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Abstract—Cycle-accurate simulators are widely used in archi-
tecture research. A certain degree of performance inaccuracy is
expected in such simulators. Such mismatches are tolerable in
micro-architectural studies that emphasize relative performance.
However, when modeling accelerator-rich heterogeneous systems,
an inaccurate baseline CPU model can lead to severe over/under-
estimation of the speedup and/or energy savings. In this paper, we
present a systematic approach and methodology for calibration
of cycle-accurate simulators targeting such studies. We further
compare the potential impact that an unrepresentative baseline
CPU model can have on heterogeneous system design and
describe how it could cause to misleading design evaluations.

We demonstrate our approach on calibration of MARSSx86,
a widely-used, cycle-accurate x86 system simulator. Using our
methodology, we calibrate MARSSx86 to closely match the
performance of state-of-the-art Intel machines targeting high-
performance computing (HPC) benchmarks. Our calibrated
MARSSx86 shows on average less than 10% error across a
wide range of HPC and general-purpose benchmarks. Using this
calibrated baseline simulator, we further quantify the impact of
such calibration on an accelerator-rich architecture case study.
Our results show that an accelerator estimated to obtain a
speedup of 10.3x using unrefined simulators can in reality only
achieve a 5.3x speedup when an accurate CPU model is employed.

I. INTRODUCTION

Heterogeneous systems have emerged as state-of-the-art
computing solutions, providing massive compute capabilities
within limited power budgets. Such systems increasingly in-
tegrate accelerators together with traditional host processors
at various levels of task granularity, programming model,
and memory hierarchy [8]. Different system constraints and
requirements, such as typical task sizes, and the data com-
munication patterns between the host and the memory will
drive the selection of design options. The potential speedup
and energy savings are direct results of such design choices.
The overheads incurred by integrating accelerators need to
be amortized by the energy savings and speedup achieved
by offloading computations to a faster and more efficient
accelerator. Architecture researchers need fast and accurate
methods to validate such savings and be able to tune their
accelerator architecture and integration options.

In order to perform such studies, researchers rely heavily on
cycle-accurate simulators. However, as pointed out in previous
work [9], [12], a certain degree of experimental error and per-
formance mismatch are unavoidable. Some of the mismatches
are the result of modeling the system at a lower level of detail
compared to RTL or gate-level simulation, thereby trading
accuracy for speed. This can cause a significant discrepancy

between the model and the targeted system. Such mismatches
may be tolerable in micro-architectural studies where the
emphasis is often on the relative but not absolute effect of
architectural modifications on performance. Nevertheless, an
inaccurate baseline model can still lead to wrong conclusions,
e.g. when relative contributions of different micro-architecture
components are not properly accounted for. Moreover, an
accurate baseline is essential when modeling heterogeneous
systems. An inaccurate baseline CPU model can lead to severe
over- or under-estimation of the speedups and energy savings
achieved by integrating accelerators. It is therefore crucial that
simulators used in both system- or micro-architecture studies
be calibrated to match real-world platforms.

In this work, we demonstrate a simulator calibration
methodology and evaluate the potential impact such a cal-
ibrated simulator can have on accelerator-rich architecture
studies. Using microbenchmarking techniques, we show a
systematic, step-by-step approach to calibrate a widely-used
cycle-accurate x86 simulator, starting from validation of core
pipeline operation up to memory system behavior. We target
high-performance computing (HPC) applications built around
core dense linear algebra operations as a domain in which
accelerators are extensively used. We use MARSSx86 [16] as
the baseline simulator for this work. We chose MARSSx86
since it is the full system simulator with the broadest x86
support. Specifically, MARSSx86 supports the widest range
of vectorized ISA extensions among all cycle-accurate simula-
tors. This is essential in providing a realistic baseline for HPC
applications that leverage such vector extensions for improved
floating-point performance.

The rest of the paper is organized as follows: Section 2
provides a discussion on related work. Section 3 describes our
calibration methodology. Section 4 presents evaluation of the
calibrated simulator and the potential impact on heterogeneous
system studies. Finally, Section 5 concludes the paper with a
summary and outlook on future work.

II. RELATED WORK

In the following, we first discuss related work in existing
system simulators, including the rationale driving the selection
of the baseline simulator used for our studies. We further
present prior art in heterogeneous system research utilizing
such full-system simulators, including key differences of our
work from prior art.



Cycle-Accurate Simulators. One of the earliest simulators in
the architecture community is SimpleScalar [5]. Since then,
many simulators have emerged and are able to model complete
computer systems including both user and operating system
(OS) code, such as Zsim [18], Sniper [7], gem5 [4] and
MARSSx86 [16].

Zsim [18] and Sniper [7] use binary instrumentation or
interval simulation to provide fast and scalable system val-
idation. They achieve high simulation speeds by trading off
accuracy and raising the level of abstraction in modeling of
architectural features, especially for hardware and OS interac-
tions. However, as our results will show, baseline accuracy and
architectural detail of a simulator are essential for modeling
of heterogeneous systems, where overheads of interactions
between accelerators, the OS and the host CPU can have a
large influence on overall results. Higher-level simulators such
as Zsim and Sniper are unable to support this level of modeling
granularity.

Among cycle-accurate full-system simulators, gem5 [4] is
a discrete-event simulator supporting x86, ARM, PowerPC,
SPARC, and MIPS targets for both in-order and out-of order
CPUs. MARSSx86 [16] was designed to provide fast sim-
ulation of x86 systems by integrating a x86 timing model
with QEMU. As mentioned before, we target HPC applications
that rely heavily on vectorized instructions and floating-point
performance. In this domain, the potential for acceleration is
best exploited. gem5 has only marginal support for vectorized
instructions. A number of Streaming SIMD Extensions (SSE)
are not completely implemented. This results in many of our
targeted HPC benchmarks failing to run on gem5 due to unim-
plemented instructions. By contrast, MARSSx86 has a more
complete and accurate x86 ISA implementation, including SSE
and x87 floating-point support. As such, we use MARSSx86
as the baseline simulator in this work.
Heterogeneous Architecture Studies. Several heterogeneous
system studies have employed MARSSx86 as their baseline
model to show the potential of their proposed accelerator
and its improvements. Esmailzadeh et al. [10] proposed a
Neural Processing Unit (NPU) tightly coupled to the processor
pipeline to accelerate small code regions. Zhu et al. [21] pro-
posed a software-assisted hardware accelerator for the critical
style-resolution kernel within a Web browser engine. Yang et
al. [20] presented an approach to utilize the CPU and GPU
resources that are integrated on the same die sharing the on-
chip L3 cache. While all of the aforementioned heterogeneous
system studies show significant speedup benefits, none of
them evaluated that their baseline simulator models accurately
represent the targeted machine’s performance.

Several studies have evaluated the performance mismatch
between cycle-accurate full-system simulators and real ma-
chines. Butko et al. [6] have investigated the runtime mismatch
between a cycle-accurate gem5 model and a real ARM. Gutier-
rez et al. [12] further leveraged the insights of this work to
account for the accuracy of micro-architectural characteristics
and how they affect the overall runtime accuracy. While
there have been several such studies on identifying sources

TABLE I
SYSTEM CONFIGURATION.

Parameter i7-920 MARSSx86 Model
Fetch Width 4 4

Dispatch Width 4 4
Issue Width 5 5

Commit Width 4 4
Writeback Width 4 4
Cache Block Size 64B 64B
L1 I-cache Size 128kB 128kB

L1 I-cache Associativity 8-way 8-way
L1 D-cache Size 128kB 128kB

L1 D-cache Associativity 8-way 8-way
L2 Cache Size 256kB 256kB

L2 Associativity 8-way 8-way
L3 Cache Size 8MB 8MB

L3 Associativity 16-way 16-way

of errors on a particular cycle-accurate simulator, to the best
of our knowledge, there exists no prior work that specifically
reports and discusses x86 simulator and MARSSx86 accuracy.
Furthermore, there are no published studies that consider the
calibration and impact of the baseline simulator accuracy in
the context of heterogeneous systems design. Different from
previous work, this paper proposes a detailed and systematic
x86 simulator calibration methodology that is applied to obtain
a highly accurate MARSSx86 model. Moreover, we quantify
the implication of such calibrations on a heterogeneous system
design and design space exploration case study.

III. CALIBRATION METHODOLOGY

In the following, we present our methodology to calibrate
a x86 CPU model for HPC applications. We use a bottom-
up methodology that starts from the simplest components of
a system and gradually treats and evaluates those as pieces
within a larger system. This includes gradually developing
both the simulated hardware layers as well as the software
benchmark stacks on top. The calibration process is partitioned
into two main steps: It starts from the core pipeline evaluating
its accuracy with the simplest piece of microbenchmark code.
Afterwards, we build on top of the calibrated pipeline model to
further observe memory system behaviour. As we will describe
in the following, we use microbenchmarks of increasing
complexity to calibrate the pipeline and the cache model step
by step. Using microbenchmarks that go hand in hand with the
hardware layer being calibrated helps us to efficiently unravel
and tune the unknown detailed micro-architectural parameters
of the targeted machine.

While our general step-by-step methodology should be
applicable to any x86 simulator or target machine, as pointed
out in Section 2, in this paper we specifically demonstrate our
calibration methodology as applied to MARSSx86 targeting
an Intel Core i7-920 CPU for HPC applications.

We use General Matrix Matrix Multiplication (GEMM) as
the basis for our microbenchmarking stack. GEMM is a key
kernel at the core of many HPC applications. It is nicely
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Figure 1. Core Pipeline Architecture.

layered, reflects the peak performance, uses a wide variety of
compute-intensive instructions, including vectorized instruc-
tions, can exploit locality at all levels of memory hierarchy,
and has optimized implementations available [19].

Table I details the MARSSx86 configurations compared
to our target Intel processor. We used publicly available
information to match the target machine configuration, while
simultaneously conducting validation checks on the given
configuration through microbenchmarking and calibration. We
used the PAPI [15] performance counter tool to get the total
number of cycles on the i7-920 as compared to MARSSx86’s
statistics from its simulated CPU model.

A. Core Pipeline Calibration

A typical out-of-order (OoO) pipeline architecture model is
depicted in Figure 1. The front-end of the pipeline (from the
FETCH until the DISPATCH stage) works in-order until the
RENAME stage. The RENAME stage renames (i.e. maps) the
architectural source and destination register IDs into physical
Register File IDs and insert the instructions into the Issue
Queue (also referred to as Reservation Station).

Instructions wait in the Issue Queue until they are selected
for execution. When an instruction is selected, it reads its
dependent instructions via the wake-up logic, reads its source
operands from the physical Register File, and is executed in
Functional Unit(s). After execution, an instruction’s result is
broadcasted via a bypass network such that any dependent
instruction can use it immediately. The instruction retires once
it reaches the head of the Reorder Buffer (ROB), and updates
the corresponding Register Alias Table.

In order to calibrate pipeline performance, we first use a
variant of the inner-most micro-kernel of GEMM that performs
a rank-1 update [19]. The microbenchmark is designed to
evaluate the peak performance of the pipeline. It is modified
to exclusively perform register-to-register computations, i.e.
without any load/store operations from L1 to registers. This
allows us to investigate the execution behavior of the OoO
pipeline without any potential interference of the load/store
unit and cache system. Using such an instruction stream, we
compare the peak performance produced by the pipeline model
and the targeted i7 machine. Any discrepancies are a sign of
potential issues in the pipeline model.

Figure 2 illustrates our microbenchmark that repeatedly
executes SSE multiply and add (mulpd and addpd) instructions

   ".main_loop:          \n\t“ 

 

   "mulpd     %%xmm0, %%xmm0 \n" 

   "addpd     %%xmm1, %%xmm1 \n" 

 

   "mulpd     %%xmm2, %%xmm2 \n" 

   "addpd     %%xmm3, %%xmm3 \n" 

 

   "mulpd     %%xmm4, %%xmm4 \n" 

   "addpd     %%xmm5, %%xmm5 \n" 

 

   "mulpd     %%xmm6, %%xmm6 \n" 

   "addpd     %%xmm1, %%xmm1 \n" 

 

   "mulpd     %%xmm7, %%xmm7 \n" 

   "addpd     %%xmm3, %%xmm3 \n“ 

    

   "mulpd     %%xmm8, %%xmm8 \n" 

   "addpd     %%xmm5, %%xmm5 \n“ 

 

 

 

 

 
 

 

Reuse Distance xmm1 = 3 cycles 

Figure 2. Microbenchmark for testing instruction latencies.

in a loop, similar to a subset of rank-1 update operations in
GEMM. SSE instructions are intensively used in our targeted
HPC applications. Each addpd and mulpd operates on xmm
registers that each hold 128-bit values and can operate on
two double-precision values in a cycle. Furthermore, the i7-
920 can perform four double precision (DP) FLOPs/cycle [1].
Consequently, the microbenchmark is expected to run at near-
peak performance of four DP-FLOPs/cycle (FPC).

1) Instruction Latencies: At the core level, instruction
latencies are one of the first parameters to calibrate against
the targeted machine. Any mismatch will directly impact the
accuracy of the processor model.

One of the biggest challenges in calibrating instruction
latencies is observability. In the simulator, it is trivial to
measure the cycles an instruction takes to complete as the
behaviour of the model is fully visible and tractable. However,
in a real CPU, there is no easy way to measure how many
cycles an instruction requires to finish. Hence, a systematic
approach to make instruction latencies observable is required.

We explain our approach using Figure 2 as a motivating
example. We define the reuse distance of destination registers
as the number of distinct references between two references
to the same location. Therefore, the reuse distances of addpd
and mulpd instructions are 3 and 6 cycles. Consequently, if
the corresponding latencies for addpd and mulpd are less



than 3 or 6, respectively, the microbenchmark will execute
in nearly 4 FPC (i.e, peak performance in the target machine).
Otherwise, addpd and mulpd would have to stall and wait
for the dependency to resolve, resulting in a degradation in
performance. We measured the microbenchmark shown in
Figure 2 to execute nearly in peak performance on the i7-920,
achieving a FPC of 3.94. We then varied the reuse distances
in the microbenchmark until performance degrades to further
determine instruction latencies. Using microbenchmarks with
varying reuse distances, we measured addpd and mulpd laten-
cies to be 3 and 5 cycles, respectively.

By contrast, the MARSSx86 model, with a similar con-
figuration as the i7-920, could only achieve an FPC of 2.4.
Per-cycle event and log traces reveal that the MARSSx86
pipeline is not able to commit at a rate of 4 FPC because
an addpd instruction was waiting on the previous addpd
instructions to retire. We further observed that the instruction
latencies of addpd and mulpd were hardcoded to 6 cycles in
MARSSx86. We adjusted latencies to their targeted values of
3 and 5 cycles, respectively. We utilized a similar approach
to calibrate the instruction latencies of other SSE instructions.
We first determined potential latency candidates, based on the
technical documentations provided in [11]. We then crafted
similar microbenchmarks with varying reuse distances for
these instructions to measure latencies on the target machine
and adjust the MARSSx86 model accordingly.

As described in the above example, the key points in
calibrating instruction latencies are as follows: First, coming
up with a baseline microbenchmark that would run in peak
performance in the pipeline. Second, using this baseline,
calibrating most frequent arithmetic instructions latencies by
including those instructions in the microbenchmark. Finally,
one can determine the actual instruction latencies in the
targeted machine by modifying the reuse distances in the
microbenchmark until the performance deviates from the peak.
By employing this generic methodology, one can easily come
up with microbenchmark variants in order to determine in-
struction latencies for any given x86 instruction set.

2) Pipeline Width: Once instruction latencies are calibrated,
we move to a higher level in the pipeline hierarchy. In a
pipelined system, every stage should ideally have a uniform
production and consumption rate. Any non-uniform rate makes
the system operate at less than peak performance. For ex-
ample, in the pipeline architecture depicted in Figure 1, if
the processor FETCHes up to four instructions, but can only
DECODE two instructions at a time, the system throughput
will be limited to two. In this scenario, the DECODE stage is
the performance bottleneck.

The pipeline width varies from processors to processor
between 2-wide and 8-wide. Hence, validation of the system
width is an integral part of the pipeline calibration. In order to
determine the system width, we use the following approach: In
general, pipeline performance increases as a function of system
width, assuming a sufficiently independent instruction stream
and no cache miss penalties. Using such an instruction stream,
one can vary the system width gradually and observe how

TABLE II
GEMM MICRO-OP BREAKDOWN COMPARISON.

i7-920 MARSSx86 Gap
# of Instructions 229 Million 225 Million 2%

# Micro-Ops 229.2 Million 465 Million 202%

performance improves. Note that the system width we refer to
here is not merely the issue width. Performance bottlenecks
can equally reside in other stages. As such, by width we refer
here to the parameters of the entire system, including front-end
and back-end. Hence, changing the width to four means that all
fetch, rename, dispatch, issue, commit, and writeback widths
are set to four accordingly. With this, the pipeline performance
should increase as the system width grows.

We run the entire GEMM benchmark to increase test
program complexity and evaluate the pipeline width across
a mix of instructions each progressing differently through
different stages of the pipeline. The GEMM benchmark em-
ploys a combination of a broad range of compute-intensive
and vectorized instructions. We make minor modifications
of the benchmark such that every load and store related
instruction is omitted, thus avoiding interference of the cache
system. The real i7 achieves a performance of 3.94 FPC for
this benchmark. By contrast, we observed that the latency-
calibrated MARSSx86 could only reach an FPC of 2.45. In
addition, increasing the pipeline width of MARSSx86 did not
bring expected performance improvements. In our special case,
the problem was due to MARSSx86 internally hardcoding the
issue width to four. After removing the hardcoded assignment
and making issue width configurable based on the provided
config file, this problem was fixed. We then observed that
with a pipeline width of seven or eight, the MARSSx86 core
model produced 90% and 102% of i7-920 peak performance,
respectively. Therefore, a pipeline width of seven or eight
could be assumed to give a reasonable configuration assuming
there is no cache miss penalty. However, this is not truly the
case. For example, for variants of the original microbenchmark
with large enough reuse distance, a width of seven would
artificially inflate performance beyond the peak FPC of 4 that
the real machine is capable of. In the following, we explain the
root issue and the key insights that support it. The main reason
for this mismatch is because in MARSSx86, the system width
refers to a granularity of micro-operations (micro-ops) while
a a real x86 machine defines widths at instruction granularity.
Hence, if we apply a similar width configuration as in the i7,
MARSSx86 will achieve a lower number of instructions per
cycle (IPC) in cases where it has to execute more micro-ops
than instructions compared to the real x86 machine.

3) Instructions and Micro-ops: Table II illustrates the
breakdown of instructions and micro-ops of GEMM executing
on the i7-920 and MARSSx86. As expected, the number of
dynamically executed instructions matches closely within the
range of possible measurement errors. By contrast, an x86
instruction is internally broken down into simple RISC-like
micro-operations, where the gap between micro-ops executed
in the i7-920 and MARSSx86 is 202%. We further examine



TABLE III
MICRO-OPS OF GEMM ON MARSSX86.

SSE NON-SSE
96% 4%

Multi-Op Single-Op Multi-Op Single-Op
94% 6% 87% 13%

the detailed micro-op breakdown. Table III presents the break-
down on MARSSx86, where 96% of the micro-ops belong to
SSE instructions. Moreover, 94% of the SSE micro-ops belong
to multi-op instructions, which are typically broken down into
two smaller micro-ops. From this observation, and from data
in Table II, we infer that the i7-920 has more single-op SSE
instructions than the MARSSx86 core model.

In order to account for this discrepancy, we considered the
following options:

1) Altering the internal micro-op implementation in the
MARSSx86 core model, which arguably is the ideal
option. However, there is no publicly available documen-
tation on how each x86 instruction is broken down into
micro-operations.

2) Fixing the processor pipeline width statically to seven
or eight to achieve a reasonable performance match for
the larger GEMM kernel. However, opting for this ap-
proach would make the system configuration of the core
model artificially unaligned to the system configuration of
the real machine. If different applications have different
single- to multi-op instruction ratios, the core model
would not correctly capture the behavior.

3) Keeping the base system configuration aligned with the
real target machine parameters, but dynamically adjusting
the execution width to account for multi-op instructions.
In this way, the adjustment in the core model will be
orthogonal to the system configuration.

We followed the third approach and modified the commit logic
flow in the MARSSx86 model to support it. Other front-end
units such as fetch, rename and issue logic are also modified
using the same principle.

Figure 3 shows the flowchart of the improved commit logic.
Our approach dynamically treats multi-op SSE instructions as
single-op instructions at runtime. In the original version shown
on the left, the commit logic first checks whether the CPU has
already committed more micro-ops than the machines’ commit
width supports. If yes, then we return. If not, then the logic
checks the next entry in the ROB. If a micro-op is not ready
to retire, then the logic returns. Otherwise, we commit and
increase the commit counter.

As shown in Figure 3(b), we change the commit logic such
that when a micro-op is ready to retire, we check whether
it belongs to the SSE class. If not, we normally commit
and increment the commit counter. However, if it is of SSE
type, we first check whether it is a multi-op SSE instruction.
Every micro-op in the MARSSx86 model will have uop.som
and uop.eom flags, indicating the first and last operation in a
sequence of micro-ops for one instruction. If an instruction is
a single-op instruction, both flags will be set to 1. We alter

Commit_ctr < 
MAX_COMMIT 

Uops  
Ready ? 

return;  

No Yes 

Commit(); 
Commit_ctr++; 

Next entry 
in ROB 

Yes No 

Commit_ctr < 
MAX_COMMIT 

Uops  
Ready ? 

return;  

No Yes 

Next entry 
in ROB 

Yes No 

is_sse? 

is_sse? 

uop.som   

Yes No 

Yes No 

Commit(); 
Commit_ctr++; 

uop.som : start of uop 
uop.eom : end of uop 

(a) Original  (b) Improved  

Commit(); 

Figure 3. Flowchart of the improved commit logic, accounting for different
micro-op implementation in the simulator.

the commit logic flow as follows: If uop.som is 1, i.e. it is
either the first micro-op of a multi-op instruction or a single-
op instruction, we commit and also increment the commit
counter. In all other cases, we commit but do not increment
the counter. In this way, a multi-op SSE instruction is treated
as single micro-operation at commit time. With this, we are
able to closely match performance of the real machine for the
larger GEMM kernel while keeping the basic pipeline width
set at its correct value of four.

B. Cache System Calibration

In general, there are multiple levels of cache hierarchy in
modern processors. A unit validation at each level is required
before calibrating the complete cache system.

Our targeted machine has three levels of caches. We ex-
amine L1 cache access behaviour first. We run the GEMM
benchmark now including load and store instructions. We
collected statistics of the number of L1 accesses both from
MARSSx86 and the targeted machine. The resulting L1-D
statistics show discrepancies. In particular, the number of
accesses from MARSSx86 is 74 million, while the targeted
machine issued only 46 million L1-D accesses.

The previous experiment gave us a key insight that ev-
ery SSE instruction is broken down into two micro-ops in
MARSSx86. In our previous microbenchmark, we used addpd
and mulpd as a motivating example. In reality, the GEMM
benchmark uses a wide variety of SSE instructions, including
load-store type of instructions. For such instructions, one load
is executed as two load micro-ops. As such, accessing the L1-
D cache with a SSE load instruction would logically generates
two accesses to the cache.

To confirm this, we crafted a simple microbenchmark simi-
lar to previous ones but consisting of SSE load instructions that
move data from the cache to xmm registers. Figure 4 shows
the microbenchmark and the corresponding L1-D accesses
when executed in MARSSx86 model and the target machine.
As shown in the figure, the number of L1-D accesses in
MARSSx86 are twice as high as in the target machine.
This confirms that accessing the L1-D cache with a SSE
load instruction creates two different accesses in MARSSx86,



     ".main_loop:        \n\t“ 

    

   "movaps   (%%rax), %%xmm0 \n" 

   "movaps   (%%rax), %%xmm1 \n“ 

 

   "movaps   (%%rax), %%xmm2 \n" 

   "movaps   (%%rax), %%xmm3 \n" 

 

   "movaps   (%%rax), %%xmm4 \n" 

   "movaps   (%%rax), %%xmm5 \n“ 

    

   "movaps   (%%rax), %%xmm6 \n" 

   "movaps   (%%rax), %%xmm7 \n“ 

    "movaps   (%%rax), %%xmm8 \n" 

   "movaps   (%%rax), %%xmm9 \n" 

 

    

 

    
    

 

 

 
 

 

Target i7 MARSSX86 

#of L1-D Accesses 12,583,748 25,165,871 

Figure 4. Microbenchmark for testing L1-D accesses.

TABLE IV
CACHE MISS-RATES ON EACH LEVEL.

MARSSx86 i7-920
L1-D L2 L3 L1-D L2 L3

Total Accesses 43.3M 4.7M 4M 46.2M 4.8M 207K
Miss Rate 11% 85% 3% 10% 4.5% 11%

TABLE V
L2 SET BREAKDOWN WHEN EXECUTING GEMM.

Set # of way # of Competing Blocks Miss Hit
# 0 8 19 18,387 2,291
# 1 8 46 15,637 882
.... ... ... ... ...

# 56 8 42 15,754 921

whereas it issues only one access in the target machine. We
investigated other variants of SSE load and store instructions
and found similar mismatches in the number of L1-D accesses.

While this does not affect simulated performance, we made
the following changes in the MARSSx86 model to address
reported statistics: Whenever encountering a load/store instruc-
tion in the pipeline, we first identify whether it is SSE, and
then adjust the runtime statistics counter. Whenever there is
a cache accesses from an SSE instruction, the cache access
will be treated only once. Hence, the statistic collections are
aligned with the target machine.

We use the calibrated L1 cache model to further investigate
other levels of the cache system. Table IV shows the statistics
of cache miss-rates at each level in MARSSx86. Miss-rates
are measured when executing GEMM. We observe that the
L2 miss rate in MARSSx86 is significantly higher than in the
real machine, causing a significant performance mismatch.

To find the cause for this issue, we collected the number of
competing blocks, defined as blocks that are of the same set,
and their corresponding miss and hit numbers. Table V shows
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Figure 5. Normalized DGEMM runtime on original and calibrated simulators.

a snippet of the set breakdown. It is evident that competing
blocks cause a significant miss rate per set. By profiling the
miss address patterns, we find that the majority are from
neighbouring addresses. Whenever a miss requesting block N
occurs, then it is likely that the following misses are for blocks
N+1, N+2, N+3, N+4, etc. The i7-920 tackles this problem by
the support of its hardware prefetcher. Thereby, the capacity
misses in the relatively small L2 cache can be avoided.

We subsequently implemented a stream prefetcher in
MARSSx86 to model the hardware prefetcher in the real i7.
Once a miss occurs, our model will aggressively prefetch 16
neighbouring cache blocks. As our results will show, using this
stream prefetcher, we succeeded in improving the performance
of the L2 cache to closely match the real system.

IV. EVALUATION

In this section, we discuss calibration results. We modified
MARSS to account for the issues we covered in the previous
section. Our calibrated MARSS is made available for down-
load at [2]. We further evaluated the refined model to quantify
the impact of this calibration on heterogeneous system design.

We use four applications that are representative in
high-performance computing: GEMM, FMM [14], LU and
Cholesky factorizations. We also evaluated the calibrated
model on general-purpose SPEC2006 [13] and PARSEC [3]
benchmarks in order to further validate its accuracy. In all
cases, overhead of calibrations was observed to be negligible
at less than 2% reduction in simulation speed.

A. Baseline Refinement

Figure 5 shows the runtime of GEMM for different input
matrix sizes on the original MARSS, the calibrated MARSS,
and the target i7. The original MARSS model predicts that the
execution takes twice as long as in reality. By contrast, the
calibrated MARSS model captures the behavior of the target
i7 accurately with less than 5% error.

Figure 6 illustrates the accuracy improvements when run-
ning the five benchmarks with varying problem sizes for pro-
gressive calibration steps. Orig refers to the original MARSS,
Lat to the latency-calibrated MARSS, Lat+Pref to the Lat
version implemented with a simple stream prefetcher, and
Lat+Pref+Uop to Lat+Pref with modified commit logic. A
MARSS model with calibrated instruction latencies improves
accuracy roughly by 10%. A stream prefetcher further boosts
accuracy up to 40% overall. Finally, the fully calibrated
MARSS model captures the behaviour of the target machine
very accurately. It achieves near-identical runtime with the
target i7, with less than 7% error across all HPC applications.
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Figure 6. Runtime improvement of five benchmarks on each calibration step.
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Figure 7. Normalized runtime of different simulators on five benchmarks.
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Figure 8. Normalized DGEMM runtime improvement as a function of
prefetch degree.

We also observed the impact of the prefetch degree on the
simulated performance. Figure 8 shows the normalized per-
formance of the MARSS model employing different prefetch
degrees. Increasing the prefetch degree generally increases
the core performance and simulator accuracy. In particular, a
prefetch degree of 16 on the MARSS model closely matches
the performance of the targeted i7. This justifies our selection
of realizing a stream prefetcher with a degree of 16.

Figure 7 shows the accuracy of our calibrated MARSS as
compared to Zsim and Sniper. As mentioned before, gem5 is
not able to run these benchmarks in their optimized forms due
to its limited x86 instruction support. Among the supported
simulators, the calibrated MARSS provides the best accuracy
compared to the target machine. Zsim and Sniper in general
are 20-50% less accurate due to their abstracted timing model.
However, as a consequence, they possess a significantly faster
simulator speed than MARSS.

To further evaluate the accuracy of our calibrated simulator,
we compared performance when running SPEC and PARSEC
benchmarks (Figures 9 and 10). We ran all C/C++ bench-
marks for SPEC2006. For PARSEC, we excluded facesim,
vips, and x264 benchmarks as they failed to successfully
execute in MARSS. In this work, we targeted calibration for
HPC applications. As results show, our calibration improves
accuracy even for many general-purpose benchmarks while
not significantly affecting results in cases where the original
MARSS already matches well. An uncalibrated MARSS exe-

cutes PARSEC and SPEC benchmarks with an average error
rate of 19% and 9%, respectively. By contrast, the calibrated
MARSS improves PARSEC and SPEC accuracy to 11% and
7% on average. Nevertheless, truly targeting other application
domains would require applying our calibration methodology
using representative microbenchmarks that would likely im-
prove the accuracy even higher.

B. Impact on Heterogeneous Design
To quantify the impact of simulator calibration on hetero-

geneous system design, we integrated a publicly available
cycle-accurate simulation model of a Linear Algebra Processor
(LAP) [17] as an example accelerator into the system. We
modified applications to offload the GEMM kernel operation
to the LAP with the help of a device driver. The CPU thereby
copies all the necessary data to the main memory before
invoking the accelerator. The LAP then performs the GEMM
and interrupts the host CPU when it is finished.

Figure 11 shows the overall system speedup when running
GEMM, LU, FMM applications with all GEMM kernels
offloaded to the LAP. An uncalibrated MARSS achieves av-
erage speedups of 10.3x when offloading a complete GEMM.
However, when the calibrated core model is employed, the
speedup is reduced to 5.3x on average.

For LU factorization, the application consists of three ker-
nels, one of which is GEMM. When the problem size is rela-
tively small, the speedup difference between the original and
the calibrated model is small. However, as the problem size
grows beyond 512, the time spent in GEMM rises significantly.
In particular, for the 2048 problem size, the original MARSS
estimates the speedup to be 4x. However, when the calibrated
baseline model is integrated, the estimated speedup is reduced
to 2.8x. If the accelerator was designed to have only a smaller
gain by itself, due to the cost of integration overheads, an
uncalibrated model could potentially project a system-wide
speedup even though none or a negative one exists in reality.



0.00

0.50

1.00

1.50

blackscholes bodytrack dedup ferret fluidanimate freqmine raytrace swaptions average

R
u

n
ti

m
e

 
MARSS Orig MARSS Calib Target i7

Figure 9. Normalized runtime of PARSEC benchmarks running on original and calibrated simulators, with respect to hardware platform.
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Figure 10. Normalized runtime of SPEC benchmarks running on original and calibrated simulators, with respect to hardware platform.
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Figure 11. Speedup of benchmarks using original and calibrated simulators.

We observe similar behavior in FMM. Similar to LU, FMM
consists of several kernels with one of them being GEMM.
An unrefined MARSS core model reports a 10.3x speedup.
However, using the calibrated model, estimated speedup is
reduced to 5.3x.

V. SUMMARY AND CONCLUSIONS

In this paper, we presented a systematic methodology for
calibration of cycle-accurate x86 simulators and the resulting
impact on heterogeneous system design. We first described
our step-by-step calibration methodology along with the major
issues we found when applied to the MARSS full-system sim-
ulator. We calibrated the model to achieve a highly representa-
tive CPU baseline targeting HPC applications. Our calibrated
MARSS is available for download at [2]. Results show it has
on average less than 10% error including SPEC and PARSEC
benchmarks. We further showed how an unrepresentative base-
line CPU model can significantly over/under-estimate speedup
when analyzing and evaluating heterogeneous system designs.
This can result in misleading design decisions. In future work,
we plan to build on top of this platform to perform trade-off
analyses and heterogenenous system optimization.
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