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Host-Compiled Multi-Core System Simulation for Early Real-Time
Performance Evaluation

PARISA RAZAGHI and ANDREAS GERSTLAUER, The University of Texas at Austin

With increasing complexity and software content, modern embedded platforms employ a heterogeneous mix
of multi-core processors along with hardware accelerators in order to provide high performance in limited
power budgets. To evaluate real-time performance and other constraints, full-system simulations are es-
sential. With traditional approaches being either slow or inaccurate, so-called source-level or host-compiled
simulators have recently emerged as a solution for rapid evaluation of complete system at early design
stages. In such approaches, a faster simulation is achieved by abstracting execution behavior and increas-
ing simulation granularity. However, existing source-level simulators often focus on application behavior
only while neglecting effects of hardware/software interactions and associated speed and accuracy tradeoffs.

In this paper, we present a host-compiled simulator that emulates software execution in a full-system
context. Our simulator incorporates abstract models of both real-time operating systems (RTOSs) and
multi-core processors to replicate timing-accurate hardware/software interactions and enable full-system
co-simulation. An integrated approach for automatic timing granularity adjustment (ATGA) uses observa-
tions of the system state to automatically control the timing model and optimally navigate speed versus
accuracy conditions. Results as applied to industrial-strength platforms confirm that OS- and system-level
effects can significantly contribute to overall accuracy and simulation overhead. By providing careful ab-
stractions, our models can achieve full-system simulations at equivalent speeds of more than a thousand
MIPS with less than 3% timing error. Coupled with the capability to easily adjust simulation parameters
and configurations, this demonstrates the benefits of our simulator for early application development and
design space exploration.
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1. INTRODUCTION
In todays embedded systems, software content is growing continuously to deal with
increased complexities and tight development cycles. During early design exploration,
system developers are interested in evaluating an application behavior on a particu-
lar architecture. However, system-wide interactions and dynamic behavior in complex
parallel systems make static analysis challenging. Efficient full-system simulations
therefore play an important role in the design process.

Multi-core processors have become popular both in general-purpose as well as in
embedded computing, since they provide higher performance with less power con-
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Fig. 1: Generic multi-processor/multi-core SoC (MPCSoC) architecture.

sumption [Blake et al. 2009]. In practice, such multi-core processors are integrated
into a multi-processor platform in order to provide a heterogeneous system that meets
all real-time and design constrains. Figure 1 shows a generic architecture of typical
multi-processor and multi-core systems-on-chip (MPCSoCs). Each processor in the sys-
tem can have one or more cores, which share a single memory address space and are
managed by a single operating system (OS) in a symmetric multi-processing (SMP)
context. In other words, application tasks are able to run on any core and can easily
migrate between processor cores. By contrast, each multi-core processor in an overall
multi-processor platform has its own memory address space managed by a dedicated
or distributed operating system. As such, processors are organized in an asymmetric
multi-processing (AMP) manner, where application tasks are partitioned among the
processors and task migration rarely happens.

The complexities of the MPCSoC design space have made traditional cycle- or
instruction-accurate simulators inefficient. Cycle-based simulators are highly accu-
rate, but very slow, especially in a multi-core or multi-processor context. By contrast,
virtual platform prototypes that employ binary translation coupled with abstract mod-
eling of system peripherals can establish fast functional simulation, but provide little
to no timing information. More recently, source-level and host-compiled simulators
have emerged as an alternative that aims to address the need for fast and accurate
simulation. In pure source-level approaches, application code is natively compiled and
executed on a host machine to achieve the fastest possible functional simulation. For
accuracy, the source code is further back-annotated with target-specific timing infor-
mation obtained through estimation or measurement. To achieve full host-compiled
simulation, back-annotated source code is then wrapped into abstract models of oper-
ating systems and processors, which integrate into existing transaction-level modeling
(TLM) backplanes [Cai and Gajski 2003] on top of standard system-level design lan-
guages (SLDLs), such as SpecC [Gajski et al. 2000] or SystemC [Ghenassia 2005].

Management of intra- and inter-processor interactions in the OS kernels, device
drivers and interrupt handling chains of complex MPCSoCs can carry a large over-
head. As such, OS- and system-level interactions can contribute significantly to overall
system performance. Furthermore, execution of associated detailed code in traditional
instruction set simulations (ISSs) can lead to a large simulation overhead. However,
in reality, designers may only care about the effect on application performance, and
they are not concerned with the OS internals, for example. This provides an oppor-
tunity to abstract such details and develop host-compiled OS and processor models
that faithfully replicate such effects without including any of the associated simula-
tion overhead. Existing approaches thus far, however, have paid little attention to the
question of how to optimally exploit speed and accuracy in such integrated abstrac-
tions and models.
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In this paper, we present an efficient host-compiled multi-core processor simulator
to support fast and accurate system-level exploration at early design stages. In previ-
ous work [Razaghi and Gerstlauer 2011], we have developed a host-compiled software
simulator that focused on multi-core OS and scheduler models. Furthermore, we intro-
duced a novel approach for automatic timing granularity adjustment (ATGA) in single-
core OS simulations [Razaghi and Gerstlauer 2012a]. In this approach, the OS model
uses knowledge about the system state to dynamically and automatically calibrate the
simulation granularity and optimally navigate fundamental speed and accuracy trade-
offs. The contributions of this paper are twofold: (1) we adapt the ATGA approach for
use with our multi-core OS model such that speed and accuracy tradeoffs are optimally
maintained across a configurable number of cores, and (2) we extend the simulator to
provide a full multi-core processor model that integrates automatic timing granularity
adjustment in the OS model with timing-accurate yet fast simulation of external sys-
tem interfaces and interrupt handling chains. We have developed flexible models that
can be parametrized and configured to simulate a range of OS and processor combi-
nations. We have implemented our simulator library in both SpecC and SystemC. A
SystemC version is available for download at [HCSim 2014].

The rest of this paper is organized as follows: after presenting an overview of related
work, we introduce the general structure of our host-compiled simulator in Section 3.
In Section 4, we show how an application can be integrated into the simulator. In Sec-
tion 5 and Section 6, details and internals of OS and processor models are discussed.
We evaluate the efficiency of our simulator for early system exploration in Section 7.
Finally, we present a summary and an outlook on future work in Section 8.

2. RELATED WORK
Conventional ISS-based software simulators using micro-architectural or interpreted
simulation [Austin et al. 2002; Benini et al. 2005; Renau et al. 2005; Magnusson et al.
2002] can reach cycle accuracy at a speed of several kHz. At the other end of the
spectrum, virtual platform simulators using dynamic binary translation can provide
significant speedups (reaching simulation throughput of several MIPS), but only fo-
cus on functional simulation with no or very limited timing accuracy [Schnerr et al.
2005; Bellard 2005; Binkert et al. 2011; OVP Co]. Although the aforementioned types
of simulators offer multi-core support, including CPU modeling at different levels of
abstraction ranging from instruction-accurate models to fully cycle-accurate, micro-
architectural ones, the need to simulate cross-compiled applications running on top of
the complete binary code of an operating system kernel makes these simulator ineffi-
cient for fast and early integration and evaluation of complete systems.

Instead, source-level simulators aim to provide a fast yet accurate simulation plat-
form by integrating instrumented source code of applications with a coarse-grain tim-
ing model that is obtained from the target architecture [Meyerowitz et al. 2008; Schn-
err et al. 2008; Ceng et al. 2009; Lin et al. 2010]. For accurate performance evaluation,
several approaches back-annotate the code with timing estimates that are obtained
by compiling to an intermediate representation [Hwang et al. 2008; Bouchhima et al.
2009; Wang and Henkel 2012].

Source-level approaches can provide accurate simulation of single-task applica-
tion behavior, but lack support for modeling of parallel applications and architec-
tures. Host-compiled simulators further extend source-level simulation to include ab-
stract models of the software execution environment [Gerstlauer 2010]. Originally,
host-compiled simulators only focused on modeling of OS effects [Gerstlauer et al.
2003; Posadas et al. 2005; Miramond et al. 2009]. Later, those approaches were ex-
panded into complete processor models that include timing-accurate interrupt chains
and TLM-based bus interface [Gerin et al. 2007; Schirner et al. 2010]. Such host-
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Fig. 2: Host-compiled simulation model.

compiled single-core simulators have been shown to run at speeds beyond 500 MIPS
with more than 95% timing accuracy. In this paper, we propose novel approaches for
host-compiled simulation of complete multi-core platforms at significantly improved
speed and accuracy.

Improving the accuracy of high-level simulation while maintaining high perfor-
mance has been the focus of many researchers. [Krause et al. 2008] present a hybrid
ISS and RTOS modeling approach to combine cycle-accurate application simulation
with fast OS scheduling and context switching. [Salimi Khaligh and Radetzki 2010]
present an adaptive TLM simulation kernel, which changes the level of accuracy dur-
ing simulation to the level expected by designers. [Stattelmann et al. 2011] propose
an approach that precisely models the execution time of access conflicts in shared re-
sources by using a proactive quantum allocator in a temporally decoupled simulation.
[Schirner and Domer 2008] introduce a result-oriented method for accurate simula-
tion of interrupts on host-compiled processor models by applying optimistic prediction
and correction. In all cases, however, fundamental, statically determined speed and
accuracy tradeoffs remain. By contrast, we propose approaches for adjusting granular-
ities automatically, optimally and dynamically to achieve fastest possible simulation
at highest possible accuracy.

3. HOST-COMPILED SIMULATION TECHNOLOGY OVERVIEW
Figure 2 shows our host-compiled multi-core simulator, which is based on a layered
organization as introduced for single-core processor models in [Schirner et al. 2010]. At
the top layer, the user application consists of a set of sequential and concurrent high-
level, C-based processes. Tasks running on the same processor interact with each other
via inter-processor communication (IPC) primitives, while they communicate with the
external world using high-level bus transactions. For timing accuracy, the application
code is back-annotated with sequential execution delays estimated or measured based
on a selected target platform.
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Applications are mounted on top of the simulator using a canonical, high-level OS
interface. At the core of the simulation engine, an OS layer implements this interface
and replicates a typical multi-core OS architecture to emulate the execution of applica-
tion tasks on top of underlying SLDL kernel. The OS model thereby schedules, queues,
dispatches and executes the application tasks according to a chosen SMP scheduling
policy. Underneath, a hardware abstraction layer (HAL) in conjunction with a hard-
ware layer constitute the processor model. The HAL integrates the software into the
processor hardware models and includes necessary description of I/O drivers and inter-
rupt handlers. Combined with interrupt processing in the OS layer, this replicates and
emulates an accurate interrupt handling mechanism. The hardware layer also pro-
vides interrupt and bus interfaces to the external communication infrastructure. Gen-
erally, the bus interface can be developed at an arbitrary level of abstraction; here, a
transaction level model (TLM) of communication is used to establish a fast simulation
environment. A high-level, generic interrupt controller (GIC) model collects interrupts
from the hardware side and manages their distribution across processor cores.

Finally, at the base, the complete simulator is implemented over a standard system
level design language (SLDL) that provides the required concurrency, timing and event
handling infrastructure on a host machine.

3.1. Automatic Timing Granularity Adjustment (ATGA)
In a conventional simulation mode, back-annotated delays define the base granularity
of the simulation. In such a setup, the scheduler is only called after advancing the
simulation time to allow for preemption of the current task by any higher priority task
that became available in the meantime. As a result, errors in the task preemption
model are a direct function of back-annotated granularities. However, as we have been
able to show previously, under certain circumstances, errors in discrete preemption
models can potentially exceed the bounds set by the timing granularity by a large
amount [Razaghi and Gerstlauer 2012b].

By contrast, in our automatic timing granularity adjustment (ATGA) approach, the
OS kernel internally monitors the state of the system and automatically controls the
timing model of the simulation to invoke the scheduler whenever a task preemption
is required. Thus, simulation speed and accuracy is independent of the granularity
of back-annotated delays, which frees designers from having to settle on a particular,
difficult to evaluate and predict tradeoff. Instead, the OS kernel itself accumulates or
breaks delays into a number of smaller steps as needed, automatically providing the
best timing granularity for fully accurate and fast results.

Generally, timing errors happen when a task is running and, while advancing sim-
ulation time, a higher priority tasks becomes ready without the scheduler getting a
chance to immediately preempt the current one. This situation can occur in the follow-
ing cases: (a) a periodic task reaches its next iteration time, (b) the interrupt handler
triggers an interrupt task, or (c) a blocked or sleeping task returns to the ready state
when the running task notifies an event or resumes it. In such cases, the start of the
newly released task is delayed until the expiration of the current time granule.

In the ATGA approach, the OS kernel eliminates task preemption errors by switch-
ing between two timing modes: predictive mode and fallback mode. In predictive mode,
the OS monitors the state of periodic tasks running on the system and uses this infor-
mation to predict the next possible preemption point specifically for situations in case
(a). If a back-annotated delay is larger than the predicted interval, the OS kernel di-
vides the delay into smaller intervals in order to invoke the scheduler at the predicted
time. Conversely, the exact next preemption point is unknown for cases (b) and (c), i.e.
whenever a task is waiting for an internal or external event. In these cases, the OS
model falls back to a fine preemption check until all events are captured.
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Fig. 3: Host-compiled simulation trace.

3.2. Host-Compiled Simulation Example
To illustrate the execution sequence of the integrated host-compiled model, we show a
simulation trace of two task sets running on a dual-core platform under a partitioned
scheduling strategy (see Figure 3). Each set contains three tasks with high, medium
and low priorities (named Th, Tm, and Tl respectively). Sets are mapped to run on
separate cores. The highest priority task is modeled as a periodic task. Tasks may
communicate with each other or external hardware via interrupt signals.

At the beginning of the simulation, Th is in Idle state and Tm is therefore scheduled
on both cores. At time t1, Tm running on core0 is blocked on an external event, and Tl

is scheduled on that core. From this point forward, the OS switches to fallback mode
on core0, since a higher priority task is waiting for an interrupt. At the same time, Tm

on core1 waits for a response from Th, and Tl is scheduled accordingly. Both cores can
be in predictive and fallback modes independently, and the OS remains in predictive
mode for core1, since it is aware that neither Tm nor Th can be scheduled before the
next release time of the periodic task Th (time t2).

At time t3, the hardware sends an INTA interrupt to the GIC, which is programmed
to route that interrupt to core0. Accordingly, core0’s interrupt interface activates the
corresponding interrupt handler. However, we can delay the execution of the interrupt
handler until the finish time of Th. Such a situation allows the OS to stay in predic-
tive mode, where it will not call the scheduler until time t4, the finish time of Th. The
interrupt handler then communicates with the GIC and activates the corresponding
interrupt task for further interactions with the hardware. Although such an interrupt
modeling approach introduces a small timing error in the execution of Th, the inter-
rupt task and the interrupt handler, the simulation is kept fast while these errors are
typically negligible. Finally, the interrupt task IntrA releases Tm, such that Tm and
subsequently Tl execute in predictive mode until the start of the next period of Th.

Now consider the simulation trace on core1: after releasing Tm again once Th has
run, Tm blocks on an external interrupt at time t5 while Th is Idle. Task Tl is therefore
scheduled and the OS switches to fallback mode in order to continuously monitor for
possible interrupts. As such, when the interrupt request is captured by core1 at time
t6, the OS schedules the activated interrupt handler immediately and provides a fully
accurate interrupt handling sequence.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Host-Compiled Multi-Core System Simulation for Early Real-Time Performance Evaluation A:7

1 /* OS initialization and startup */
2 void Init(OSPARAM param);
3 void Start(void);
4 /* Task management */
5 int TaskCreate(TASKPARAM param);
6 void ParStart(int taskID); /* fork */
7 void ParEnd(int taskID); /* join */
8 void TaskActivate(int taskID);
9 void TaskSleep(int taskID);

10 void TaskResume(int taskID);
11 void TaskEndCycle(int taskID);
12 void TaskTerminate(int taskID);
13 /* Delay modeling and event handling */
14 void TimeWait(long long nSec, int taskID);
15 void PreWait(int taskID);
16 void PostWait(int taskID);
17 void PostNotify(int taskID, int blockedTaskID);
18 /* Interrupt handling */
19 void IntrTrigger(int intrID);
20 int CreateIntrHandler(int coreID);
21 void IEnter(int coreID, int handlerID);
22 void IReturn(int coreID);

Fig. 4: High-level OS interface.

4. APPLICATION MODEL
In host-compiled simulators, application code is captured at the source level in or-
der to achieve a fast simulation and eliminate low-level implementation details. In
the following, we present the simple and canonical parallel programming model used
to develop applications and integrate them into our host-compiled simulator. In this
approach, a designer only need to describe the functionality of application tasks. To
describe inter-task communication, the simulator provides a comprehensive library of
standard communication primitives and channels. Referring to Figure 2, a model of a
typical application task and an internal implementation of a communication channel
are shown, which are further detailed in the rest of this section.

4.1. Task Modeling
As discussed above, the complete simulator is developed over a standard SLDL. Ac-
cordingly, application tasks are modeled as high-level, hierarchical SLDL processes,
which are connected to the simulator via the underlying OS application program in-
terface (API), shown in Figure 4. Task behavior is described by conventional C func-
tions and their target-specific execution delays are back-annotated into the code once
at compile time. The source code is instrumented with the required timing information
using TimeWait() methods of the OS API.

During the system startup phase, the Init() method initializes the OS model data
structures and defines the OS parameters, including the number of supported cores
and the default simulation quantum. The Start() method is then used to enter multi-
core scheduling after all tasks have been attached to the model.

During the task creation phase, tasks are added to the OS by calling TaskCreate(),
which allocates an internal representation inside the OS model. Furthermore, this
method allows application designers to explore a wide range of tasks properties and
behavior. The currently supported parameters are listed as follows:
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(1) Type: each task can be defined exclusively as an aperiodic, a periodic, or a kernel
special task model;

(2) Period: valid only for periodic tasks;
(3) Priority: the static priority level of tasks;
(4) Time Slice: time interval that a task is allowed to execute without preemption by

other tasks with the same priority;
(5) Affinity: a bitmap representing the set of cores allowed to execute the task;
(6) Initial Core: the initial core that is allowed to run the task at start time.

The TaskCreate() method returns a unique ID, which is passed to the OS kernel in
all following task-related API calls.

At the start of simulation, task threads are spawned via the SLDL. They then regis-
ter themselves with the OS via a call to the TaskActivate() method at the beginning
of their execution. This allows the OS model to collect all threads and enter them into
the scheduler. At the end of their execution, tasks remove themselves from the OS ker-
nel by calling TaskTerminate(). If supported by the underlying SLDL, tasks can fork
children and temporarily remove themselves from OS scheduling (ParStart()) until
all children are collected on the SLDL level (ParEnd()).

Finally during the execution, a task can remove itself from the active core temporar-
ily by either calling TaskEndCycle() or TaskSleep(). The former moves the calling
periodic task into idle mode until its next release time. The latter puts the task in
sleep mode until another task calls a corresponding TaskResume() method.

4.2. Channel Library
Inter-task communication is implemented by one-way or two-way message passing
channels. Channels are described using the underlying SLDL event/notify primitives,
which are wrapped into OS APIs that will allow the OS to accurately control the ex-
ecution order of tasks connected to the channel. Designers will typically not have to
deal with event handling directly. Instead, the simulator provides a reimplementation
of a rich library of communication channels and primitives that are properly hooked
into the OS model.

As shown in Figure 2, each “wait for event” statement is encapsulated by PreWait()
and PostWait() methods. PreWait() simply removes the running task from the OS
kernel and lets the scheduler start the next ready task on the current core. As soon
as the event is captured, PostWait() returns the blocked task into the ready state and
waits until the task is scheduled by the OS kernel.

In point-to-point communication channels, where sender and receiver of messages
are fixed during the simulation, “notifying an event” is followed by a call to an OS
PostNotify() method. If the just unblocked task has a priority higher than the current
one, PostNotify() will immediately perform a task switch and call the OS scheduler.
In this way, a more accurate task scheduling is modeled, since high priority unblocked
tasks are not required to wait until the next point that the scheduler is called.

5. OS MODEL
Figure 5 depicts an overview of our abstract multi-core OS model, which is designed
to perform three main functionalities: task management, multi-core scheduling emu-
lation, and coordination of the simulated timing model.

During its execution, each simulated task can be in five states, and tasks move to dif-
ferent states by calling a corresponding OS API method. In order to emulate the state
of the system, the OS model maintains tasks in five internal queues: a Ready queue
holds tasks that are ready to execute and is sorted based on a user-defined scheduling
policy. An Idle queue holds periodic tasks that have called the kernel’s TaskEndCycle()
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Fig. 5: Abstract OS model.

method. The Idle queue is ordered based on the release time of each task’s next iter-
ation. Idle tasks are retrieved from the head of queue and placed in the Ready queue
by the OS kernel at the start time of their next period. A Sleep queue holds tasks that
have been suspended until they are resumed again. Tasks waiting for an event are
suspended and transferred to a Wait queue. As part of modeling the top half of the
OS interrupt handling chain, an IntrWait queue holds special interrupt tasks until a
core-specific interrupt handler calls the IntrTrigger() method to move them into the
Ready queue. Since the core-specific interrupt handlers are treated as special high-
priority tasks by the OS scheduler, a separate IntrHandlerReady queue is dedicated
to each core. Interrupt handlers are activated and moved into a corresponding queue
when the IEnter() method is called by the processor interrupt interface. After trig-
gering interrupt tasks, interrupt handlers deactivate and remove themselves from the
IntrHandlerReady queue by calling the IReturn() method.

In the context of SMP scheduling, there are two major task scheduling schemes dis-
tinguished by the number of Ready queues associated with each core: partitioned and
global scheduling schemes. In a partitioned scheme, each core has a separate Ready
queue and tasks are initially assigned to a fixed queue. The scheduler picks tasks for
a core only from the associated queue. In a global scheme, the scheduler maintains
only a single Ready queue and tasks can be freely assigned to the next available core.
A global queue can lead to a better utilization but is less scalable and may result in
degraded performance due to cache pollution when tasks move between cores too fre-
quently [Lauzac et al. 1998]. Our OS model supports both scheduling schemes, such
that designers can explore the right structure for a particular application. Depending
on the scheduling scheme, a single Ready, Idle, Sleep, Wait and IntrWait queue is ei-
ther shared among all cores as depicted in Figure 2 and Figure 5, or multiple such
queues are replicated one per core [Razaghi and Gerstlauer 2011]. In the following
subsections, we present further details on the internals of the OS’ scheduler and time
management blocks.

5.1. Multi-Core Task Scheduling
The core component of the OS model is a replicated, generic multi-core scheduler, the
body of which is shown in Figure 6. The scheduler is an internal function of the OS
model and is called by the OS API methods whenever a task switching is possible or
required. The main functionality of the scheduler is to retire the currently active task
on a core, if any, and place it in a proper place in the right Ready queue. We utilize a

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:10 P. Razaghi and A. Gerstlauer

Function Scheduler (int coreID):

1 queueID := GLOBAL SCHEDULING ? ø : coreID
2 oldTask := runningTask[coreID]
3 runningTask[coreID].RemainingTimeSlice − = (CurrentTime() - runningTask[coreID].StartTime)
4 runningTask[coreID].State := Ready
5 if runningTask[coreID].RemainingTimeSlice ≤ ø then
6 runningTask[coreID].RemainingTimeSlice := runningTask[coreID].TimeSlice
7 FIFO(ReadyQueue[queueID], runningTask[coreID])
8 else
9 LIFO(ReadyQueue[queueID], runningTask[coreID])

10 endif
11 Dispatch(coreID)
12 Wait4Sched(oldTask)

Fig. 6: Multi-core OS scheduler.

Function Dispatch (int coreID):

1 if !Empty(IntrHandlerReadyQueue[coreID]) then
2 IntrHandlerID := PeekFirst(IntrHandlerReadyQueue[coreID])
3 runningTask[coreID] := IntrHandlerID
4 IntrHandlerList[IntrHandlerID].State := RUN
5 SendSched(IntrHandlerID)
6 else
7 OSDispatch(coreID)
8 endif

Fig. 7: Multi-core task dispatcher.

time slice notion to model FIFO or round-robin (RR) scheduling among tasks that have
the same priority. When the OS runs the scheduler for a specific core, it calculates
the remaining time slice of the current active task on the desired core. This is done
by subtracting the time consumed by the task, which is computed as the difference
between the current simulated time and the time the task was last put onto the core
(line 3 in Figure 6). Then, the current task is moved to the corresponding Ready queue
based on the new value of the time slice. If the time slice reaches zero, the task is added
at the end of its priority list where it will be scheduled after all current ready tasks
with the same priority. In addition, the task’s remaining time slice value is reset back
to its configured value. Otherwise, the task will be placed back at the beginning of the
priority list from where it will be scheduled immediately again, right before any other
ready tasks with the same priority. Consequently, in RR scheduling the value of the
time slice defines the portion of time that every task is allowed to be executed without
any preemption by tasks of the same priority, while setting an infinite time slice value
will result in a FIFO scheduler.

At the end of the scheduler, a Dispatch() function will be called to assign a new
task to the current core. Figure 7 shows the implementation of Dispatch(). As a first
step, if there is an active interrupt on the core, a corresponding interrupt handler (see
Section 6.1) will be assigned to that core (lines 2-5) instead of a regular task. The afore-
mentioned core-specific interrupt handler queues (IntrHandlerReady) thereby manage
the priorities and selection among pending interrupts if multiple interrupt vectors are
supported by the modeled processor.

If there are no pending interrupts, an OS-specific dispatcher will be called to assign
normal tasks to the core. We present the implementation details of the OSDispatch()
function for both global and partitioned queue models (Figure 8). In both cases, the
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Function OSDispatch (int coreID):

1 queueID := coreID
2 LoadBalance(coreID)
3 if !Empty(ReadyQueue[queueID]) then
4 runningTask[coreID] :=

5 getFirst(ReadyQueue[queueID])
6 runningTask[coreID].State := RUN
7 runningTask[coreID].StartTime :=

8 CurrentTime()
9 SendSched(runningTask[coreID])

10 else
11 runningTask[coreID] := Null
12 endif

Function OSDispatch (int coreID):

1 ReadyQueue Lock.Acquire()
2 runningTask[coreID] := Null
3 if !Empty(ReadyQueue[ø]) then
4 activeTask := getFirst(ReadyQueue[ø], coreID)
5 if activeTask ! = Null then
6 runningTask[coreID] := activeTask
7 runningTask[coreID].State := RUN
8 runningTask[coreID].StartTime := CurrentTime()
9 SendSched(runningTask[coreID])

10 endif
11 endif
12 ReadyQueue Lock.Release()

(a) Partitioned-queue scheme. (b) Global-queue scheme.
Fig. 8: OS dispatcher.

function selects the highest priority task in the Ready queue and assigns it to run on
the current core. Ready queues are sorted by task priorities, and tasks with the same
priority are arranged based on time slices, as described above. In case of partitioned
queues (Figure 8 (a)), a load balancing to optionally, e.g. at regular intervals, migrate
tasks between queues is performed before dispatching. In case of a global queue struc-
ture (Figure 8 (b)), a semaphore controls all accesses to the shared queue. Note that in
both schemes, the tasks to be migrated or the first task allowed to run on a particular
core are selected (in the queue’s getFirst() method, line 4) based on the task affinity.
In other words, the current core can be idle even if the Ready queue is not empty.

After selecting a new task, the dispatcher releases it by calling SendSched() to notify
an SLDL event associated with the chosen task. After returning from the Dispatch()
call at the end of the scheduler, the current task on the given core in turn suspends
itself on its own event. Leveraging SLDL events assigned to each task, this emulates
actual context switches. Note that if no higher priority or other sibling task is available,
the current task may simply dispatch itself and be immediately triggered again.

5.2. Timing Model Management
In addition to basic OS services, the OS kernel simulates task execution delays using
underlying SLDL primitives. As we explained in Section 3.1, the OS model adjusts
the granularity of task delays by switching between predictive and fallback modes.
Figure 9 shows the algorithm for predicting the next preemption time among periodic
tasks. Since the Idle queue is sorted based on the tasks’ next release times, the preemp-
tion point is defined by the first task with a priority higher than the currently running
one. Note that for a global scheduling scheme, the AllowedRun() method checks if a
core is allowed to run a task based on the task’s user-defined affinity.

As mentioned before, the OS switches to fallback mode when it cannot predict the
next preemption point, i.e. a high-priority task is waiting to be released. However, the
OS kernel does not need to switch to fallback mode in all cases of tasks waiting for any
event. For example, assume an inter-task communication chain in which a set of tasks
are blocked waiting for other tasks in the chain. The task next to last in the chain has a
higher priority than the running task, but is blocked by a lower-priority task. Since the
lower-priority task cannot be scheduled while the current task is running, the whole
chain can never be triggered and prediction is not affected. Even if the low priority task
at the end of the chain is blocked on an external event, unblocking the lower-priority
task can never preempt the running task. Assuming small interrupt handler delays

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:12 P. Razaghi and A. Gerstlauer

Function PredictNextPreemptionTime (task runningTask):

1 predictedDelay := SIMULATION QUANTUM
2 scheduledCoreID := GetSchedCoreID(runningTask)
3 queueID := GLOBAL SCHEDULING ? ø : scheduledCoreID
4 for all idleTask in IdleQueue[queueID] do
5 if idleTask.Priority ≥ runningTask.Priority and AllowedRun(idleTask, scheduledCoreID) then
6 predictedDelay := idleTask.NextPeriodTime - CurrentTime()
7 return predictedDelay
8 endif
9 endfor

Fig. 9: OS predictive mode.

Function FallbackMode (task runningTask):

1 currentCoreID := GetSchedCoreID(runningTask)
2 queueID := GLOBAL SCHEDULING ? ø : currentCoreID
3 for all waitingTask in WaitQueue[queueID] do
4 if waitingTask.Priority ≥ runningTask.Priority and AllowedRun(waitingTask, currentCoreID) then
5 blockingTask := waitingTask.blockingTaskID
6 if (blockingTask == Unknown) or
7 (blockingTask.Priority ≥ runningTask.Priority and blockingTask.State == IntrWait) then
8 return true
9 endif

10 endif
11 endfor
12 return false

Fig. 10: OS fallback mode.

and thus ignoring preemptions by the interrupt handler itself, this means that with a
minor interrupt timing error, the fallback mode can also be ignored in this situation.

Furthermore, situations in which a high-priority task is blocked on a periodic task
in the Idle queue can be handled by simulating the system at the predicted level. Like-
wise, if a higher-priority task is waiting for the currently running or a sleeping task,
the preemption and context switch can be performed directly in the event notification
or TaskResume() kernel methods, at the point when they are called by the running
task, as explained for the case of PostNotify() in Section 4.2. In conclusion, the OS
only moves to fallback when a task with a higher priority is waiting for an external
event, i.e. a higher priority task is in the Wait queue and is blocked by a task in the
IntrWait queue. Since fallback mode degrades simulation performance significantly,
such finer control can maintain simulation performance without losing accuracy. Fig-
ure 10 shows the detailed fallback mode algorithm. In order to determine inter-task
dependencies, we annotate all IPC primitives in the provided channel library to record
the ID of the sending task that a receiving task is blocked on. The OS only turns to
fallback mode if a higher priority task is blocked by an Unknown task (line 6) or is
waiting for an external event (line 7).

In a multi-core context, the OS model further monitors the state of application tasks
that are driven by an interrupt that is handled by a different core, such that the OS
can adjust the predicted time or switch to fallback mode accordingly. In such cases, if
the core handling the interrupt is responsible for releasing a high-priority interrupt-
driven application task on the other core, it may have to adjust its predicted time or
go to fallback mode even if it otherwise would not. In a situation in which the other
core’s interrupt-driven application task is in Idle state, the interrupt handling can be
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Function IntrDependencyCheck (task runningTask):

1 currentCoreID := GetSchedCoreID(runningTask)
2 for all otherCoreID with otherCoreID ! = currentCoreID do
3 for all intrTask in IntrWaitQueue[otherCoreID] do
4 if intrTask.HandledCore == currentCoreID or intrTask.HandledCore == Unknown then
5 (adjDelay, fallback) := (∞, true)
6 blockedTask := intrTask.blockedTaskID
7 if blockedTask.State == IDLE then
8 adjDelay := min(adjDelay, (blockedTask.NextPeriodTime - CurrentTime()))
9 fallback := false

10 elsif blockedTask.Priority < runningTask[otherCoreID].Priorirty then
11 adjDelay := min(adjDelay, (runningTask[otherCoreID].NextWakeupTime - CurrentTime()))
12 fallback := false

13 endif
14 endif
15 endfor
16 endfor
17 return (adjDelay, fallback)

Fig. 11: Inter-core interrupt dependency check.

delayed until the next release time of this periodic task without actually changing the
execution sequence. Similarly, if the priority of the interrupt-driven task on the other
core is lower than the priority of the task currently running there, the OS model can
simply adjust the predicted time to become the next wake-up time on that other core.
The scheduler wake-up time is determined by the OS model internally whenever the
simulation time is advanced, i.e. it is guaranteed that no context switch can happen
in the meanwhile. Note that the predicted time on the interrupt-handling core can not
be advanced further than that. Even if there is no higher-priority task waiting on the
other core right now, the task running there can choose to enter a wait state and thus
change the scheduling mix at any time.

In all other situations, the OS cannot predict the next possible scheduling point
and switches to fallback mode. Figure 11 shows the method that checks inter-core
interrupt-dependencies and calculates a new predicted delay if needed. To keep track
of interrupt dependencies, interrupt handler models send their core ID to interrupt
tasks they trigger. The IntrDependencyCheck() method explores IntrWait queues on
other cores to see if some interrupt tasks can be triggered by the current core’s in-
terrupt handler (line 4). If such a condition exists, the application task waiting for
that interrupt is determined via the receiving task ID recorded using similar chan-
nel library annotations as described earlier (line 6). Finally, a new adjusted delay is
calculated and fallback mode conditions are determined (lines 7-13). At the end, the
adjusted delay and the fallback mode check are reported back to the OS model.

Finally, the overall timing model of our simulator is managed in the TimeWait()
method of the OS API. This method is called by the user code to model execution
delays of tasks and uses the underlying SLDL “wait for time” primitive to advance
simulation time. The pseudo code of the TimeWait() method is shown in Figure 12. In
order to achieve highest possible speed even with fine-grained back-annotated delays,
the OS accumulates back-annotated delays of the current task until the next predicted
preemption point is reached or the OS needs to switch into fallback mode (lines 1-
4). The OS then advances the simulation time using the predicted delay, optionally
utilizing an event-driven fallback check, and calls the scheduler to perform a context
switch, if necessary (lines 7-15). This loop continues as long as the accumulated delay
is greater than the predicted delay or the OS is still in fallback mode.
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Function TimeWait (long long nsec, task runningTask):

1 runningTask.AccDelay + = nsec
2 FB := FallbackMode(runningTask)
3 (adjustedDelay, ID FB) := IntrDependencyCheck(runningTask)
4 predictedDelay := min(PredictNextPreemptionTime(runningTask), adjustedDelay)
5 while runningTask.AccDelay > predictedDelay or FB or ID FB do
6 runningTask.NextWakeupTime := CurrentTime() + predictedDelay
7 if FB or ID FB then
8 startTime := CurrentTime()
9 SLDL::wait(predictedDelay, OS::scheduleEvent)

10 predictedDelay := CurrentTime() - startTime
11 else
12 SLDL::wait(predictedDelay)
13 endif
14 runningTask.AccDelay − = predictedDelay
15 Scheduler()
16 FB := FallbackMode(runningTask)
17 (adjustedDelay, ID FB) := IntrDependencyCheck(runningTask)
18 predictedDelay := min(PredictNextPreemptionTime(runningTask), adjustedDelay)
19 endwhile

Fig. 12: ATGA timing model.

To realize fallback mode, an OS-internal event (schedulerEvent) is introduced that
enables asynchronously interrupting long time consumption periods (line 9 in Fig-
ure 12). Since the fallback mode is only entered when a high-priority task is waiting
for an interrupt, the schedulerEvent is triggered by interrupt handlers in the HAL
whenever an interrupt occurs (see Section 6.1). This in turn will abort the wait()
statement in the SLDL kernel, at which point control is returned to the OS model to
perform a corresponding scheduling check.

All in all, this timing model provides error-free task scheduling at the highest possi-
ble speed by accumulating and dividing user-defined timing granularities to internally
maintain an independently controlled, optimal strategy to advance simulation time.

6. MULTI-CORE PROCESSOR MODEL
In order to provide fast yet accurate feedback about timing-accurate HW/SW interac-
tions beyond OS scheduling, we have developed a high-level processor model, which
emulates both TLM bus accesses and a detailed multi-core interrupt handling chain.
Figure 13 depicts the connections across different layers of our simulator. At the inner
most layer, a user application is directly connected to the OS layer and accesses the
scheduling services via the provided OS API. In addition to the OS services detailed in
Section 5, the OS layer provides high-level communication primitives for sending and
receiving inter-processor application-level messages via the HAL. Together, the OS
and HAL thereby realize models of drivers that transform application-level messages
all the way down to corresponding transaction-level bus accesses plus interrupt-driven
or polling-based synchronizations, if required. Finally, the HW layer models external
bus communication via a TLM bus channel. The HW layer also emulates monitoring
of processor interrupt signals and associated processor exceptions. The HAL combined
with the HW layer constitute the processor model. In this way, the simulator can be
integrated into any standard TLM backplane for co-simulation in an overall multi-
processor system environment. In the following, we will describe various aspects of
the processor model in more detail.
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Fig. 13: High-level multi-core processor model.

6.1. Interrupt Handling Model
In addition to the overall structure of the processor model, Figure 13 depicts extra
hardware components, inter-layer interfaces, and specialized OS-level tasks to repli-
cate a general multi-core interrupt handling chain in our host-compiled model. From
the hardware side, core-specific interrupt requests (IRQx) are generated by a generic
multi-core interrupt controller (GIC) model, which manages the distribution of inter-
rupt signals across processor cores. The internal structure of the interrupt controller
will be discussed next in Section 6.2.

Inside the processor model, the HW layer contains core-specific SLDL processes
(IntrInterface) that are sensitive to changes on the external interrupt inputs (IRQx).
Whenever an interrupt request is asserted, the corresponding IntrInterface notifies the
OS kernel by calling the IEnter() method of the OS API, exported to the HW layer via
the HAL. IEnter() then moves the desired interrupt handler into the corresponding
core’s IntrHandlerReady queue (as shown in Figure 5) and triggers the OS-internal
schedulerEvent to inform the OS of the recently activated interrupt. Depending on
fallback versus predictive mode, the OS will terminate the current time-wait primi-
tive and call the scheduler to perform a context-switch (as illustrated in Section 5.2).
As discussed previously, the OS scheduler always first checks the IntrHandlerReady
queue for active interrupt handlers in order to model processor suspension in response
to external interrupt events.

In this approach, interrupt handlers are modeled as special, high priority tasks as-
sociated with each core. Interrupt handlers are created and added to the OS kernel
by the HAL via the CreateIntrHandler() methods of the OS API. When an interrupt
handler is scheduled by the OS kernel, it communicates with the GIC via a TLM bus
channel to determine and acknowledge the interrupt source. It next triggers a special
interrupt task associated with the interrupt source via a call to the IntrTrigger()
method of the OS API. Before the interrupt handler returns to the OS kernel, it re-
moves itself from IntrHandlerReady queue by calling the IReturn() method. Finally,
user-supplied code in the interrupt tasks can communicate with external hardware,
with application tasks or with the OS model, e.g. to spawn additional processing tasks.
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6.2. Generic Multi-Core Interrupt Controller
We have developed a generic multi-core interrupt controller (GIC) model that man-
ages interrupt distribution among the processor cores and generates interrupt request
(IRQ) signals associated with each core. The high-level GIC model is a configurable,
generic multi-core interrupt controller that is modeled after typical real-world com-
ponents, such as the ARM Generic Interrupt Controller Architecture [ARM Co]. Our
model supports up to 32 edge-triggered hardware interrupts and is able to manage the
interrupts for an arbitrary number of processors/cores. A user can program the inter-
rupt controller to define interrupt priority and target core for each interrupt source.
The GIC model replicates a 1-N model for handling interrupts, i.e. it ensures that only
one processor handles a captured interrupt.

Internally, our high-level GIC model is composed out of one centralized interrupt
distributor and per-processor CPU interfaces (as shown in Figure 13). The distributor
monitors incoming interrupts and dispatches the highest priority asserted interrupt
to the associated CPU interface, which is determined by the programmed target core
list. The CPU interface thereby asserts the IRQ signal to its connected core and takes
care of the communication between the processor and GIC.

To manage interrupt detection and distribution, the GIC model identifies each in-
terrupt by an ID and maintains the interrupts’ state transitions. When an interrupt is
asserted by a connected hardware, the GIC moves that interrupt to the Pending state.
The distributor can then detect all pending interrupts and send the highest priority
one to the corresponding CPU interface. A pending interrupt moves to the Active state
whenever it is handled by the corresponding core, i.e. the associated interrupt han-
dler reads the “Acknowledge” register. An active interrupt can move to Inactive (initial
state) or Active & Pending states when the interrupt handler writes to the “End of
Interrupt” register or another interrupt signal with the same ID is captured, respec-
tively.

In such a detailed GIC model, three context switches are required in the simulator
for an external interrupt to propagate until the actual interrupt handler is executed.
Such a detailed model therefore carries a large simulation overhead. We have devel-
oped an alternative, lightweight GIC model that reduces the overhead by a factor of
two. This model only contains core-specific processes, which identify the highest pri-
ority pending interrupt for the connected processor and communicate with the pro-
cessors and the associated interrupt handlers directly. To achieve a faster interrupt
routing and consequently a faster simulation, the priority of an interrupt is only de-
fined by its ID and is not programmable. Furthermore, this model does not replicate a
1-N implementation. Hence, designers need to be careful when programming the GIC
to ensure that each input interrupt is only mapped to a single target core.

On the whole, the presented processor and interrupt controller models and inter-
connections provide an infrastructure that enables accurate modeling of interactions
between system hardware components and multi-core processors.

7. EXPERIMENTAL RESULTS
We evaluated different aspects of our simulator using a set of successive experiments.
First, we evaluated the accuracy of our high-level interrupt handling models and the
accuracy and the simulation performance of our OS and processor models on a suite
of artificial task sets and compute-intensive multi-threaded benchmarks. We then also
explored different architectures of an industrial-strength example to show the benefits
of our simulation platform for early design space exploration. All experiments were
performed on a 2.67 GHz Intel Core i7 workstation using the SpecC version of our
simulator.
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Fig. 14: Modeling of Linux interrupt handling.

We used the Open Virtual Platform (OVP) [OVP Co] as a reference ISS for evalu-
ating the accuracy of our models. OVP consists of an instruction-accurate simulator
(OVPSim), fast processor models, and behavioral peripheral modeling and program-
ming APIs, which enable full-system modeling and simulation. Furthermore, we used
Imperas Verification, Analysis and Profiling (M*VAP) tools to measure the execution
cycles of applications in kernel and user space [Imperas Ltd]. Since OVP is based on
a timing model of one cycle per instruction (CPI=1), execution delays were determined
as the product of the number of executed instructions and the target processor clock
period.

The reference platform consisted a quad-core Cortex-A9 ARM processor running
a Linux 2.6.39 SMP kernel at a frequency of 1 GHz. OVP was configured to run at
instruction-level granularity. The OVP peripheral modeling library was used to imple-
ment extra hardware components. Correspondingly, loadable kernel modules were de-
veloped to integrate drivers for the hardware into the platform and application. Hard-
ware accesses were implemented using interrupts and memory-mapped I/O.

For timing-accurate interrupt modeling, we measured the number of instructions
executed by Linux when handling an interrupt. Figure 14 shows the sequence of inter-
rupt events in Linux and their mapping to the host-compiled simulation model. Since
we modeled the system bus and GIC as untimed, high-level peripherals, the Linux
kernel starts handling interrupts immediately after an interrupt is signaled. In our
setup, the interrupt handler notifies an application process using Linux real-time sig-
nals. The execution trace shows that the interrupt handler delay varies between 2,100
to 3,100 cycles1, depending on the system state and the internal implementation of
signal queues in the Linux kernel. The Linux kernel then delivers the notified sig-
nal to the corresponding process by evoking an associated signal handler (do Signal()
in kernel space and sig Handler() in user space). Note that in Linux, these signal
handlers are executed in the context, i.e. at the same priority and time as their associ-
ated processes. Finally, the signal handler determines the interrupt source and calls a
corresponding application service routine, which in turn communicates with the main
process by releasing a POSIX semaphore to signal that the interrupt has been received.

To accurately model the Linux interrupt handling chain, we map the functional-
ity of interrupt and signal handlers to interrupt handlers and interrupt tasks in our
host-compiled model. Matching Linux behavior, interrupt tasks are thereby assigned
the same priority as their associated user tasks. Finally, we back-annotate interrupt
handler and task models with corresponding delays (D2 +D3 and

∑
(D4..D7), respec-

tively).

1For the experiments presented in this paper, the number of cycles and instructions are interchangeable.
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Table I: Interrupt Handling Response Time Errors

Interrupts E1: Identical Interrupt Load E2: Random Interrupt Load

ID/Priority Period Intr. H Intr. T App. T Period Intr. H Intr. T App. T

1/low 10ms 0.86% 0.01% 0.01% 15ms 2.84% 0.27% 0.16%
2 10ms 0.20% 0.03% 0.02% 12ms 2.17% 4.97% 0.68%
3 10ms 0.39% 0.04% 0.03% 11ms 1.32% 5.36% 0.52%
4 10ms 0.84% 0.05% 0.03% 8ms 1.01% 9.12% 0.93%
5 10ms 1.03% 0.02% 0.01% 7ms 0.69% 7.01% 0.62%
6/high 10ms 0.23% 0.50% 0.10% 5ms 0.17% 4.01% 0.29%

Avg. Error 0.60% 0.11% 0.03% 1.37% 5.12% 0.53%

7.1. Interrupt Handling Evaluation
To verify the accuracy of the interrupt handling model, we compared the response
time of interrupt handlers, interrupt tasks, and corresponding interrupt-driven ap-
plication tasks to the reference simulation. Response times are defined as the delay
between signaling an interrupt and completion of the corresponding handler or task
(see Figure 14). Table I lists average absolute errors in response times for two dif-
ferent experiments, in which six interrupt-driven tasks are running on a single-core
ARM processor. In experiment E1, all interrupts are triggered simultaneously with
a fixed period of 10 ms. By contrast, in experiment E2, interrupts are generated at
different rates in order to stress the experiment under random conditions. The inter-
rupt controller was programed to assign different priorities to each interrupt signal.
Experiments were run for a total simulated time of 5 sec.

Results show that for randomized interrupt behavior, average response time errors
can be as high as 10% with maximum errors reaching 50% in some instances. Upon
closer inspection, these errors stem from interference of the high-priority timer inter-
rupt not being modeled in our setup. By synchronizing all interrupts with the fixed
10 ms rate of the Linux timer, such interferences are eliminated and both average and
worst-case errors drop below 1%. Overall, assuming timer and other interrupt han-
dlers to be generally short, results prove the accuracy of the interrupt controller and
interrupt handling models.

7.2. Processor Evaluation
To evaluate overall simulation accuracy and performance, we generated 12 sets of ran-
dom periodic tasks. Task periods were uniformly distributed over [1,100] ms and task
weights randomly selected over [0.001, 0.1] for small (S), [0.1, 0.4] for large (L), and
[0.001, 0.4] for medium/mixed (M) tasks. Task priorities are assigned inversely to their
periods following a rate-monotonic scheduling scheme. Execution delays are modeled
by a delay loop of No Operation (NOP) instructions. We ran each task set for 5 sec of
simulated time. At a nominal rate of 1000 MIPS simulated by the reference ISS, this
corresponds to 5 billion NOP instructions running on each core. Task sets were gener-
ated to cover various task weight ranges under different total system utilizations.

Experiments were executed on a simulated dual-core and a quad-core platform. Each
task set was executed under four different interrupt conditions: periodic tasks plus a
high, a medium, or a low priority interrupt-driven application task running on each
core, or only periodic tasks running on the cores. Task weights for interrupt-driven
application tasks were fixed at a value of 0.01, and their generation frequency/load was
proportional to their priority, i.e. a higher load for the interrupt with a higher priority.
For accuracy measurement, task response times were compared to the reference ISS.
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Table II: Artificial Task Set Simulation Results

Set S1 S2 S3 S4 M1 M2 M3 M4 L1 L2 L3 L4

Number of Tasks 13 18 29 58 8 8 8 16 7 5 6 12
Number of Cores 2 2 2 4 2 2 2 4 2 2 2 4
Avg. Task Weight .05 .06 .06 .06 .14 .16 .19 .19 .19 .26 .28 .28
CPU Utilization .65 1.03 1.7 3.4 1.1 1.3 1.5 3.0 1.3 1.3 1.7 3.4

Intr. High
Error (periodic) .33% .26% .31% .33% .11% .05% .02% .04% .02% .02% .04% .13%
Error (intr-driven) .37% .23% .21% .23% 1.02% .49% .34% .74% .76% .60% .50% .91%
Speed [GIPS] 24 40 60 53 46 54 63 53 47 46 70 62
Intr. Medium
Error (periodic) .15% .11% .13% .13% .11% .05% .01% .01% .06% .02% .04% .04%
Error (intr-driven) .13% .06% .16% .19% .12% .12% .10% .10% .13% .19% .10% .11%
Speed [GIPS] 80 128 213 170 140 165 188 251 165 215 211 281
Intr. Low
Error (periodic) .15% .11% .13% .13% .07% .05% .01% .01% .02% .02% .04% .05%
Error (intr-driven) .23% .17% .25% .27% .13% .11% .13% .13% .08% .07% .03% .05%
Speed [GIPS] 161 171 284 284 278 660 377 377 330 322 422 422
No. Intr.
Error (periodic) .15% .11% .13% .13% .07% .05% .01% .01% .03% .02% .04% .04%
Speed [GIPS] 322 513 426 426 696 824 1,884 1,500 1,100 1,287 1,406 1,688

Table II lists the task set features and summarizes accuracy and speed results. Er-
ror was measured as the average percentage of absolute differences in individual task
response times over all tasks and task iterations. To measure simulation performance,
only the number of actually simulated instructions was considered. The number of
simulated instructions was calculated based on the total simulated time and the nom-
inal NOP instructions executed on the reference ISS. The idle time is eliminated by
considering the CPU utilization. In other words,

Speed =
Simulated time ∗ 1000MIPS ∗ CPU utilization

Simulation time
.

Results show an average timing error of 0.16% and an average speed of 400 GIPS
over all task sets and experiments. In all cases, error variance remains below ±1.8%.
Although we would expect to see zero errors using our ATGA approach, remaining
errors are caused by non-modeled OS context-switch overheads, non-ideal behavior of
a real Linux system, and errors in measured back-annotated delays. We can observe
constant average errors for the periodic task sets in all experiments except when a
high priority interrupt is running in the system. Reduced accuracy in these cases is
caused by the error in estimated delays of interrupt and signal handlers, which have
a larger effect when the interrupt load is high and tasks delays are small.

Further investigation of errors in the interrupt chain are shown in Figure 15 (a).
High errors are measured for interrupt handlers in experiments with low and medium
interrupt priorities. This is due to deliberate inaccuracies in the interrupt model. Since
the OS model does not switch to fallback mode when the priority of the running task is
higher than any interrupt-driven task, start times of interrupt handlers can be delayed
until the next predicted scheduling point. This results in high response time errors of
interrupt handlers. However, the total effect on response time of application-level tasks
is negligible. Furthermore, larger errors are observed for high-priority interrupt and
application tasks. Since high priority interrupts are generated at higher rates, non-
modeled Linux back-ground tasks can introduce larger timing errors in such cases.

Finally, we compare our ATGA approach against a conventional host-compiled sim-
ulation at user-defined simulation granularity. Figure 15 (b) compares the average
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Fig. 15: Accuracy and speed analysis for artificial task sets.

simulation error and simulation time of ATGA and conventional models under differ-
ent timing granularities. As can be seen, there is a fundamental accuracy and speed
tradeoff in a conventional simulation, i.e. decreasing the timing granularity results in
a higher accuracy but comes at a loss in simulation performance. Furthermore, there
is a high variation in errors under large granularities. For example, with 10 ms sim-
ulation granularity, errors across task iterations vary between 0.1% and 1,200%. By
contrast, our ATGA approach automatically and optimally provides fast simulation
with the highest possible accuracy. The ATGA simulation provides the fastest possible
speed when no interrupt is running in the system and the OS kernel runs only in pre-
dictive mode. By contrast, task sets with high-priority interrupt-driven tasks require
the OS model to remain in fallback mode and thus simulate much slower.

To evaluate our models under more realistic multi-core conditions, we further ap-
plied our simulator to a set of compute-intensive multi-threaded applications from
the ParMiBench suite [Iqbal et al. 2010]. ParMiBench applications are parallelized by
data decomposition across threads that are synchronized via barrier channels. Task de-
lays were back-annotated at the function level from measurements taken on the ISS.
Pthread calls were mapped into corresponding OS model primitives, where a high-level
inter-task channel was implemented to model POSIX-based barrier synchronization.
Table III summarizes simulation accuracy and speed for a single, dual and quad core
simulated platform. Results show that simulated application runtimes follow the ref-
erence simulation with an average error of 0.5%. Remaining errors are largely due to
non-modeled execution delays in Pthread calls. Overall, when replacing artificial NOP
instructions with real code, average simulation speed is degraded to 3,500 MIPS.

Table III: ParMiBench Accuracy and Speed Results

Application Simulated time (Error) Simulation speed [MIPS]

CPU=1 CPU=2 CPU=4 CPU=1 CPU=2 CPU=4

Bitcount (112500 iter.) 582ms (0.58%) 291ms (0.80%) 147ms (1.13%) 3,600 2,600 2,600
Basicmath (500K num.) 287ms (0.16%) 144ms (0.34%) 72ms (1.88%) 2,300 2,600 2,250
Susan-edge (2.8MB pic.) 9.134s (0.36%) 5.016s (0.64%) 2.928s (0.62%) 3,950 3,800 3,800
Susan-corner (2.8MB pic.) 1.80s (0.32%) 0.959s (1.48%) 0.532s (0.18%) 4,800 4,800 4,800
Susan-smooth (2.8MB pic.) 11.60s (0.11%) 5.843s (0.21%) 2.946s (0.73%) 2,700 2,500 2,600
SHA (16 input files) 348ms (0.15%) 218ms (0.19%) 156ms (0.27%) 2,800 3,200 3,200
Dijkstra (160 nodes) 45.58s (0.02%) 22.79s (0.01%) 11.39s (0.06%) 6,500 6,900 6,900
Patricia (5000 IP address) 917ms (0.73%) 459ms (0.43%) 229ms (0.42%) 2,200 2,100 2,100
Stringsearch (16MB in file) 59.11s (0.20%) 29.55s (0.35%) 14.77s (0.79%) 2,900 2,900 2,900
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Fig. 16: Motion-JPEG example architecture.

7.3. System Evaluation
To finally demonstrate the benefits of our simulator for fast and accurate design space
exploration, we applied our models to an industrial-strength Motion-JPEG (M-JPEG)
example, running three concurrent MP3, JPEG and user interface tasks on a dual-core
650 MHz Cortex-A9 platform model. The overall architecture of the system is shown
in Figure 16. The MP3 decoder uses hardware accelerators to perform audio decoding,
and the JPEG encoder is completely implemented in software. Tasks communicate
with external hardware and the rest of the system via an AHB bus and 12 interrupts.
MP3 decodes 13 frames at a bitrate of 384 kbit/s, and JPEG encodes 10 frames of a 30
frames/s movie with 352×288 resolution.

For accuracy analysis, we compared the execution behavior of MP3 and JPEG tasks
simulated on our host-compiled models to the reference OVP ISS. Task delays were
back-annotated at the function level from measurements taken on the ISS. Moreover,
average Linux context-switch overhead was measured and back-annotated into the OS
model. We explored a wide range of architectures by applying different OS and proces-
sor configurations, including mapping of M-JPEG tasks and interrupts to different
cores. Error was measured as the average percentage of absolute differences in indi-
vidual frame delays over all frames. The simulation speed was calculated based on the
number of application and Linux kernel instructions simulated by the reference ISS
excluding Linux boot-up times. Instruction counts number between 800 and 1,040 mil-
lion instructions depending on the system configuration. Note that the application-only
instruction count was 160 million instructions, which means that a significant perfor-
mance benefit comes from the OS abstraction approach. Finally, in order to achieve
fast simulation, a TLM of the AHB bus at a granularity of user/application transac-
tions [Schirner and Dömer 2009] and the lightweight model of the GIC were used.

Table IV shows the average error and the simulation speed for the explored architec-
tures simulated by the ATGA model and the conventional model under three different
granularities. In dual-core architectures with a task-attached interrupt model, appli-
cation tasks are distributed among two cores and a task and its associated interrupts
are mapped to the same core. By contrast, dual-core architectures with a core-attached
interrupt model always handle and run all interrupts on core1. Results show that with
accurate interrupt modeling, the average error of MP3 and JPEG frame delays over all
configurations is 0.71% at an average simulation speed of 1,400 MIPS. This translates
into an average speed of 244 million application-only instructions per second. For con-
figurations in which MP3 has a higher priority than JPEG, increasing the simulation
granularity in a conventional approach degrades accuracy but increases simulation
performance. By contrast, with the ATGA approach both fast and accurate results are
achieved. This tradeoff is not observed in some of the other configurations. A further
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Table IV: Motion-JPEG Example Simulation Results

Average Frame Error Simulation Speed [MIPS]

Configuration ATGA Conventional ATGA Conventional

0.01µs 1µs 100µs 0.01µs 1µs 100µs

Single-Core
1: C0: Prty(MP3>JPG>CTL) 0.53% 0.68% 0.66% 1.95% 1,000 50 1,170 1,500
2: C0: FIFO(MP3, JPG)>CTL 0.75% 0.62% 0.62% 0.62% 1,460 70 1,600 2,130
3: C0: Prty(JPG>MP3>CTL) 0.58% 0.65% 0.65% 0.65% 1,920 70 1,620 2,200

Task-attached interrupt model
4: C0: CTL, C1: Prty(MP3>JPG) 0.48% 0.64% 0.60% 1.85% 1,000 50 1,200 1,400
5: C0: CTL, C1: FIFO(MP3, JPG) 0.67% 0.71% 0.71% 0.71% 1,740 70 1,500 2,200
6: C0: CTL, C1: Prty(JPG>MP3) 0.63% 0.64% 0.72% 0.72% 1,820 70 1,600 2,000
7: C0: Prty(MP3>CTL), C1: JPG 0.59% 0.72% 0.72% 0.72% 1,500 50 1,200 1,500

Core-attached interrupt model
8: C0: Prty(MP3>JPG>CTL), C1: Intr 0.85% 0.93% 0.89% 3.75% 1,050 50 1,100 1,600
9: C0: FIFO(MP3, JPG)>CTL, C1: Intr 1.56% 1.92% 1.92% 33.1% 1,500 50 1,460 1,800

10: C0: Prty(JPG>MP3>CTL), C1: Intr 0.93% 0.35% 0.47% 35.9% 1,570 50 1,400 1,800
11: C0: Prty(MP3>CTL), C1: JPG,Intr 0.28% 0.46% 0.46% 11.9% 840 50 1,250 1,500

Average 0.71% 0.76% 0.77% 8.35% 1,400 57 1,373 1,785

investigation shows that in these configurations, the OS rarely switches to fallback
mode and the running task is never preempted by the next release time of a higher
priority one. As such, even with the conventional model, accurate results are always
achieved, i.e. the accuracy is independent of the simulation granularity. However, this
is hard to predict. By contrast, the ATGA approach always provides guaranteed accu-
rate yet fast results. Note that in some cases, the conventional simulation accuracy is
higher, because errors caused by the simulation granularity compensate inaccuracies
for in back-annotated delays.

Figure 17 summarizes the average frame delays and average frame delay errors
plus max. error bars of MP3 and JPEG tasks. In order to demonstrate the impor-
tance of accurate interrupt modeling, frame delays and errors are reported both with
and without modeling the interrupt handling chain (in the latter case, by bypassing
the complete interrupt handling model). As can be seen, the best MP3 performance
is achieved when a higher priority is assigned to MP3, or MP3 and JPEG are run-
ning on separate cores. In other configurations, average MP3 frame delay is close to
its deadline boundary (i.e. 26.1 ms). Minimized JPEG delay is obtained from configu-
rations with FIFO scheduling, when JPEG has higher priority or when it runs on a
separate core. In FIFO scheduling, MP3 behaves like a low-priority task. The reason
is that MP3 is often blocked waiting on hardware, while JPEG completely runs in soft-
ware. As such, whenever the MP3 task is blocked, the JPEG gets the highest priority
and MP3 can only resume its execution after JPEG finishes encoding of the current
frame. All combined, our explorations confirm that shortest-job-first or rate-monotonic
scheduling guarantee that MP3 and JPEG meet their performance requirements.

Overall, optimized MP3 and JPEG performance is achieved when tasks run on sep-
arate cores. The performance degradation of JPEG in the last configuration compared
to the same task-attached execution is caused by extra time periods that JPEG is
preempted by MP3 interrupts. Finally, by mapping all interrupts to a separate core
(core1), we only see slight performance benefits in MP3 and JPEG delays. Since inter-
rupt handlers are not running in parallel with their application tasks, putting them
on a separate core does not reduce interrupt delays within a task but can minimize
the influence of one task’s interrupts on the other. This effect is more pronounced for
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Fig. 17: Design space exploration results.

the JPEG task, but interrupt handlers have small execution delays and do not provide
large speedup benefit.

In the end, results also confirm that interrupts can have a significant influence on
overall system performance. When bypassing the interrupt handling model, some con-
figurations exhibit a very large error that is caused by a wrong execution order of MP3
and JPEG tasks. By contrast, when including the model of the interrupt chain, average
errors remain within 2%. Overall, the high accuracy and fast simulation of our host-
compiled simulator including accurate OS, processor and interrupt models provides an
efficient platform for early design space exploration.

8. SUMMARY AND CONCLUSION
In this paper, we presented a host-compiled multi-core system simulator designed for
early real-time performance evaluation. At its core, the simulator consists of a config-
urable, abstract OS model, which emulates multi-core task scheduling. Our OS model
transparently incorporates an automatic timing granularity adjustment (ATGA) ap-
proach in which the model automatically and optimally accumulates and adjusts back-
annotated delays to provide an error-free task preemption model. Furthermore, the OS
model is embedded in a high-level multi-core processor model that replicates a generic
multi-core interrupt handling chain and supports standard TLM interfaces for integra-
tion into co-simulation backplanes to provide a fast and accurate full-system HW/SW
co-simulation platform.

Experimental results demonstrate the efficiency of our simulator both on a suite of
artificial task sets and an industrial-strength design example. Results show that com-
pared to a reference ISS, simulations on the order of 1000 MIPS at less than 3% error
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can be achieved. Although we would expect to see zero errors using our ATGA ap-
proach [Razaghi and Gerstlauer 2012b], remaining errors are caused by other orthog-
onal modeling issues, such as errors in back-annotation of task delays or the execution
of back-ground tasks in real platforms, which are out of scope of this paper. Overall,
experiments demonstrate the benefits of our configurable models for fast and accurate
early design space exploration and software development.

In future work, we plan to extend our models to support a comprehensive set of
multi-core scheduling policies and a larger range of target platforms. We also intend
to provide a modeling interface in which designers are able to add custom scheduling
algorithms to the OS kernel. Moreover, we plan to investigate integration of inter-
core synchronization and multi-core cache hierarchy models [Razaghi and Gerstlauer
2013] into a simulator with temporal decoupling and automatic timing granularity
adjustment in order to consider effects of the shared memory hierarchy on system
performance.
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