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ABSTRACT 
Fast and accurate estimation is critical for exploration of any de- 
sign space in general. As we move to higher levels of abstraction, 
estimation of complete system designs at each level of abstraction 
is needed. Estimation should provide a variety of useful melrics 
relevant to design tasks in different domains and at each stage in 
the design process. 

In this paper, we present such a system-level estimation approach 
based on a novel combination of dynamic profiling and static retar- 
geting. Co-estimation of complete system implementations is fast 
while accurately reflecting even dynamic effects. Furthermore, re- 
targetable profiling is supported at multiple levels of abstraction, 
providing multiple design quality metrics at each level. Experi- 
mental results show the applicability of the approach for efficient 
design space exploration. 

Categories and Subject Descriptors: B.8 [Performance and Reli- 
ability]: Performance Analysis and Design Aids 
General Terms: Performance. 
Keywords: Profiling, Retargetable, System Level Design, Explo- 
ration. 

1. INTRODUCTION 
Recently, as system design is becoming more and more challeng- 

ing due to decreasing time-to-market windows and increasing sys- 
tem complexities, trends are emerging to move the design process 
to higher levels of abstraction. System-level design, however, de- 
mands corresponding approaches that enable efficient exploration 
of the complete system design space in order to rapidly evaluate a 
large number of design altematives in a short amount of time. 

One of the most critical aspects is the feedback about design 
quality metrics based on which designers can make decisions. In 
order to meet the challenges of system-level design, estimation of 
metrics must be fast while providing accurate results in the sense 
that they are relevant and useful for evaluating and comparing al- 
ternatives. Estimation must be supported at all levels of abstrac- 
tion, including early stages of the design process. At high levels of 
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abstraction, however, absolute accuracy is impossible. Rather, rela- 
tive accuracy (fidelity) [ I  11 allows designers to prune design space 
of infeasible alternatives. Furthermore, in order to evaluate com- 
plete system architectures in a comprehensive and unified manner, 
it must be possible to estimate a wide variety of target implemen- 
tations in combination. Also, a wide range of metrics for perfor- 
mance, traflic, storage, etc. should be available for use in different 
design domains. 

In this paper, we propose a novel profiling and estimation tech- 
nique for system-level design based on a unique combination of 
dynamic profiling and static retargeting. Initial profiling derives 
the characteristics of the application through simulation of the de- 
sign specification. By then coupling application profiles with tar- 
get characteristics based on the designer's application-architecture 
mapping, profiling is retargetable for static co-estimation of com- 
plete system designs in linear time without the need for time con- 
suming re-simulation or re-profiling. Since the system is only sim- 
ulated once during the entire design process, the proposed approach 
is ultra-fast yet accurate enough to make high-level decisions in 
that it captures both static and dynamic effects. Furthermore, at 
each level of abstraction, the'retargetable profiler delivers a set of 
results relevant to the design tasks at that stage of the design pro- 
cess for multi-level, multi-metric estimation. 

The rest of this paper is organized as follows. An overview of 
related work is shown in Section 2. In Section 3, the proposed 
system-level estimation and exploration design flow consisting of 
profiling, retargeting, and simulation-estimation stages is introduced. 
Details of multi-level, multi-metric system profiling and retargeting 
are described in Section 4 and Section 5 ,  respectively. In Section 6,  
experimental results that show the applicability of the approach to 
design space exploration are presented. Finally, the paper con- 
cludes with a summary and an outlook on future work in Section 7. 

2. RELATED WORK 
The estimation of embedded system has been well studied for 

decades. Traditionally, estimation approaches are based on either a 
purely static analysis or a purely dynamic simulation. 

In static analysis-based approaches, upper and/or lower bounds 
for design metrics are computed by analyzing the code that will be 
running on a single target processor. In performance estimation, 
for example. computing the worst-case execution time (WCET) of 
a process [I31 requires an analysis of possible program paths at 
the basic block level together with a micro-architecture model to 
determine the execution time of each basic block. Given WCETs, 
scheduling analysis of a group of tasks tunning on a processor can 
then determine upper bounds for overall response tunes [Z]. Simi- 
larily, static analysis is employed to compute other metrics, e.g. to 
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Figure 1: Estimation and  exploration flow. 

determine bounds for memory sizes 1161. In all cases, static analy- 
sis Cdn be complex and time-consuming while the tightness of the 
bounds often depends on manual interference. 

In dynamic simulation-based approaches, metrics are collected 
during simulated execution of the code. Traditional software pro- 
filing tools [6] collect profiling data while running the code on 
the actual target processor. Instruction-set simulators, on the other 
hand, execute the code on an abstracted model of the target pro- 
cessor. In both cases, the actual object code compiled into the 
processor's instruction-set has to be available and processors can 
only be simulated in isolation. For validation of complete systems, 
co-simulation of multiple processors, possibly at multiple different 
levels of abstraction, is supported [3, 71. Finally, there are sev- 
eral approaches speeding up successive re-simulation of the same 
design at different abstraction levels by driving slow low-level sim- 
ulations with traces collected from fast, abstract simulation NnS 
[14, 121. In all cases, however, time-consuming simulation of the 
system design is necessary for each design alternative. 

In comparison to the proposed approach, although traditional ap- 
proaches can provide more accurate results, they are too slow for 
exhaustive initial design space exploration. The proposed retar- 
getahle profiling approach can be used as their complementary ap- 
proach at high abstraction levels. Because it is ultra-fast and rel- 
ative accurate, it allows designers to exhaustive explore the initial 
design space and to prune the design space of infeasible alternatives 
before traditional estimation. 

In contrast to implementation-dependent estimation, there is only 
a limited number of approaches that aim to derive implementatian- 
independent characteristics of design specifications for system level 
design. Traditional profilers such as 161 and [91 usually provide 
targethost machine-dependent characteristics. Even though such 
profilers can produce some implementation-independent character- 
istics, they only support operation-related data such as function call 
statistics. In comparison, our profiling approach is targeted for sys- 
tem level design, and it computes not only operation-related char- 
acteristics, but also traffic- and storage-related characteristics. 

3. DESIGN FLOW 
We propose an estimation and exploration flow, which is shown 

in Figure 1. The flow is based on a explore and trim paradigm for 
design space exploration (Figure 2). As design progresses through 
profiling, retargeting, and simulation-estimation stages, the design 
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Figure 2 Design space exploration. 

space is gradually trimmed and pruned of unsuitable design alter- 
natives until a final optimal solution is reached. 

In each step, design starts from a specification 01 the desired 
system functionality. In the profiling stage, the specification is in- 
strumented and simulated to collect execution Counts that capture 
the dynamic behavior of the application at the basic. block level 
(NEB). Because this stage requires simulation for the specification, 
we call it dynamic. Using the counters collected during simulation 
together with a static analysis of the code, a profiling of the spec- 
ification then computes the specification characteristics. Specifi- 
cation characteristics are implementation-independent and provide 
information about the inherent characteristics of the application. 
Based on these specification characteristics, the design space can 
be reduced to a large part. For example, if the specification does not 
contain any floating point operations, allocating dedicated floating 
point processors is counterproductive. 

In the retargeting stage, designers allocate a target architecture of 
processing elements (PES) andor busses from a component library 
by matching specification characteristics and component attributes. 
Given the allocated architecture or a predefined platform, designers 
then map the computation and communication in the specification 
onto PES and busses, respectively. A retargeting of the specification 
then computes the implementation characteristics Ibr computa- 
tion and communication by coupling the design decisions and spec- 
ification characteristics. These characteristics are implementation- 
dependent and represent the characteristics of the system design 
reflecting the designer's decisions. In an iterative process, the re- 
targeting stage is executed repeatedly for different decisions in or- 
der to prune the design space of unpromising design alternatives. 
Because this stage doesn't require simulation, it is a purely static 
analysis. As will be explained later, retargeting is very fast in com- 
parison with simulation and profiling. Therefore, retargeting en- 
ables designers to explore many alternatives and tr ini a large part 
of the design space in a short amount of time. 

Finally, the most promising design alternatives remaining after 
the retargeting stage are then evaluated further in the simulation- 
estimation stage. For each alternative, a refinement tool 1151 gen- 
erates a refined model of the design from the specification, inte- 
grating and implementing the corresponding design decisions. In 
the process, implementation characteristics are back-annotated into 
the resulting model. By simulating the refined model, accurdte im- 
plementation estimates including dynamic implementation effects 
not observable by profiling and retargeting the specification (e.g. 
bus contention or dynamic scheduling) are generated. In order to 
derive the accurate implementation estimates, traditional estima- 
tion approaches introduced in section 2 can also be applied in this 
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stage. Using the implementation estimates, a final evaluation of the 
remaining alternatives can be performed, possibly requiring to re- 
turn to the retargeting stage. Implementation estimates provide the 
accuracy of traditional simulation- or estimation-based approaches 
while similarly requiring time-consuming simulation or analysis of 
each design alternative. However, as the design space has been re- 
duced down to a few alternatives through profiling and retargeting, 
exhaustive simulation and anlysis becomes feasible. 

4. PROFILING 

the system specification model. In general, design models are usu- 
ally captured in the form of a system-level design language (SLDL). 
In our case, specification models are written in the SpecC SLDL 
[I]. However, the concepts apply equally to any other C-based 
SLDL such as SystemC [IO]. 

Profiling computes the specification characteristics for each com- 
putation and communication entity in the specification. In the case 
of SpecC, computation in the form of C code is encapsulated as be- 
haviors. Behaviors can be composed hierarchically in a sequential 
or concurrent fashion. Behaviors communicate through ports con- 
nected to shared variables or channels where a channel provides 
complex communication services to the behaviors through meth- 
ods declared in its interface. 

Given the execution counts of each basic block collected during 
simulation and the code for the basic blocks in each entity, profiling 
attaches raw characteristics ri,d, i E I ,  d t D to each behavior, port, 
variable, and channel in the specification where characteristics are 
computed hierarchically by summation over the characteristics of 
an entity’s children. I is the set of possible item types defined by 
the characteristics’ category and D is the set of data types found in 
the code. SpecC defines 26 basic, standard data types where data 
types are further divided into integer data types, floating point data 
types, and other data types. In addition, profiling can optionally 
treat composite, user-defined data types (such as mays or structs) 
separately, expanding D dynamically as needed. Otherwise, user- 
defined data types will be mapped down to the basic data types of 
the individual elements they are composed of. 

Specification characteristics are classified into three categories: 
operation, traffic, and storage. In each category static and dynamic 
metrics are computed. Static characteristics are derived directly 
from the code of the specification model whereas dynamic char- 
acteristics depend on data collected during simulation. In general, 
static and dynamic specification metrics R = xi & r;,d in each cat- 
egory are computed by summation of corresponding characteristics 
rover a subset of item and data types. 

The profiling stage generates the specification characteristics from 

4.1 Operation 
Operation characteristics (spec.) signify the complexity of the 

computation in the specification. Therefore, they are attached to 
behaviors as the computational units of the system. Each operation 
characteristic corresponds to a certain operation of a certain data 
type (as determined in C by the type of the result). Item types for 
operation characteristics are defined as the 84 different operations 
available in SpecC. They are further classified into ALU opera- 
tions (‘+’, ‘&&‘, ‘<<’, ‘>=’, etc.), memory access operations (’=’, 
’->, etc.), control operations ( ‘ i f ’ ,  ‘for’,  ‘f ( 1  ’, etc.), and oth- 
ers (braces and other syntactical overhead). In addition, similar to 
data types, profiling can optionally treat global functions as special 
operation types instead of mapping them down to the operations in- 
side the function. In any case, operation metrics can be computed 
for different classes of operations, different categories of data types, 
or as the sum over all operation and data types. 

Static operation characteristics are defined as the number of op- 
erations in the code of each behavior. They represent the code com- 
plexity which is related to code size or implementation complexity 
of the control unit in general. 

Dymmic operation characteristics are defined as the number of 
operations executed by each behavior during simulation. Note that 
in the presence of recursive function calls, dynamic operation char- 
acteristics need to be computed by solving a set of linear equations 
details of which are omitted due to space reasons [41. Dynamic 
operations represent the computational complexity in the system 
which is related to performance issues. By identifying the most 
complex behaviors, they can point the exploration to the most crit- 
ical aspects and the best candidates for optimization. Furthermore, 
the mix of operations in all or parts of the system can be used to de- 
termine the type of processor used for implementation, e.g. a DSP 
with a hardware multiplier for multiplication-intensive behaviors. 

4.2 ‘Traffic 
Traffic characteristics (spec.) signify the complexity of the com- 

munication in the specification as the amount and type of data ex- 
changed, providing separate input and output traffic characteristics 
via corresponding item types. As behaviors communicate through 
variables and channels connected to their ports, traffic characteris- 
tics are attached to behavior ports and variables and channels con- 
nected to them. Furthermore, traffic characteristics for behaviors is 
computed as the sum of the traffic over all their pons. Note that at 
each abstraction level, communication is modeled differently. For 
example, at the transaction level [IO], behaviors communicate via 
abstract, complex channels whereas variables connecting behaviors 
at the bus-functional level represent physical bus wires. 

Static traffic characteristic; are defined as the number of con- 
nected ports of a certain type. For a behavior’s port, they reduce to 
the size of the port itself (1 in most cases). For a variable or chan- 
nel, they are equivalent to the number of connected behaviors. In 
all cases, static traffic characteristics represent connectivity com- 
plexity. For example, at the application level connectivity relates 
to the message passing traffic incurred between two dependent be- 
haviors in order to make the output of a behavior available at the 
next behavior’s inputs. At the bus-functional level, connectivity 
complexity relates to fan-idfan-out and bus wire capacity. 

Dymmic traffic characteristics are defined as the number of times 
a port or a variablelchannel of a certain type is accessed during sim- 
ulation. An access is generated whenever a statement in the code 
reads from a port variable, writes to a port variable, or calls a port 
interface method. Note that a special port-parameter binding algo- 
rithm resolves pon accesses in the presence of recursive calls or 
multiple invocations of the same function. Details of this algorithm 
can be found in [4]. In summary, dynamic traffic characteristics 
represent access complexity. For example, at the application level, 
dynamic accesses relate to the traffic incurred for a shared memory 
implementation of communication between dependent behaviors. 
At bus-function level, they relate to the traffic over pins of the bus, 
e.g. data traffic in case of the data bus. 

4.3 Storage 
Storage characteristics (spec.) signify the amount of memory 

required to hold the system’s data. For each behavior and channel, 
storage requirements are computed where item types distinguish 
between local and global storage. 

Static storage characteristics are defined as the number of static 
variables of a certain data type declared inside the behaviorlcbannel 
and its children. In SpecC, this includes variables declared at the 
behaviorlchannel level and static vaiables inside functions. Static 



storage represents static memory requirements, i.e. memory that 
needs to be allocated globally for the whole lifetime of the system. 

Dynamic storage characteristics are defined as the number of 
variables of a certain data type allocated and deallocated dynam- 
ically during runtime. The local item type of dynamic storage r e p  
resents stack requirements based on the number of local variables 
declared inside functions. The global item type of dynamic stor- 
age, on the other hand, represent heap requirements based on the 
amount of memory allocated dynamically on the heap during run- 
time (e.g. via malloc ( ) calls). Note that in contrast to other 
characteristics, dynamic storage requirements are computed hierar- 
chically as the maximum over all children at each level. 

5. RETARGETING 
The retargeting stage computes implementation characteristics 

of an implementation of each design entity based on design deci- 
sions made by the user. Decisions include component allocation 
(PES and busses) and entity mapping (behaviors and variables to 
PES and channels to busses). 

Given the design decisions and the specification characteristics 
computed during profiling, retargeting attaches implementation char- 
acteristics ei,d,  i € I, d € D to each behavior, port, variable, and 
channel. These characteristics are computed by multiplying speci- 
fication characteristics ri,d with weights wfd for a mapping of the 
design entity to component c. Weight tables have to be defined for 
each component in the library. Depending on the component, they 
can be derived from the component’s data sheet or from accurate 
simulations of selected, typical code kernels on the target compo- 
nent. In addition to the standard weights for basic data and item 
types stored in the library, the designer can manually tune weights 
for retargeting. Furthermore, the designer can specify weights for 
custom data and item types collected during profiling instead of 
mapping them down to the basic data and item types they are com- 

Based on the specification characteristics, implementation char- 
acteristics can be classified into operation, traffic, and storage cate- 
gories, and each category can be further subdivided into static and 
dynamic metrics. Static and dynamic implementation mehics E in 
each category are then computed by summation of the weighted 
characteristics e over subsets of item and data types: 

E = CC(r i ,d  x w:,d) 

where wc is the weight table for component c from the library. Be- 
cause ri,d has been computed in the profiling stage and w : , ~  is pre- 
defined in the weight table, retargeting avoids the time-consuming 
simulation and profiling. Due to the simplicity of the computation, 
retargeting is fast and its time complexity is O(n) where n is the 
number of behaviors, ports, variables, and channels in the system. 

Similar to specification characteristics, implementation charac- 
teristics are computed hierarchically by adding implementation char- 
acteristics of children at each level. Retargeting supports two modes 
for hierarchical computation: analysis mode and estimation mode. 
The analysis mode provides mapping-independent results. It com- 
putes characteristics for each entity on each allocated component 
assuming that the whole entity (including children) is mapped to 
the target component. Results can be used by designers after allo- 
cation to select the most appropriate component to map each entity 
to. Estimation mode, on the other hand, computes characteristics 
based on both allocation and mapping decisions. For each entity, it 
generates characteristics on each target for those p m s  of the entity 
that are mapped onto this component. Results can therefore be used 
to evaluate mapping decisions. 

posed of. 

i d  

5.1 Operation 
Operation characteristics (implt.) are computed for behaviors 

mapped onto target PES. For static operation characteristics, PE 
weights define the number of instruction or control words for each 
operation where, in the case of custom hardware, the number of 
control words is equal to the number of control states. By multi- 
plying the characteristics with the PE‘s instruction or control word 
width, metrics for program memory size or size of the custom hard- 
ware controller can be computed, respectively. Therefore, static op- 
eration metrics represent code size requirements for each behavior. 

PE weights for dynamic operation characteristics define the num- 
ber of clock cycles needed to execute each operation. By multiply- 
ing the number of cycles with the clock period, execution time 
metrics for behaviors can be derived. In a similar manner, power 
consumption metrics can he computed through energy per cycle 
weights. 

5.2 Traffic 
Traffic characteristics (implt.) are computed for ports of be- 

haviors mapped to PES and for variables and channels mapped 
to busses. A PE’s traffic weight table is equivalent to its storage 
weight table (see Section 5.3) and it defines for each data type the 
number of machine characters transfered over the PE’s bus. To- 
gether with the PE‘s machine character width and bus bandwidth, 
the amount of data and time needed for each transfer are computed. 
A bus’ weight table, on the other hand, defines the number of bus 
cycles needed to transfer each data type over the bus. Dividing 
bus traffic characteristics by the bus bandwidth, required commu- 
nication time is computed. In all cases, static and dynamic traffic 
characteristics represent communication delays. For example, at 
the application level, communication delays for message passing 
or  shared memory implementations are estimated, respectively. At 
the bus-functional level, on the other hand, characteristics for the 
traffic over the data bus pins and wires provide actual bus access 
times. 

5.3 Storage 
Based on a mapping of behaviors and channels to PES, storage 

characteristics (implt.) determine the memory size requirements in 
each PE. A PE’s storage weight table defines the number of ma- 
chine characters needed to store variables of different data types. 
Multiplying storage characteristics with the PE’s machine charac- 
ter bit-width, required memory size metrics are computed. Static 
and dynamic metrics for local and global storage therefore repre- 
sent static memory size, stack size, and heap size requirements. 

6. EXPERIMENTAL RESULT 
A retargetable profiler supporting instrumentation, profiling, and 

retargeting has been implemented and integrated into our system 
design environment. We applied the estimation and exploration 
methodology using the profiler to the design examples of a voice 
codec for mobile phone applications (vocoder) [8] and a JPEG en- 
coder [SI. The vocoder example demonstrates the usage of the pro- 
filer in the design space exploration and the profiler’s ultra-fast at- 
tribute. The JPEG example demonstrates accuracy and fidelity [ l  I] 
of the retargeting. 

6.1 Vocoder 
The vocoder is assumed to be p m  of a mobile phone baseband 

platform using a Motorola ColdFire processor as the CPU. The 
vocoder specification consists of appr. 13,000 lines of code. It en- 
codes and decodes a frame of speech every 20 ms. For a testbench 



Table 1: Computational complexity of top-level vocoder bebav- 
iors. 

Table 2: Codebook operatiou mix. 

that excercises the design with 163 frames, this translates to a total 
timing constraint of 3.26 s. 

The vocoder is a computation-dominated design. Therefore, de- 
sign space exploration is focused on computation design. We esti- 
mated an upper bound for the communication overhead using the 
profiler by mapping all system communication onto a ColdFire bus. 
Leaving a margin for the estimated communication delay of appr. 
280 ms, we derived a timing constraint of appr. 3 s for the vocoder 
computation. 

In the profiling stage, we instrumented, simulated, and profiled 
the vocoder specification to generate the specification characteris- 
tics. Table 1 shows the computational complexity for the vocoder’s 
five top-level behaviors in millions of operations (Mop). Note that 
as a typical multimedia application, parallelism in the vocoder is 
limited and at the top level behaviors execute sequentially in a loop. 
Therefore, there is little promise of exploiting concurrency and de- 
sign should focus on optimizing the critical parts of the behavior 
sequence. As the profiling results show, the Codebook search be- 
havior is by far the most critical vocoder block. The profiler also 
provides the mix of operations in the Codebook behavior (Table 2: 
a screenshot of the operation mix pie chart and the bar graph of 
the top-level behaviors as displayed in the design environment GUI 
is shown in Figure 3). The codebook search (and the vocoder in 
general) does not contain any floating-point hut only integer-type 
operations, i.e. processors with dedicated floating-point units are 
not necessary and processor selection should focus on integer per- 
formance instead. Furthermore, most of the operations are multi- 
plications, i.e. selected processors should have dedicated hardware 
multipliers. 

For further exploration in the retargeting stage, we allocated a 
system architecture with three PES: in addition to the Motorola 
ColdFire CPU running at 60MHz. we selected a DSP (Motorola 
DSP56600 at 60 MHz) and a custom hardware processor (100 MHz) 
to explore vocoder speedups. Mappings of eight top-level behav- 
iors (five top-level vocoder behaviors plus three levels of hierarchy 
of behaviors inside Codebook) to every PE were evaluated. Using 
the scripting capabilities of the design environment together with 
the profiler, we ran an exhaustive search of all 3* = 6561 design 
alternatives. Running on a Pentium IV Linux PC at 2.0GHz. the 
complete search was finished in 3: 15 h. It contains one time simula- 
tion (2.23 s). one time profiling (8.41 s) and 6561 times retargeting 
(0.8 s for each) and mapping (0.97 s for each) respectively. 

Figure 4 shows computation time vs. cost for all design alter- 
natives. For both ColdFire and DSP a fixed cost of 20 each was 
assigned for the manufacturing cost. For custom hardware, a linear 
cost function with a base cost of 20 and an additional cost of I $  
per 10 static operations of code complexity was assumed to esti- 
mate costs of control logic and design overhead. If no behavior is 
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Figure 3: Vocoder specification characteristics GUI. 
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Figure 4 Vocoder design space. 

mapped to a PE, it’s cost is assumed to be zero. A pure software 
solution running on the ColdFire (A) is the cheapest design but has 
the largest delay. A pure hardware solution (C) is the fastest design. 
An optimal solution in the sense of the cheapest design that meets 
the timing constraint is a mapping of Opendoop, Closedloop, and 
Search.lOi40 (part of Codebook) behaviors to hardware while the 
rest of the system is running on the ColdFire (B). The circled parts 
of the design space mark candidates for further evaluation via sim- 
ulation of refined implementation models. Comparing retargeting 
results with a previously implemented DSP-HW solution of the 
vocoder [8], implementation.characteristics are accurate to within 
15% of the actual delays. 

6.2 JPEG Encoder 
JPEG [51 is an image compression standard. It is designed for 

compressing either full-color or gray-scale photographic images. 
The JPEG encoder consists of four behaviors running sequentially: 
HandleData (HD). DCT (D), Quanrizafion (Q), and H u h n E n -  
code (HE). The JPEG specification contains around 2,000 lines of 
code. The testbench for the design encodes pictures with sizes of 
116 x 96 pixels (corresponding to 180 blocks of 8 x 8 pixels). 
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Alternatives Estimates Char. 
H D I  D 1 Q ] H E  (ms) (ms) 

Table 3: Comparison of implementation characteristia and 
implementation estimates for JPEG encoder delays. 

Diff 

We allocated a system architecture with two PES: a Motorola 
DSP56MW) (SW) running at 60 MHz and a custom hardware (HW) 
running at 80.8MHz. By mapping four behaviors to two PES in 
different ways, we derive 16 (Z4) design alternatives. 

We computed both implementation characteristics and imple- 
mentation estimates representing the encoding delays for all design 
alternatives. Implementation characteristics are computed by the 
proposed profiler. For the implementation estimates, we estimated 
the delays on SW by converting SpecC to C code, compiling the C 
code to the assembly code, and running the assembly code on the 
DSP566M)’s customized instruction set simulator. We estimated 
the delays on HW by simulating manually written RTL models. 

Table 3 displays the computed encoding delays for 16 design al- 
ternatives. The first four columns represent the designer’s hehavior- 
FE mapping decision for the four behaviors. The delay in column 
Esrimnres represents implementation estimates. The delay in col- 
umn Char. represents implementation characteristics. Their differ- 
ence is displayed in column Diff. 

puted by the proposed profiler are accurate to within 12.5% of im- 
plementation estimates for the JPEG example. 

We also computed the fidelity [ I l l  of the proposed approach. 
The fidelity is defined as the percentage of correctly predicted com- 
parisons between design alternatives. If the estimated values of a 
design metric for two design altematives bear the same comparative 
relationship to each other as do the measured values of the metric, 
then the estimate correctly compares the two alternatives. Based on 
Table 3, we compute the fidelity of the proposed approach by com- 
paring the implementation characteristics with the implementation 
estimates. For JPEG encoder example, the fidelity of our approach 
is 100%. 

Table 3 demonstrates that the implementation characteristics com- 

7. SUMMARY AND CONCLUSIONS 
In this paper, we present a system-level estimation approach based 

on a novel combination of dynamic profiling and static retargeting. 
In an initial profiling stage, one-time simulation of the specifica- 
tion is done in order to collect specification characteristics about 
the dynamic behavior of the system. In the retargeting stage, by 
using specification characteristics together with a static analysis of 

the code, retargeting to different implementations for accurate co- 
estimation of whole system designs is done statically in linear time. 

This ultra-fast approach enables initial, exhaustive exploration of 
design space with the results that are accurate enough to prune out 
infeasible design alternatives. Therefore, it is an ideal complemeu- 
tary solution for the traditional estimation approaches. Retargetable 
profiling is applied to all computation and communication entities 
in the description in a general manner. Therefore, the approach can 
be applied to models at all levels of abstraction. Furthermore, it 
computes a number of useful and relevant quality metrics for each 
entity, enabling efficient design space exploration and guiding the 
user in the design process. 

In the future, we want to extend the retargetable profiler to pro- 
vide additional metrics, including statistical information (minima, 
maxima, standard deviations, etc.) for each metric. and to han- 
dle dynamic micro-architecture features like caching or pipelining 
more accurately. Furthermore, we are investigating possibilities for 
re-profiling of refined models without re-simulation using profiling 
data from earlier design steps. 
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