

realization of two simple DSE systems using the provided services and results achieved on a 

representative design. Finally, Chapter 5 concludes this work and suggests future directions to 

further improve on this effort.  
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Chapter 2: Related Work 

This section provides necessary background on the capabilities of SCE, as well as some 

existing Design Space Exploration systems. 

 

2.1 SYSTEM-ON-CHIP ENVIRONMENT (SCE) 

Figure 2.1 depicts the SCE flow [2]. SCE takes an application model written in the SpecC 

SLDL [6] as input, consisting of actors performing computation, and communicating through 

abstract channels. SCE takes in design decisions at levels of computation decisions and 

communication decisions. Incorporating these decisions with platform component models, it then 

generates refined executable models in SpecC form. At each level (computation-

only/computation-and-communication), these models can then be simulated to estimate 

parameters such as cost and performance. SCE is also a testbed for innovations in system-level 

modeling and synthesis. Some of these innovations include faster and more accurate simulation 

methodologies [7] and abstract models of multi-core operating systems (OSs) [8]. 

 

2.2 EXISTING DESIGN SPACE EXPLORATION TOOLS 

There are a number of DSE engines using different algorithms. System Co-Designer [3], for 

instance, uses Genetic Algorithms (GA) for “intelligent” random explorations, whereas DESERT 

[4] relies on an Ordered Binary Decision Diagrams based symbolic search. Sesame [5], as part of 

the Daedulus framework, has support for an exhaustive simulation-based DSE (for small design 

space) as well as for heuristic explorations using GAs or other DSE algorithms. 
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Figure 2.1: SCE flow 
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2.3 LIMITATIONS AND OPPORTUNITIES 

There are some serious limitations to existing tools, which also presents opportunities for 

improving DSE methodologies. As mentioned earlier, most DSE tools are restricted to a single 

algorithm. An ideal solution is one that has the ability to put together a number of algorithms, 

and use the one most suited to the design under exploration. For example, a small design can be 

explored best by using a simple brute-force approach, while a large design requires a 

sophisticated heuristics-based system. 

 

All DSE engines also build their own assessment flow. Given that synthesis, simulation 

and assessment is a research field in itself, these engines display serious deficiencies in trying to 

master these fields. For example, the Daedulus framework provides good specification and 

computation decision making and refining capabilities, but lacks in the areas of communication 

decision making and refinement as well as in support for dynamic scheduling of processes.  

 

Finally, most of the current engines complete the decision making process in one go, 

without taking feedback from successive refinements of the system model as is possible in the 

SCE flow. Therefore, as shown in this work, an integration of higher-level algorithmic engines 

with the inherent refinement, simulation and assessment capabilities of SCE provides an 

opportunity to bring the best of both worlds together. 
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Chapter 3:   Design Space Exploration Framework 

In this section, we present the sce_explore framework for design space exploration. The 

key to enabling the effective incorporation of multiple algorithmic approaches within the same 

environment is to separate the control plane for decision making and selection from the data 

processing plane which handles tasks such as model refinement. The data plane provides abstract 

back-end services common to algorithmic approaches, while the control plane provides a canvas 

to implement a front-end DSE approach utilizing these services.  

 

 Figure 3.1 shows the sce_explore environment. This environment requires the 

application specification, platform component information and the model database as inputs. The 

data plane for sce_explore encapsulates three distinct services, namely (i) sce_gds (ii) sce_refine 

and (iii) sce_simulate. The control plane shows a generic DSE flow as described below. 

 

The role of the data plane services and the configuration of the control plane can be best 

shown by describing the implementation of a generic DSE flow using the sce_explore 

framework. Each of the services is described in detail in subsequent sections of this chapter.  

 

(i) The system starts by calling sce_gds to build a representation of all the design space 

points. This enables the system to gather an understanding of the entire design space, and 

pick an efficient way to encode various architectures for representing them to the 

decision-making engine. The output of this step is a pool of individual design instance 

representations in the form of XML files, as well as a look-up table containing the 

encoding for each of those instances.  

 



 11 

  SCE_EXPLORE

  Control Plane   Data Plane

M
od

el
 D

at
ab

as
e

Application 

specification

Design 

Instance 

Descriptions

SCE_GDS

SCE_REFINE

SCE_SIMULATE

Decision

Engine

Platform 

Components

Executable 

Models

Start

Intermediate 

Results

Pareto-optimal 

Design points

Select

Iterate

Done

 

Figure 3.1: sce_explore environment 
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(ii) Next, the system selects a subset of these potential architectures and generates refined 

executable models capturing platform architecture effects (computation-only effects or 

both computation and communication effects) using sce_refine 

(iii) These executable models are then simulated using sce_simulate to estimate design 

parameters such as performance, power etc. 

(iv) These results are fed back into the decision engine which now selects a different set of 

design points 

(v) Steps (ii) through (iv) are repeated until the decision engine decides it has completed, and 

identified a set of Pareto-optimal points 

(vi) The system generates an output containing the Pareto-optimal points it has identified.  

 

In this manner, the sce_explore environment can be used to implement a number of 

approaches. For example, in a simple brute force approach, the decision engine would select, 

simulate and assess all possible design points to discover the Pareto-optimal points. This 

approach is definitive and useful for small designs, but prohibitive for large complex designs. 

 

For large complex designs, a genetic-algorithm based approach can be incorporated. 

Genetic algorithms mimic the process of natural evolution [9]. In the first step, the design space 

is encoded with a binary representation, with a fixed size and position representation for each 

architectural choice. The search is then initialized with a randomly generated population. This 

population is taken through refinement and simulation, and the design parameters thus assessed 

are used to select individual solutions through a fitness-based procedure, in which fitter solutions 

are more likely to be selected. This pruned population is then used to generate a „child‟ 

population through genetic operators such as crossover and mutation. This child population 

shares many of the characteristics of its parent population. This process is repeated until the 

algorithm reaches a termination condition (for example, a fixed number of iterations, or a fixed 
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run-time). At this time, the system has assessed a number of design points, and can output the 

optimal points.   

 

The computing tasks within the sce_explore framework are highly parallel, and hence we 

structure them in separate compute processes that can be run in parallel on an underlying 

managed compute cluster. Importantly, in case a managed compute framework is not available, 

sce_explore builds a simple managed compute framework using available networked machines. 

It requires a specification of the machines to be used, and the number of cores available per 

machine. It then schedules jobs on each individual core in a round robin manner, waiting until a 

job is finished on one core to assign the next job to it. Since this is intended as a basic compute 

cluster, it does not take into account effects such as processor load in scheduling.  
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3.2  SCE_GDS: DESIGN SPACE GENERATION SERVICE 

Any DSE system has to start first with knowing its potential design space and picking an 

efficient way to represent it. This section describes the sce_gds service built on top of SCE for 

this purpose. 

 

3.2.1 Design Space Encoding 

As part of the sce_explore environment, we choose to generate and store design space 

points offline, i.e. before the decision-making engine begins. The DSE algorithm then refers to 

each design point using an encoded key into a look-up table. This is motivated by observing 

certain key factors common to most DSE algorithms that would use the sce_gds service:  

 The design space is finite and will only change when the design changes. Hence, it can be 

generated once and the same representation can be used in multiple explorations. Since the 

number of design space points can be fairly large and time required for generation 

substantial, this approach does have an initial setup hit but saves time over the exploration 

process. 

 Exploration time is the critical path, and reducing time taken to reach an optimal decision set 

is a key objective of any DSE approach. Offline decision generation takes that step out of the 

critical path. 

 A DSE algorithm can potentially be non-deterministic (such as genetic algorithms) causing it 

to hit the same design point in exploration multiple times. Additionally, and especially for 

genetic algorithms, the system needs to go through a minimum set every time to be able to 

converge. This will involve re-assessing design points that may have already been assessed in 

previous explorations. An offline, lookup-table based approach makes caching of previously 

assessed design points very easy.  
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 Randomized design point selection and operations such as recombination are characteristic of 

many DSE algorithms. These operations are made easier by a lookup table based approach, 

since every design point is represented by an encoding.  

 

We represent design architectures in human-readable XML format, with each design 

point being a unique XML file, and having an entry in a look-up table file. Two design spaces 

are generated, considering computation-only architectures and computation-and-communication 

architectures. This is motivated by the fact that computation-only exploration provides an 

opportunity to reduce the complexity of exploration, as will be shown in Chapter 4.   

 

3.2.2 SCE_GDS Description 

Figure 3.2 shows the flowchart for the design space generation process. Each of the steps 

is described in the following sub-sections. 

 

Platform Elements Specification 

The following set of platform element specifications are required to generate the design 

space: 

1. Software processing elements (CPU)  

 The processor types to be considered in the design space 

 The maximum number of software processors to be considered in the exploration  

 The cost of each processor type  

2. Hardware processing elements (HW) 

 The maximum number of hardware processing elements to be considered in the 

exploration 

 The cost of each hardware processing element 

3. Memory elements  
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Figure 3.1: sce_gds flow 
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 The memory types to be considered  

 The cost of each memory element 

4. Interconnect elements  

 The types of busses to be considered 

 The cost of each bus element 

5. Transducer elements 

 The type of transducers to be considered 

 The cost of each transducer element 

 

Additionally, another key platform specification is the hierarchical depth of exploration. 

Any application is hierarchically built from specification actors, which are themselves built from 

other actors. At any particular depth, there will be a finite number of actors and channels. We set 

a particular depth limit „n‟, and any actors and channels at depth level n+1 and beyond will 

always be mapped to the same processing elements. This helps restrict the complexity of the 

exploration.  

 

 

Read Design 

Once the exploration depth has been set, the framework creates a list of all actors, shared 

variables and communication channels by parsing through the design. This is stored in the 

internal database.  

 

Mapping Actors and Variables 

Actors in the design need to be bound to one of the possible processing elements (PEs), 

which could be any of the software processors (CPU) available through the platform, or a 

Hardware processor (HW). Similarly, variables need to either be in a shared global memory, or 
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be stored in PE internal memories with a synchronization mechanism to keep the individual 

copies in sync.  

 

Our framework operates by recursively allocating each actor and variable to each of the 

potential options in separate passes. For example, if global constraints allow 2 ARM processors 

and 2 hardware units,  actor „A‟ will be mapped onto ARM1, ARM2, HW1 and HW2 in 4 

separate passes. Each of these architectures is a starting point for an actor „B‟ to be mapped onto 

the same set of PEs. Once all actors are mapped, the framework moves on to variable mapping, 

considering each actor mapping architecture as a starting point for decisions about FIFO 

mapping. Each of the variables is evaluated to check if the actors sharing it are mapped onto the 

same or different PEs. In case all actors are mapped to the same PE, the variable will be part of 

the PE‟s internal memory (which is part of the PE model and does not require a separate memory 

element). However, in case the variable is shared between two different PE‟s, we need to make a 

mapping choice as described earlier
1
. In this recursive manner, we are able to generate all 

possible combinations of architectures involving the actors and variables on the PEs and memory 

elements.  

 

 

Scheduling CPUs 

Hardware blocks can run everything mapped to them in parallel, and therefore do not 

require any scheduling. However, software processors can only run one actor at one time. 

Therefore, the scheduling of actors on software PEs is another part of the design space. Within 

SCE, the following choices are available: 

 Statically schedule all actors to run serially in a preset order. In this case, there is a single 

thread on the PE comprised of the serialization of all the actor threads.  

                                                 
1 Architectures involving shared memories can be blocked altogether using a switch, in which case all variables will 

be mapped to the PEs. This is useful in reducing complexity of the decision set.  
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 Use a pre-emptive thread scheduler which schedules actors in a round-robin manner 

 Use a pre-emptive thread scheduler which schedules actors with a priority based policy, in 

which an actor with a higher priority executes before others with lower priority.  

 

Within our framework, only the round-robin and priority thread scheduling are 

considered as design space options2. Additionally, there is a subset of architectures within the 

priority scheduling, comprised of different priorities for different actors.  

 

At this point, the entire design space consisting of computation-only architectures (i.e. 

ignoring communication effects such as bus delays) has been generated. The sce_gds service has 

the option of generating XML output files for this design space, since this design space can be 

useful as an intermediate step. 

 

Bus Mapping 

We restrict potential architectures in sce_gds to generic bus-based MPSoCs. Not only are 

bus-based architectures most common, memory mapped bus architectures are also the focus of 

the SystemC TLM 2.0 standard [1]. We further establish a set of possibilities and restrictions for 

bus architecture exploration: 

 Each CPU needs to be connected to its own bus. 

 PEs and shared memories cannot connect directly to each other, and can only be connected 

through a bus. 

 There can be a dedicated memory bus which only connects to shared memory elements (and 

transducers to be able to talk to other busses). 

 Similarly, there can be a dedicated Hardware bus with only Hardware PEs (and transducers). 

                                                 
2 Complex embedded systems, which are the subject of this report, are very likely to require some sort of thread 

scheduling mechanism, if not a RTOS 
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 Finally, there can also be a bus that can have both Hardware processing elements and shared 

memory, but no CPU3.  

 

As a result of these rules, there will be a minimum of n busses in the design architecture; 

where n is the number of software processors. Each software processor in the design is then 

assigned a bus type, carefully making sure only valid bus types out of the available set are 

assigned. For example, a Coldfire processor cannot be assigned to an AMBA bus. The processor 

is connected to the bus as a master on the highest priority master port (e.g. Master0 for ARM9 

processors).  

 

Next, hardware PEs are recursively assigned to each of the busses or the dedicated HW 

bus. A hardware PE is connected both to a master and a slave port on the bus. For shared 

memory elements, there needs to be a decision on whether to connect the shared memory in a 

dual-port fashion to both busses that access it, or to connect it to a dedicated memory bus. Shared 

memory elements are connected to the bus as slaves. 

 

At this time, it is also necessary to add transducers between PEs and memories that 

communicate with each other using channels, but are on different busses in the architecture. This 

can be done statically by identifying channels and the actors they connect. Transducers are 

connected as slaves on all the busses they connect with. 

 

Write Design Architecture 

To complete network connectivity, the following architectural elements still need to be 

defined: 

 Master and slave priorities for various entities connecting to the bus  

                                                 
3 This bus is available only in case there actually is at least one shared memory, AND at least one HW. In the 

absence of either, this bus would become the same as either a dedicated HW bus or a dedicated memory bus, and is 

hence not an exploration option. 
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 Synchronization policy ( interrupt or polling) 

 Interrupt priorities  

 

These factors are ignored as part of DSE because they may not make a large difference in 

the exploration results, yet can dramatically increase the design space. Therefore, these elements 

are defined as part of the synthesis process described in the next Chapter.  

 

Since all the design space parameters for this particular architecture are now known, the 

architecture description is written to a XML file. The framework also encodes the description in 

a key, and appends the key-to-XML mapping to a lookup table file, defining the link between the 

unique key for the architecture, and the file containing its description.  The cost for this 

architecture is also written to the XML file (since it can be statically determined now that all the 

architecture elements are known)  

 

This process is then repeated until all the design points in the potential design space have 

a description in the form of an XML file. At this time, the entire design space has been generated 

and represented.  
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3.3 SCE_REFINE: MODEL REFINEMENT SERVICE  

A DSE system chooses a single or a set of decision points from a large pool for the 

purpose of determining their fit for the goals of the system. As part of this process, an executable 

model of the application within the platform architecture needs to be built as per the design 

point, and then the system estimates the performance parameters for this model. This section 

describes the sce_refine service, which provides the facilities for automatically generating such 

an executable model using SCE‟s basic refinement engine.  

 

3.3.1 Design Modeling and Evaluation 

As explained earlier, there can be three distinct levels of performance estimation relevant 

to the DSE process: 

 

Static Analysis 

Static models estimate the application performance based on profiling the application and 

extracting parameters such as number and types of mathematical operations, data movement 

operations etc. Platform component models already contain information about their behavior 

with respect to these parameters. For example, a DSP model will reflect the fact that it is 5 times 

faster than an ARM processor model at multiply-accumulate (MAC) operations. These extracted 

parameters are then used to statically estimate the performance of the application on the 

platform.  

 

While this approach is very fast since there is no simulation involved, it is highly 

inaccurate when the architecture is complex, since it completely ignores any temporal effects in 

application execution. These temporal effects affect application parameters such as real-time 

latency, which are very important for embedded systems. Therefore we do not consider this 

approach to be effective in a DSE system, and do not provide any facilities for using this at the 

moment. 
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Computation-only Model Simulation 

 

Computational-only simulation models are generated after SCE‟s architecture and 

scheduling refinement stages. As the name suggests, these accurately model computational 

effects, but do not model communication overhead. For example, no bus delay or bus contention 

effects will be seen in these models. These effects are very important especially in MPSoCs and 

cannot be ignored, making these models unsuitable for complete DSE. 

 

However, this stage does provide a convenient intermediate point in DSE to evaluate 

various design points, and prune the design space before beginning DSE involving 

communication modeling, which can add large overheads in simulation and assessment time. 

Such a hierarchical, two-step DSE process can have a dramatic effect on overall DSE time and 

quality. By eliminating potentially a large percentage of design points, the complexity of the 

process going forward is significantly reduced. This is shown quantitatively with an example in 

Chapter 4.  

 

 

Computation- and-communication Model Simulation 

Communication model simulation, or TLM simulation, is done using TLM models 

generated after SCE‟s communication and network refinement. These models are only one level 

of abstraction above RTL and C code/instructions, and capture most effects that are required for 

effective DSE, but due to the added detail, they do so at exponentially larger simulations times 

compared to earlier computation-only models.   

 

3.3.1 SCE_REFINE Description 

The sce_refine service, shown in Figure 3.3, is used to generate both computation-only 

and computation-and-communication simulation models. Sce_refine engages refinement for each 
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design point in the selected pool to generate a simulation model from an architecture description 

in one shot. It also deals with any errors in generating simulation models. The sub-sections 

below describe the operation of sce_refine. 

 

Read Design 

The application can be read in as a SpecC code file, or a pre-processed SpecC Internal 

Representation (SIR) file. The system builds an internal database of the parameters of the design, 

such as the actors, channels and their connectivity. Users can specify the top-level of the design. 

This is useful when the architecture for a portion of the design is already known, and we only 

need to perform design space exploration for a particular sub-system. 

 

Read Architecture Description 

The system next reads in the architecture description from the provided XML file 

(generated in the design space generation stage) and builds it into an internal database. At this 

point of time, it performs sanity checks to ensure consistency between the design and specified 

architecture. Amongst other things, it makes sure that: 

 there is no duplicity in mapping 

 at least one PE and one system bus is specified  

 processes and target PEs specified for mapping actually exist in the design and SCE model 

database, respectively 



 25 

Read Design

Read Architecture 

Description

Computation 

Refinement

Communication 

Refinement

Computation-only 

Simulation model

Computation and 

Communication 

Simulation model

 

Figure 3.3: sce_refine flow 

 

Computation Refinement 

The system exercises SCE to implement computation and scheduling decisions as 

specified in the architecture description. The system is also built to handle a particular case of 

when PEs are scheduled with a priority scheduler, but actors are not assigned priorities in the 

architecture specification. In this case, the system automatically and randomly assigns unique 

priorities to actors.  

 

Communication Refinement  

Again, the system exercises SCE to implement communication and network decisions 

specified in the architecture description, as well as a number of decisions which may not be 

specified in the architecture, but are necessary to complete the specification. Specifically, the 

following architectural elements are defined automatically: 



 26 

 Master and slave numbers on the bus are assigned randomly, except the processor on the bus 

which is always assigned Master0. This is done under the assumption that all the masters and 

slaves will have the same priorities on the bus
4
 

 All synchronization is interrupt based. Polling-based synchronization mechanisms are not 

considered 

 Interrupt numbers and addresses are assigned randomly to channels, under the assumption 

that all interrupts are of equal priority
5
 

 

Generate Simulation Model 

Simulation model are generated after both computation and communication refinement to 

complete synthesis. These models are used further by the DSE system to measure design 

evaluation parameters such as latency and power consumption.   

                                                 
4 Therefore, bus contention effects arising out of priority assignment cannot be seen in the design space exploration 
5 This means processor contention effects arising out of interrupt priorities cannot be seen in the design space 

exploration 
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3.4 SCE_SIMULATE: SIMULATION AND ASSESSMENT SERVICE 

This section describes the sce_simulate service, which provides simulation and 

assessment facilities. The sce_simulate service simulates the design model on the host for all the 

design points in the current pool. The design model is expected to contain an embedded 

testbench that assesses and generates performance evaluation parameters. Since the testbench is 

part of the design, and therefore out of the scope of the DSE system, it may refer to the output 

parameters from the simulation in a number of ways. For example, latency may also be referred 

to as output delay or jitter in the simulation output. The sce_simulate service therefore requires 

the user to define keywords associated with design evaluation parameters, such as „latency‟. The 

exploration framework then provides a mechanism to extract these parameters from the 

simulation results, and accumulating them in an intermediate results output file.  

 

In a similar manner, sce_simulate also extracts statically determined evaluation 

parameters, such as cost, from the architecture specification and includes them in the output file. 

The output file is used by the decision making engine to prune the pool of design space points, or 

it can be processed by a number of tools to compute and plot weighted cost and performance 

functions. In the next Chapter, we show the parsing of results in MATLAB to generate a visual 

representation of the Pareto-optimal front.  
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Chapter 4: Demonstration and Results 

We demonstrate the capabilities of our framework by implementing two relatively simple 

DSE systems using a brute force approach, and a hierarchical two-step exploration approach. 

These systems are then exercised with an industrial strength example design [7]. More advanced 

systems, using genetic algorithms for example, can be built using this framework but are beyond 

the scope of this work. 

 

4.1 SIMPLE BRUTE FORCE EXPLORATION FLOW 

Figure 4.1 shows a DSE flow that implements a one-shot, brute force exploration flow. 

The entire design space representation is generated initially. A set of design points is then picked 

and taken through synthesis, simulation and gathering of results. This is repeated until all the 

design space points have been simulated and assessed. At this time, all the results can be plotted 

and the Pareto-optimal curve can be obtained.  

 

4.2 TWO-STEP BRUTE FORCE EXPLORATION FLOW  

Figure 4.2 shows an optimized DSE flow that exploits the step-wise refinement 

capabilities of SCE by utilizing a hierarchical, two-step exploration flow. In the first pass, solely 

computation-only models are considered, i.e. communication effects such as bus delays are 

ignored. This has a twofold benefit: 

1. The design space pool without considering communication decisions is potentially much 

smaller 

2. Models without communication level of detail execute much faster 
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Figure 4.1: Brute-force DSE flow 
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Figure 4.2: Hierarchical, two step DSE flow 



 31 

As a result, we can run through a first pass of exploration quickly, and use results 

to prune the design space. There can be a number of strategies to pruning the design 

space. At the very least, the design space can be pruned of design points that are highly 

likely to be infeasible. For example, if the application latency for a set of architectures 

already exceeds the latency constraint, latency can only get worse once bus delays are 

considered. DSE systems can also choose to be more aggressive and select design points 

lying on the first and second-level Pareto-optimal curves. Second-level Pareto-optimal 

curves are expected to account for inaccuracies arising out of ignoring communication 

effects. Once the computation-only design space is pruned, we then select only the subset 

of the computation-and-communication design space that is derived from this pruned 

region. A second pass of exploration then provides final results.  

 

4.3 RESULTS 

Using the two DSE systems described above, we perform design space 

exploration for an example design. Figure 4.3 shows the chosen task set, which is 

composed out of a modified subset of applications from the automotive category of the 

MiBench suite. The tasks basicmath, qsort and susan_edge+susan_corner are scheduled 

to run periodically with periods of 2.5, 2 and 1 second(s) respectively. The output of 

susan_edge is thereby communicated to the input of susan_corner, forming a pair of 

dependent tasks. The resulting task set is run for 10 seconds of simulated time. 
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Figure 4.3: MiBench design 

We explored a design space with up to four ARM processors, a choice of two OS 

schedulers (priority-based or round-robin) and required communication architectures in 

the form of busses and bridges. We consider an exploration depth of 2. This forms a 

design space of almost 2000 unique architectures. By utilizing a one-shot brute force 

approach using our framework (Figure 4.1), we automatically generated executable 

models for all architectures. Simulating those models provides total delay, power 

consumption and cost for each design alternative. This results in 35 distinct design points 

(Figure 4.4), where the set of Pareto-optimal designs, at 3 points, comprises less than 1% 

of the total design space. As shown in Table 4.1, this approach was able to evaluate all 

2000 design alternatives in 47 hours of CPU time on a cluster of 2.5GHz Intel Xeon 

workstations.   
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Figure 4.4: Pareto-optimal front for MiBench DSE 

 

 

 

 

 

Table 4.1: MiBench DSE time 

 

Further, the design was tested with a two-setup brute force approach as shown in 

Figure 4.2. A pruning strategy that retained both the first and second Pareto fronts after 

the first step was used. Moving to this exploration approach enabled the same results to 

be obtained in 8 hours of CPU time.  

  

 CPU  Time (hours) 

Design Space ISS 500 

System-level full DSE 47 

System-level step-wise DSE 8 
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Chapter 5:  Conclusion 

We have successfully developed a Design Space Exploration infrastructure that 

captures the opportunity to consolidate various algorithmic approaches under one 

common framework using generic back-end services. Such an approach enables the right 

front-end optimization approach to be used based on design characteristics. It also 

enables advances in underlying fields of ESL design, such as simulation and modeling, to 

be incorporated into the design space exploration process in the fastest possible manner. 

We go on to implement two exploration flows using this framework, and we evaluate a 

representative industrial-strength application to prove the feasibility and value of this 

approach. 

 

We can imagine a number of extensions and improvements to the sce_explore 

environment. Some of these are listed below  

 Currently, the interface to a graphing utility such as MATLAB is manual. This can be 

automated by incorporating an API that calls a standalone application created using 

MATLAB 

 The pruning step in a two-step exploration is currently done by the user. This can be 

improved by incorporating APIs that automatically prune the design space using 

some of the strategies described earlier. 

 Interrupt priorities are assigned randomly at present. Master and slave assignments 

are also made randomly. The design space generation framework can be enhanced to 

include decision making on these parameters. This can be important in systems such 

as communications processors, where interrupt planning is very important owing to a 

large number of interrupts with differing latency requirements.  
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 The cost estimate can be improved. For example, currently, a shared memory has the 

same cost whether it is a single or dual ported memory, and regardless of its size. This 

is not true of actual designs. 
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