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Abstract

This work presents a low-power neuromorphic neuron circuit designed as a

compact and tunable Leaky Integrate-and-Fire module, compatible with any mixed-

signal architecture that incorporates a digital backend. The proposed design com-

prises three key functional blocks: a spiking input module that converts voltage pulses

into charge currents, a voltage leakage module that implements tunable exponential

decay, and a digital spike generation module that detects threshold crossings and

emits output spikes. This design is based on a TSMC 65 nm CMOS process and eval-

uated under a 10 MHz input spike frequency. The neuron module exhibits reliable

spiking behavior, strong noise robustness, and programmable dynamics. The mea-

sured energy consumption per spike is 10.12 pJ, with a static power consumption of

26.12 uW. In contrast to prior analog implementations, this work uniquely supports

both adaptive dynamics and on-chip learning within a compact architecture. Unlike

existing designs that often sacrifice learning capability or area efficiency, this design

achieves all three: adaptation, plasticity, and area-optimized integration.

These results highlight the potential of circuit-level neuromorphic design for

constructing dense, scalable, and energy-efficient spiking neural network (SNN) accel-

erators tailored for edge computing and real-time signal processing. The modularity

of the proposed neuron block further supports its integration into large-scale mixed-

signal neuromorphic systems.
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Chapter 1: Introduction

The structure of traditional digital processors fundamentally differs from the

organization of the human brain. While conventional processors are typically based

on the von Neumann architecture, which separates logic and memory and is driven

by a global clock, the brain performs computation through massively parallel and

asynchronous interactions between neurons and synapses [1]. This organization al-

lows the brain to achieve remarkable energy efficiency, operating at approximately

20 W—which far surpasses the energy efficiency of current general-purpose proces-

sors [2]. This striking contrast has motivated extensive research into brain-inspired

computing systems that seek to replicate this efficiency and architectural elegance in

silicon-based systems.

Motivated by this contrast, neuromorphic systems are designed to move away

from clock-driven, centralized computing paradigms and instead adopt event-driven,

locally connected architectures that support the co-location of memory and computa-

tion. Rather than executing instruction pipelines at uniform, clock-driven intervals,

neuromorphic systems operate by propagating discrete spike events only in response

to meaningful input activity, allowing inactive regions to remain idle and consume

minimal dynamic power. This leads to significantly reduced energy consumption

and enables scalable, real-time computation for processing sparse, spatiotemporally

structured data. A representative example of such a system is BrainScaleS [3]. It im-

plements analog neuron dynamics at the circuit level, coupled with an event-driven

digital communication backend that ensures scalability—allowing additional analog

cores to be integrated seamlessly into the architecture.

As the fundamental computational unit of neuromorphic systems, neuromor-

phic circuits integrate memory and computation at the circuit level, eliminating

the need for energy-intensive data movement between physically separated logic and
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memory units. These architectures are often implemented using asynchronous, ana-

log, or mixed-signal techniques that emulate the dynamics of biological neurons and

synapses. For example, membrane potentials are typically represented using capaci-

tor voltages, synaptic weights by current mirrors or programmable conductances, and

spike events by brief switching transients. This circuit-centric approach offers sub-

stantial benefits in latency, energy efficiency, and scalability. Event-driven processing

enables the circuit to remain idle until relevant stimuli occur, significantly reducing

power consumption. Furthermore, the local storage of neuronal state variables allows

for distributed computation and near-memory processing, both of which are essential

for scalable neuromorphic integration. These advantages make neuromorphic circuits

particularly well-suited for deployment in resource-constrained environments, includ-

ing mobile edge devices, autonomous robots, biomedical implants, and low-latency

signal processing applications—contexts where traditional digital architectures often

fall short in terms of responsiveness and energy efficiency.

Among existing neuromorphic platforms, only a few offer both analog neu-

ron implementations and flexible system-level programmability. While many systems

focus on digital emulation or fixed-function analog designs, the BrainScaleS neuro-

morphic computing architecture [3] that tightly integrates tunable analog neurons

with general-purpose digital infrastructure remains rare. This architecture offers a

flexible hardware–software co-design platform. Built on the Power Instruction Set

Architecture (PowerISA) [4] and supported by a Linux-based BrainScaleS operating

system [5], it enables tight coupling of analog neuron circuits with digital control

infrastructure, facilitating real-time, large-scale spiking neural network emulation.

While BrainScaleS offers a unique combination of tunable analog neurons and a digi-

tal backend, this flexibility comes at a cost: the large number of configurable param-

eters results in substantial circuit overhead, reducing area efficiency and limiting the

scalability of analog core arrays.

To address these limitations, we propose a low-power neuromorphic neuron

grid accelerator circuit designed to serve as a modular, area-efficient building block
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fully compatible with the BrainScaleS ecosystem. The proposed design exhibits high

tunability, robust parameter mapping, and strong resilience to noise, while maintain-

ing a compact physical footprint. By exploiting the time-domain coding characteris-

tics of the Adaptive Exponential neurons model (AdEx) [6], a specialized and more

sensitive form of the classical LIF model, capable of capturing rich spiking dynamics

through exponential membrane potential evolution and adaptive feedback, the cir-

cuit addresses common analog scaling challenges, including bit-depth constraints and

susceptibility to noise. The resulting neuron unit is compact, energy-efficient, and

reliable, rendering it well-suited for the construction of dense, cost-effective, analog-

domain SNN accelerators.

The remainder of this report is organized as follows. Section 2 introduces the

computational model and the rationale for adopting a circuit-level AdEx implemen-

tation. Section 3 presents the circuit architecture and simulation results. Section 4

concludes the work and discusses potential future directions.
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Chapter 2: Related Work

Analog Neuromorphic Circuits. Recent advances in neuromorphic com-

puting have explored a spectrum of hardware implementations, ranging from fully

digital logic to hybrid and fully analog designs. Among these, analog neuromor-

phic circuits stand out for their ability to emulate the continuous-time, event-driven

nature of biological neurons with high energy efficiency and compact circuit design.

Operating in subthreshold or near-threshold regimes, these systems exploit the intrin-

sic physics of transistors and capacitors to enable biologically inspired computation.

Key building blocks include charge integration units (e.g., capacitors Cmem) that accu-

mulate synaptic currents, thresholding circuits (e.g., Schmitt triggers) that generate

spikes when membrane voltage crosses a threshold, and leak elements that implement

temporal decay. This approach offers distinct advantages in low power consump-

tion, high temporal resolution, and asynchronous operation—making it well-suited

for constructing dense and scalable neural substrates.

For example, the BrainScaleS system [3] uses analog circuits to physically

integrate membrane potentials, enabling sub-microsecond timescale acceleration of

neuronal dynamics. DYNAP-SE [7] employs current-mode analog design to real-

ize adaptive thresholding and tunable synaptic weights using floating-gate transis-

tors. Neurogrid [8], developed at Stanford, uses subthreshold analog CMOS circuits

to emulate dendritic integration and conductance-based synaptic dynamics across a

massively parallel array of silicon neurons.

The ROLLS neuromorphic processor [9] implements 256 adaptive LIF neurons

and 16k plastic synapses using mixed-signal analog-digital design, featuring online

STDP learning and ultra-low power operation in the picojoule-per-spike range. The

HICANN-DLSchip [10] is implemented in BrainScaleS-2 [4], which employs a highly

accelerated analog core with embedded digital calibration support to mitigate device

mismatch, enabling real-time closed-loop learning in physical neuron arrays.
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Comparison: Compared to digital and device-level neuromorphic implementations,

analog neuron circuits offer a compelling balance between biological fidelity and hard-

ware efficiency. While digital neuromorphic systems provide programmability, they

incur high energy costs due to frequent memory access and clocked control. Device-

level implementations, such as those based on memristors, promise high integration

density but often suffer from variability and limited temporal precision. In con-

trast, analog circuits support real-time, continuous-time dynamics with low energy

per spike, making them well-suited for scalable, low-power neuromorphic hardware.

Design Gap and Motivation. Analog neuromorphic circuits have demon-

strated significant advantages in terms of energy efficiency, circuit compactness, and

biophysically inspired spiking behavior. Prior designs such as BrainScaleS [3], DYNAP-

SE [7], and ROLLS [9] have explored various neuron models, including AdEx [6],

adaptive LIF [11], and STDP [12], achieving either adaptive dynamics, on-chip learn-

ing, or area efficiency, as detail shows in Table 2.1.

However, few of these implementations simultaneously achieve all three of

the following: (1) biophysically meaningful adaptive spiking dynamics (e.g., spike-

frequency adaptation, exponential onset), (2) compact and modular circuit design,

and (3) compatibility with online learning and large-scale array integration. For

instance, while DYNAP-SE supports adaptation and learning, it incurs overhead

in area efficiency; conversely, ROLLS is area-efficient but lacks adaptive dynamics.

These trade-offs indicate a persistent design gap in current analog neuron circuits.

To address this, our work proposes a compact Adaptive Exponential neuron

circuit that integrates adaptation, learning compatibility, and area-efficient design

into a single architecture. As shown in Table 2.1, our design is the only one among

these analog implementations to achieve all three criteria, providing a promising build-

ing block for future large-scale neuromorphic systems.
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Table 2.1: Comparison of analog neuromorphic neuron implementations. Adapt.:
Adaptive Spiking, Flexibility.: Neurons Tunable Flexibility, Area Eff.: Area Effi-
ciency.

System Model Adapt. Learn. Area Eff.

BrainScaleS [3] AdEx ✓ ✗ ✗

DYNAP-SE [7] Adapt. LIF ✓ ✓ ✓

Neurogrid [8] Cond.-based ✗ ✗ ✓

ROLLS [9] LIF + STDP ✗ ✓ ✓

HICANN-DLS [10] AdEx (cal.) ✓ ✓ ✗

This work C-AdEx ✓ ✓ ✓

10



Chapter 3: Background

In the field of machine learning and neuromorphic computing, spiking neu-

ral networks (SNNs) represent a major milestone. Originally proposed by Maass in

1997 [13], SNNs were the first class of neural networks to model neural computation

from an algorithmic perspective, systematically incorporating temporal dynamics and

event-driven signaling. This framework significantly improves the energy efficiency of

neural processing, bringing it closer to practical hardware-level deployment.

Multiple neuron models and synaptic learning rules have been developed to

realize SNNs, among which the most prominent are the leaky integrate-and-fire (LIF)

model and spike-timing-dependent plasticity (STDP) [12]. The LIF model, in particu-

lar, stands out as the most hardware-friendly and widely adopted due to its structural

simplicity and strong biological plausibility. In the following sections, we first out-

line the motivation behind neuromorphic computing and briefly review the historical

development of biologically inspired spiking models. We then detail the Adaptive

Exponential (AdEx) neuron model, a biophysically enhanced variant of the Leaky

Integrate-and-Fire (LIF) neuron [6], describe how networks of such AdEx-derived

units form complete SNNs, and present a comparative analysis between AdEx-based

SNNs and traditional artificial neural networks (ANNs) from both architectural and

algorithmic perspectives.

3.1 Development of Neuromorphic Computation

Since the 1950s, researchers from multiple disciplines have explored concepts

that would later contribute to neuromorphic computing. Early theoretical models

such as the McCulloch–Pitts neuron [14], the Perceptron [15], and the Hopfield net-

work [16] laid the algorithmic and computational foundations for neural information

processing. However, these models were primarily developed in the context of sym-
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bolic computation or software simulation, rather than as physical implementations.

A significant shift occurred in 1989, when Carver Mead formally introduced

the term “neuromorphic computing” [17] to describe a class of hardware systems

that directly emulate the structure and dynamics of biological neural circuits using

analog VLSI. Mead’s work marked a turning point by bridging biological modeling

with silicon-based realizations. In the 21st century, research attention further shifted

toward spiking neural networks (SNNs) [18], which use discrete spike events to en-

code and transmit information, closely mimicking real neural communication. This

renewed focus on biologically realistic dynamics led to the emergence of several rep-

resentative neuromorphic hardware platforms.

Today, neuromorphic computing is propelled by three key application de-

mands. First, the post-Moore era necessitates fundamentally new architectures that

enable energy-efficient and cost-effective computation. Second, brain and cognitive

sciences require biologically realistic hardware capable of simulating neural dynamics

with high temporal and spatial resolution. Third, the proliferation of edge comput-

ing and the Internet of Things (IoT) calls for lightweight, high-performance hardware

that can operate under stringent power constraints.

In response to these needs, neuromorphic computing has advanced through

decades of interdisciplinary progress in neuroscience, learning algorithms, circuit de-

sign, and systems integration. Biologically inspired models—such as the LIF neu-

ron [11] and STDP learning rules [12]—have provided a principled foundation for

temporal computing and event-based adaptation. SNNs now offer a compelling model

for low-power, low-latency computation.

On the algorithmic front, innovations in training and adaptation methods have

significantly expanded the applicability of SNNs to a range of real-world tasks such

as classification, control, and sensory processing. Notably, surrogate gradient tech-

niques [19, 20] have enabled gradient-based optimization in non-differentiable spiking

models, bridging the gap between biological plausibility and machine learning scala-
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bility. In addition, local unsupervised learning rules such as Spike-Timing-Dependent

Plasticity (STDP) [12] and Hebbian-inspired dynamics have demonstrated success in

pattern recognition and temporal feature extraction. Online learning and homeostatic

adaptation mechanisms [21] further contribute to the robustness and lifelong learning

capability of SNNs, making them promising for edge intelligence and event-driven

environments.

On the hardware side, various neuromorphic platforms—from fully digital pro-

cessors like IBM TrueNorth [22] to analog and mixed-signal implementations—have

demonstrated the feasibility of brain-inspired computing architectures. Recent ad-

vances in compact neuron and synapse circuits have achieved high fidelity and ultra-

low power consumption. In parallel, the software ecosystem has matured significantly.

Tool-chains such as PyNN [23], Lava [24], and SNNTorch [25] have lowered develop-

ment barriers and enabled efficient mapping from high-level SNN models to hardware

platforms.

Beyond algorithmic and circuit-level advances, system-level support for neu-

romorphic computing has also grown more favorable. Modern system-on-chip (SoC)

platforms—particularly those based on the ARM architecture—now support highly

customizable compute pipelines [26]. Their modular and energy-efficient nature makes

them suited to hosting neuromorphic accelerators alongside general-purpose proces-

sors. Moreover, the widespread adoption of the Linux kernel and its extensible device

driver framework enables seamless integration of non-standard analog and mixed-

signal components. This tight hardware-software coupling—once a critical bottle-

neck—has become an enabler, allowing neuromorphic circuits to operate within het-

erogeneous compute stacks while maintaining compatibility with user-space interfaces

and system-level resource management [27].
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Figure 3.1: AdEx neuron model structure.

3.2 Adaptive Exponential Neuron Model

Adaptive Exponential Integrate-and-Fire Neuron Circuit: The Adap-

tive Exponential (AdEx) neuron [6] is an advanced extension of the classical Leaky

Integrate-and-Fire (LIF) model. It incorporates biologically inspired features such as

an exponential term for sharp spike initiation and a spike-triggered adaptation cur-

rent to emulate neuronal fatigue. These additions allow the AdEx model to exhibit a

broader repertoire of spiking dynamics compared to standard LIF models, including

regular spiking, bursting, and spike-frequency adaptation. Similar to LIF neurons,

the AdEx model benefits from time-domain signal encoding, which provides inherent

robustness to analog noise and enables energy-efficient processing. These properties

make AdEx particularly suitable for analog circuit implementations. Based on this

model, we design an AdEx circuit module that emulates both the exponential mem-

brane voltage dynamics and the adaptive current feedback. Figure 3.1 shows the

overview of AdEX neuron model. Table 3.1 presents the conceptual correspondence

between components in the AdEx circuit module and their biological neuron counter-

parts. On neuromorphic hardware acceleration platforms, the AdEx circuit module

integrates synaptic weights transfer, spike-based encoding, and state memory along
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Table 3.1: Physiological analogy between AdEx model parameters and biological
neuron properties.

AdEx Parameter Biological Interpretation

Membrane potential Vmem(t) Voltage difference across neuronal membrane
Input current I(t) External stimuli or synaptic input
Capacitance Cmem Membrane capacitance of the neuron
Leak conductance gleak Ion channel conductivity of the membrane
Leak potential Vleak Resting membrane potential

the temporal dimension, forming a complete and efficient computational flow.

Analogous to biological neurons, the AdEx circuit model also operates in two

primary dynamic states: the subthreshold state (before spike firing) and the spiking

state (upon firing). During the subthreshold state, the membrane capacitor Cmem

accumulates charge from input synaptic currents I(t) while simultaneously leaking a

portion of the charge according to the leaky mechanism, which is controlled by gleak.

The dynamics of the membrane potential Vmem(t) under the subthreshold condition

can be mathematically described as follows:

Cmem · dVmem(t)

dt
= −gleak · (Vmem(t)− Vleak) + I(t) (3.1)

The subthreshold state’s dynamics of the AdEx neuron can also be reformu-

lated as:
dVmem(t)

dt
= − 1

τmem

(Vmem(t)− Vleak) +
I(t)

Cmem

(3.2)

where the membrane time constant τmem is defined as:

τmem =
Cmem

gleak
(3.3)

This time constant represents the absolute rate at which the membrane poten-

tial decays toward the resting potential in the absence of input, effectively determining

the “memory length” of the neuron’s voltage response.
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Computation of AdEx Neurons in SNNs.When drawing an analogy be-

tween SNNs and traditional artificial neural networks (ANNs), the AdEx unit can

be regarded as a combination of a temporal activation function and a state memory

function. The AdEx neuron integrates input spikes over time and emits a spike once

the membrane potential surpasses a predefined threshold [28].

In conventional ANNs, the fundamental computation consists of a linear weighted

summation function and a following nonlinear activation function, which enables the

ANN to extract and process complex, multimodal information. Likewise, in SNNs,

computation also comprises both linear and nonlinear components. Specifically, the

linear computation is performed through the weighted summation function of input

currents in front of the AdEx module, while the nonlinear part is realized via the in-

tegration of the temporal activation function and the state memory function realized

by the AdEx module. Table 3.2 summarizes the analogy between ANN and SNN

computational processes.

In the AdEx model, the weighted summation function takes as input the synap-

tic signals Si(t) from the preceding layer and the corresponding synaptic weights wij,

which determine the contribution of each input. The resulting output is the synaptic

input current Ij(t), which can be formally described as:

Ij(t) =
∑
i

wij · Si(t) (3.4)

The value of Si(t) is either 0 or 1, indicating whether a spike was emitted by the i-th

presynaptic neuron at time t. The membrane potential of the AdEx circuit model

j is Vj(t) is formed through a temporal integration process, which accumulates the

input currents Ij(t) over time from tlast spike generation to t:

τm · dVj(t)

dt
= −Vj(t) +Rm · Ij(t) (3.5)
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In discrete time steps, the membrane potential update of the AdEx neuron j can be

expressed as:

Vj[t+ 1] = α · Vj[t] + (1− α) · Ij[t] (3.6)

By drawing an analogy with artificial neural networks (ANNs), the computational

behavior of spiking neurons can be expressed as:

aj = f(zj) (3.7)

where:

• zj: Linear weighted sum of inputs;

• f : Nonlinear activation function (e.g., ReLU, Sigmoid);

• aj: Output activation value.

Table 3.2 summarizes the component-wise mapping between SNN and their

ANN counterparts.

Table 3.2: Mapping between core SNN components and their analogous ANN coun-
terparts.

SNN Component Analogous ANN Component∑
wij · Si(t)

∑
wij · xi (weighted sum)

Membrane potential Vj(t) Pre-activation value zj

Spike generation: Sj(t) =

{
1, if Vj(t) ≥ Vth

0, otherwise
Activation function f(zj)

Temporal integration + state memory Stateless (single-step activation)
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Chapter 4: Neuron Circuit Implementation

We propose an AdEx neuromorphic circuit that is carefully designed to balance

high computational precision, low power consumption, and cost efficiency. In the first

stage, a digital-to-analog converter (DAC) module transforms discrete digital inputs

into an analog voltage signal and generates corresponding pulse signals Vin, as shown

by the Spiking Input Voltage Signal in Figure 4.1. As shown in Figure 4.1, these

voltage pulses are then converted into input currents Icharge through the Spiking Input

Module, which charges the membrane capacitor Vmem, thereby resulting in a rising

membrane potential Vmem. Once Vmem exceeds the leakage threshold Vleak, the leakage

control module activates, gradually discharging Vmem. When consecutive input spikes

arrive, Vmem continues to accumulate and eventually surpasses the threshold voltage

Vthreshold, triggering the spike generation module. This module emits an output pulse

to downstream neurons and resets Cmem by releasing its stored charge. After a brief

refractory period—analogous to the silent phase of a biological neuron—the module

is ready to receive new incoming spikes.

To implement the AdEx algorithm described in Chapter 3, our core circuit

consists of three primary components: the Spiking Input Module, the Voltage Leakage

Module, and the Spike Generation Module. The Spiking Input Module and the

Voltage Leakage Module are designed with Vmem charging and leakage interfaces. The

Spiking Input Module is designed with a high gain, enabling rapid charge injection

into the neuron model. In contrast, the Voltage Leakage Module is designed with

a limited gain, allowing for a gradual and controlled discharge of the membrane

potential toward the resting state. This asymmetric design allows the AdEx unit to

rapidly accumulate charge in response to input spikes and gradually release it over

time, faithfully emulating the AdEx behavior. In the following sections, we present a

detailed description of each module.
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Figure 4.1: Top view of the neuromorphic circuit layout.

Figure 4.2: The neural membrane voltage value during stimulus response.
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Table 4.1: Transistor sizing and operating region for the Spike Input Module and the
Voltage Leakage Module.

Name W/L Region
M1, M2 1µm/0.28µm 2

M3, M4, M8, M10 5µm/0.6µm 2
M5, M6, M7, M9 5µm/0.4µm 2

M11, M12 1µm/0.8µm 2
M13 0.5µm/0.5µm 1
M14 20µm/0.4µm 1
M15 3µm/0.28µm 1

M16, M17 0.5µm/0.5µm 2
M18 0.5µm/0.5µm 3
M19 0.5µm/0.45µm 2
M20 3µm/0.28µm 2

4.1 Spiking Input Block

The Spiking Input Block receives voltage pulses from a DAC module and out-

puts corresponding current pulses. Functionally, this module behaves as a transcon-

ductance amplifier, with its transconductance denoted as Gm, defined as:

Gm =

(
Vt

Vin

· Iout
Vt

)
(4.1)

Where Vt represents the bias voltage applied at the current mirror node. A

schematic of the detailed design is shown in Figure 4.3. As with other voltage-input,

current-output amplifiers, the Spiking Input Block is designed to exhibit both high

input and high output impedance. As shown in Figure 4.3, high input impedance

is achieved by choosing a large W/L ratio for the input transistors M1 and M2.

For achieving high output impedance, cascode structures are employed together with

small W/L ratios for M10 and M18. These smaller dimensions not only reduce the

common-mode gain but, in conjunction with the cascode configuration, also provide

higher bandwidth while maintaining the desired output impedance. The sizing pa-

rameters of each MOSFET are listed in Table 4.1.

To reduce the overall chip area, the membrane capacitor Cmem is constrained to
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Figure 4.3: The core circuit of the Spiking Input Module and the Voltage Leakage
Module.

21



the picofarad range (0.1–2 pF). This necessitates lower output current and a smaller

Gm. To achieve this, a differential pair of transistors M11 and M12 is introduced at

the input stage to act as source degeneration resistors, thereby reducing the effective

transconductance. To allow finer control over the reduction in transconductance, a

clamping MOSFET M13 is integrated to adjust the effective transconductance gmr

of transistors M11 and M12. As a result, the effective transconductance of the input

block becomes:

Gm =
gm

1 +
(

gm
gmr

) (4.2)

This expression temporarily omits the effects of channel length modulation for sim-

plicity. Incorporating transistors M11 and M12 effectively extends the linear operating

range of the spiking generator. Additionally, the high W/L ratio of the input dif-

ferential pair M11 and M12 further improves the overall linearity of the module. By

integrating these design strategies, the Spiking Input Module exhibits high linearity, a

wide linearity range, low differential gain Gm, low common-mode gain, and high band-

width. These properties make it well-suited for spiking neural circuit applications.

Figure 4.4 shows that the Spiking Input Module exhibits ultra-low common-mode

gain. The DC output voltage is consistently maintained at 608.5mV.

4.2 Voltage Leakage Module

The Voltage Leakage Module also adopts a transconductance-based current

amplifier as its core, with the detailed implementation shown in Figure 4.3. It shares a

similar core circuit topology with the Spiking Input Module. The two modules operate

under different static bias conditions. By configuring distinct bias currents I1 in each

module, the resulting transconductances differ, thereby creating a controlled disparity

between the charging and discharging rates—an essential feature for achieving the

desired temporal dynamics.
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Figure 4.4: Common-mode rejection performance based on membrane voltage re-
sponse with input common-mode voltage from 0.2V − 1.2V.
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Table 4.2: The behavior of the Voltage Leakage Module under varying input voltages
Vleak.

Vmem Leakage Time
559 572 (6 plus) 6.5µs
609 587 (5.5 plus) 5.64µs
659 602 (5 plus) 5.5µs

The effective output resistance 1/gmr , which shows in Equation 4.2, determined

by the transconductance of transistors M11 and M12 in Figure 4.3, is designed to be

approximately an order of magnitude larger in the Voltage Leakage Module than in the

Spiking Input Module. This design choice not only supports asymmetrical temporal

behavior but also improves linearity, resulting in a smoother Vmem discharge profile.

The time constant of the voltage leakage module is defined as

τmem =
Cmem

Gmem

. (4.3)

It can typically be adjusted through three parameters: (1) the transconduc-

tance of the core leakage submodule, which consists of M1,M2,M11,M12 and is con-

trolled by the bias current I1 (see Figure 4.3); (2) the total leakage current of the

module, directly related to M9,M10,M18,M14,M19; and (3) the capacitance value of

the Cmem array.

Among these, the tuning granularity follows a coarse-to-fine hierarchy: first,

switching the Cmem value (0.1–2 pF); second, adjusting the overall static current

through M9,M10,M18,M14,M19; and third, fine-tuning the core transconductance

using the bias current of M13.

The total transconductance of the leakage path, denoted Gm, is jointly deter-

mined by both the core transconductance and the total leakage current, and varies

in the range of 0.106–0.164 µS. Consequently, the time constant τmem can be tuned

over a wide range: 0.609–18.83 µs.

To ensure high linearity, transistors M11 and M12 are consistently biased to

operate in the linear region (also referred to as region 1, where MOSFETs function
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Figure 4.5: The linearity of the Voltage Leakage Module.

as resistive elements). This design avoids the need for extremely low bias currents to

tune the time constant. To meet the demands of linear computation in neuromorphic

accelerators, we introduce a programmable Vleak, which is one of the inputs of the

Voltage Leakage Module (Figure 4.1). It is connected to the VinN node (Figure 4.3)

to control the leakage rate, thereby enabling dynamic modulation of the total leakage

conductance. As shown in Figure 4.5, the leakage current varies with changes in Vmem.

When Vmem lies within the range of 747–1083 mV, the transconductance exhibits less

than 10% variation, ensuring high linearity.

Figure 4.5, Figure 4.6, and Table 4.2 demonstrate the calibration range of the

leakage behavior. By adjusting Vleak, the leakage rate can be effectively modulated,
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(a) Vleak= 559mV (b) Vleak= 609mV (c) Vleak= 659mV

Figure 4.6: The linearity of the Voltage Leakage Module under different leakage
control voltages Vleak.

improving the calibration flexibility of the system.

Similar to the Spiking Input Module, theM14 MOSFET in the Voltage Leakage

Module is used to set the static value of Vmem. Neither the Voltage Leakage Module

nor the Spiking Input Module includes a dedicated startup circuit. As a result, when

Vmem lies between 0.5 and 1.4 V, the output-stage MOSFETs M18 and M10 operate

in the saturation region. To improve the robustness of the startup behavior, we add

transistor M14 to provide a small additional current, pulling Vmem toward its resting

potential. To maintain high output impedance and minimize power consumption,

M27 is designed with a small W/L ratio and operates in the subthreshold region.

4.3 Spiking Generation Module

The Spiking Generation Module consists primarily of a digital comparator and

its associated driver circuit. The comparator is designed to operate at 10 MHz with

the system and reliably handle input voltages from 0.5 V to 1.2 V, in accordance

with system requirements. High sensitivity is essential to ensure timely and accurate

operation, allowing the comparator to respond to differential inputs as small as 1%.

To meet this specification, we designed a high-speed, high-precision comparator com-

prising two main components: a pre-amplifier stage and a regenerative latch core, as

illustrated in Figure 4.7, Figure 4.8, Table 4.3, and Table 4.4. This digital design
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integrates the functionality of an analog comparator and a sampling circuit, enabling

direct discretization of the output signal. As a result, it significantly reduces both

power consumption and area overhead for the neuromorphic system.

In the pre-amplifier, a differential pair composed of MOSFETs M1 and M2

is used. A tail current source transistor M3 connects their shared source node to

ground. When VinN > VinP, a larger portion of the current flows through M1. The tail

current source enhances this imbalance by increasing the current in the branch with

the higher gate-source voltage differential. This differential amplification increases

the voltage difference between VoutN and VoutP, thereby improving the sensitivity of

the comparator. Furthermore, the tail transistor suppresses common-mode voltage

variations, enhancing the circuit’s common-mode rejection ratio (CMRR). Because

the tail current source is clock-controlled, it enables dynamic switching behavior in

the comparator. The small-signal sensitivity prior to the addition of the tail transistor

is approximately:

S0 = Av0 = gm · rp (4.4)

When the regenerative latch is activated, the comparator exhibits an expo-

nential increase in gain due to positive feedback. The comparator sensitivity during

clock-triggered evaluation can be modeled as:

S0 = Av0 · et/τ · δ(t), τ =
C

gm
(4.5)

Here, δ(t) represents the clock-induced trigger, and et/τ characterizes the gain

amplification provided by the regenerative loop.

As shown in Figure 4.8, the regenerative comparator core comprises two sub-

blocks: a cross-coupled latch and a differential input amplifier. The cross-coupled

latch consists of M3, M4, M2b, and M3b—four MOSFETs, with each output node fed

back to the gate of its complementary transistor to form a strong positive feedback
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Figure 4.7: Detailed schematic of the pre-amplifier circuit within the Spiking Gener-
ation Module.
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Figure 4.8: Detailed schematic of the comparator circuit within the Spiking Genera-
tion Module.
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Table 4.3: Transistor sizes of the pre-
amplifier in the Spiking Generation Mod-
ule.

Name W/L
M1 30µm/0.28µm
M2 32.1µm/0.28µm
M3 20µm/0.28µm

M4/M5 20µm/0.28µm
M6/M9 40µm/2µm
M7/M8 0.4µm/10µm
M10 40µm/0.28µm

Table 4.4: Transistor size of the compara-
tor in the Spiking Generation Module.

Name W/L
M1/M2 1.7µm/0.28µm
M3/M4 2µm/0.28µm
M5/M6 40µm/0.28µm
M7 60µm/0.28µm

M1b, M4b 80µm/2µm
M2b, M3b 0.41µm/10µm

loop. The differential amplifier consists of M1, M2, M5, M6, M1b, and M2b. Among

these, M1 and M2 receive the VoutN and VoutP signals from the pre-amplifier. MOS-

FETs M5, M6, M1b, and M2b serve as clock-controlled pull-down switches responsible

for resetting the regenerative comparator.

The Spiking Generation Module operates in two distinct phases:

Phase 1: Pre-charge Phase (clk = 0): The output nodes are reset to VDD

through PMOS M5, M6, M1b, and M2b, as shown in Figure 4.8. During this period,

the circuit remains in a static, non-comparing state.

Phase 2: Evaluation Phase (clk = 1): As shown in Figure 4.7, M1b

turns on, enabling current flow through the differential pair. If VinP > VinN, the left

branch conducts more, causing VoutN to drop. This initiates positive feedback via

the cross-coupled structure, further lowering the gate voltage of the right transistor

and accelerating the rise of VoutP. This regenerative process can be described by the

following expression:

vgc-out(t) = vgc0 · et/τgc , τgc =
Cgc

ggc
(4.6)

where vgc0 is the initial voltage difference at the output, ggc is the effective

transconductance of the cross-coupled pair, and Cgc is the effective capacitance at
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Figure 4.9: Linearity performance of the Voltage Leakage Module, derived from the
temporal response of Vmem shown in Figure 4.1.

the output node. To strengthen the load-driving capability of the differential stage,

the comparator output is connected to a multi-stage inverter buffer. This buffer

reduces the effective capacitance Cgc, increases the comparator’s speed, and ensures

robust signal delivery to downstream digital logic.

As shown in Figure 4.9, the shortest half-cycle of the clock-related signal is

45.325 ns. The comparator output circuit meets the timing requirement of occupying

at least 90% of the half-cycle duration—i.e., with a 50 ns half-cycle, this corresponds

to 45 ns.
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4.4 System Reset Module

The system reset block consists of a driver circuit and a set of switches. Once

the membrane voltage Vmem reaches Vthresh, the comparator output transitions to a

logic high level VOH. After a defined delay tdelay, which is implemented by the system

reset module, the comparator output is pulled down to a logic low level VOL, effec-

tively generating a voltage pulse. This pulse can serve as the input to a subsequent

neuromorphic module. To regulate the delay tdelay and rapidly discharge the mem-

brane capacitor during the reset phase, the buffer adjusts the delay timing, while the

switches discharge Cmem and reset the spiking input, leakage, and generation modules.

If no downstream neuromorphic module is connected, the generated spike sig-

nal can be directly converted into a digital value by recording its timing. A lookup

table is then used to map the spike timing to the corresponding digital output value,

serving as the final computational result.

4.5 Transaction Performance and Power Consumption

Figure 4.2 illustrates the transient behavior of the entire neuromorphic model.

The neuromorphic module can operate reliably under an input spiking frequency of

10 MHz, thanks to the seamless coordination among the submodules described in this

chapter.

Another critical performance metric is the module’s power consumption. It

consists of two components: dynamic power—the energy consumed for each spike

event—and static power—the baseline power consumption of all submodules during

idle periods. Figure 4.10 presents the current waveform at the supply voltage (VDD)

during a spike event. A sharp current peak is observed when the membrane capacitor

(Cmem) discharges. The energy consumed solely by the capacitor discharge is esti-

mated to be approximately 1.44 pJ. When considering contributions from all active

submodules during the spike duration, the total energy per spike amounts to 10.12 pJ.

In addition, the measured static power consumption of the module is 26.12 uW. As
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shown in Table 4.5, these values demonstrate that the proposed design achieves com-

petitive energy efficiency among state-of-the-art neuromorphic computing systems.

Table 4.5: Comparison of energy per spike across neuromorphic platforms.

Platform Energy per Spike

HICANN-DLS [10] 790 pJ
IBM TrueNorth [22] 26 pJ
Neurogrid [8] 941 pJ
BrainScaleS [3] 10 pJ -14 pJ
DYNAP-SE [9] 50 pJ
Intel Loihi [29] 23.6 pJ
This work 10.12 pJ
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Figure 4.10: Power consumption per spike.
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Chapter 5: Summary and Conclusion

This work presents a low-power, area-efficient neuromorphic neuron accelera-

tor circuit tailored for compatibility with the BrainScaleS architecture. Inspired by

the efficiency of biological computation, our design integrates core principles of neu-

romorphic engineering—including local memory-compute co-location, event-driven

processing, and temporal coding—to deliver a compact hardware solution for spiking

neural network (SNN) acceleration.

This paper demonstrated that the proposed circuit achieves reliable perfor-

mance under high-frequency spike input (10 MHz) and exhibits consistent membrane

voltage behavior across a wide range of input conditions. The power consumption

analysis confirms that the design operates with high energy efficiency, consuming only

10.12 pJ per spike and maintaining a static power of 26.12 uW. These results position

the design as a promising candidate for integration into larger neuromorphic systems

such as BrainScaleS.

In conclusion, this work contributes a robust and energy-efficient building

block for future neuromorphic processors. By adhering to biologically inspired design

principles while leveraging circuit-level optimization, this approach advances the de-

velopment of scalable analog-domain SNN accelerators. Future work may focus on

extending this architecture to support synaptic plasticity mechanisms such as STDP,

integrating multi-neuron arrays, or adapting the design for fabrication in advanced

CMOS or emerging memristive technologies.
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mel, and K. Meier, “An accelerated lif neuronal network array for a large-scale

mixed-signal neuromorphic architecture,” IEEE Transactions on Circuits and

Systems I: Regular Papers, vol. 65, no. 12, pp. 4299–4312, 2018.

[11] M. A. Nahmias, B. J. Shastri, A. N. Tait, and P. R. Prucnal, “A leaky integrate-

and-fire laser neuron for ultrafast cognitive computing,” IEEE Journal of Selected

Topics in Quantum Electronics, vol. 19, no. 5, pp. 1–12, 2013.

[12] N. Caporale and Y. Dan, “Spike timing–dependent plasticity: A hebbian learning

rule,” Annu. Rev. Neurosci., vol. 31, no. 1, pp. 25–46, 2008.

[13] W. Maass, “Networks of spiking neurons: The third generation of neural network

models,” Neural Networks, vol. 10, no. 9, pp. 1659–1671, 1997.

[14] S. Hayman, “The mcculloch-pitts model,” in International Joint Conference on

Neural Networks. Proceedings , vol. 6, 1999, pp. 4438–4439.

[15] F. Rosenblatt, “The perceptron: A probabilistic model for information storage

and organization in the brain.” Psychological Review, vol. 65, no. 6, p. 386,

1958.

37



[16] J. J. Hopfield, “Hopfield network,” Scholarpedia, vol. 2, no. 5, p. 1977, 2007.

[17] C. Mead and M. Ismail, Analog VLSI Implementation of Neural Systems. Springer

Science & Business Media, 2012, vol. 80.

[18] S. Ghosh-Dastidar and H. Adeli, “Spiking neural networks,” International Jour-

nal of Neural Systems, vol. 19, no. 04, pp. 295–308, 2009.

[19] E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate gradient learning in spiking

neural networks: Bringing the power of gradient-based optimization to spiking

neural networks,” IEEE Signal Processing Magazine, vol. 36, no. 6, pp. 51–63,

2019.

[20] F. Zenke and T. P. Vogels, “The remarkable robustness of surrogate gradient

learning for instilling complex function in spiking neural networks,” Neural Com-

putation, vol. 33, no. 4, pp. 899–925, 2021.

[21] G. Bellec, F. Scherr, A. Subramoney, E. Hajek, D. Salaj, R. Legenstein, and

W. Maass, “A solution to the learning dilemma for recurrent networks of spiking

neurons,” Nature Communications, vol. 11, no. 1, p. 3625, 2020.

[22] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla,

N. Imam, Y. Nakamura, P. Datta, G.-J. Nam et al., “Truenorth: Design and

tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip,” IEEE

Transactions on Computer-aided Design of Integrated Circuits and Systems, vol. 34,

no. 10, pp. 1537–1557, 2015.
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