
Copyright

by

Nader Al Awar

2024

1

The Dissertation Committee for Nader Al Awar
certifies that this is the approved version of the following dissertation:

PyKokkos: a Performance Portability Framework for Python

Committee:

Milos Gligoric, Supervisor

George Biros

Derek Chiou

Vijay K. Garg

Christopher J. Rossbach

2

PyKokkos: a Performance Portability Framework for Python

by

Nader Al Awar

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December 2024

3

Acknowledgments

This dissertation would not have been possible without the help and support

of many people throughout my time as a Ph.D. student.

My advisor, Milos Gligoric, has been an excellent guide during the past five

years. His support and mentorship throughout the this time were invaluable to the

development of PyKokkos as well as my professional development. I am forever

grateful to him for all I have accomplished and for all my future professional endeavors.

I would also like to thank the members of my dissertation committee, George

Biros, Derek Chiou, Vijay K. Garg, and Christopher J. Rossbach, for their encour-

agement and feedback on my research. My discussions with George in particular were

a great influence on the design of PyKokkos.

My journey as a researcher began during my undergraduate studies at the

American University of Beirut, where I worked under Wassim Masri and Fadi Zaraket.

Their guidance was essential for introducing me to the world of research. Additionally,

during a summer research internship at the University of Illinois Urbana-Champaign,

I worked under Darko Marinov and Owolabi Legunsen, whose mentorship has been a

huge influence on my abilities as a researcher.

I also want to thank all the people I have collaborated with, including Steven

Zhu, Kush Jain, James Almgren-Bell, Hannan Naeem, and Zijian Yi, among others.

Their support was critical to the work I did.

I would also like to thank all of my mentors during my internships: Giorgis

Georgakoudis and Todd Gamblin at Lawrence Livermore National Laboratory and

Min Zhao, Cody Addison, Andrei Alexandrescu, Cédric Augonnet, and Michael Gar-

land at NVIDIA. Their unwavering support, guidance, and mentorship provided me

with many valuable lessons that have profoundly shaped my skills, perspectives, and

aspirations, leaving a lasting and meaningful impact on the trajectory of my career.

4

My work on PyKokkos would not have been possible without Kokkos and other

open source projects. I am extremely grateful to all members of the open source com-

munity who contributed to these projects and to the Kokkos developers particularly,

specifically Christian Trott, Damien Lebrun-Grandie, Sivasankaran Rajamanickam,

and Jonathan Madsen among others.

I am extremely grateful to the staff at the Electrical and Computer Engineer-

ing department at UT Austin, including Cayetana Garcia, Melanie Gulick, Barry

Levitch, and Thomas Atchity, whose assistance was extremely helpful for navigating

the administrative side of things.

Parts of this dissertation were published at the International Conference on

Supercomputing (ICS) 2021 [9] and the International Conference on Software Engi-

neering, Tool Demonstrations Track (ICSE Demo) [10] (Chapter 2). I want to thank

all the anonymous reviewers and the audiences at these conferences for their feedback.

I received financial support from the US National Science Foundation under

Grant No. CCF-1652517 and the Department of Energy, National Nuclear Security

Administration under Award Number DE-NA0003969.

I am eternally grateful to all my friends over the past five years, who deserve

huge thanks for their constant support. To all my cousins and family, and to Omar,

Reebal, Kareem, Omar, Daniel, Aiman, Jamil, and Zayyan (among others), your

support was essential to my work.

Lastly, but most importantly, I would like to thank my family for their unwa-

vering love and support. My father Mahmoud; my mother Salwa; my brother and his

family, Faisal, Rita, and Kareem; and my sister and her family, Reem, Ayoub, and

Haya. None of this work would have been possible without them.

5

Abstract

PyKokkos: a Performance Portability Framework for Python

Nader Al Awar, PhD
The University of Texas at Austin, 2024

SUPERVISOR: Milos Gligoric

High-performance computing (HPC) hardware is becoming increasingly het-

erogeneous, with most modern supercomputers containing different types of proces-

sors, such as central processing units (CPUs) and graphics processing units (GPUs),

from a variety of different hardware vendors, such as NVIDIA, AMD, and Intel. To en-

able programmers to write software that extracts the maximum possible performance

from their processors, hardware vendors typically provide programming frameworks

that specifically target their own hardware.

Developing software with these frameworks results in code that is tightly cou-

pled to the targeted processor since the frameworks have different application pro-

gramming interfaces (APIs) and usage guidelines. Using these frameworks, program-

mers write parallel, high-performance functions, which are known as kernels. The

APIs allow programmers to interface with the processors while the usage guidelines

provide directions on how to write kernel code that extracts the highest possible per-

formance. Differences in these APIs and usage guidelines means that porting code

from one type of processor to another requires considerable effort from programmers:

they must rewrite their code to use the new framework’s API and learn its usage

guidelines and best practices in order to achieve good performance on the new pro-

cessor. Finally, they have to maintain two versions of the same code, one for each

6

processor. As new processors and programming frameworks are constantly emerging,

programmers must keep updating their code to take advantage of the new hardware

and software, which is not a scalable approach to software development.

An alternative approach is to use programming frameworks that enable writing

code that runs on different types of processors with good performance, a concept

known as performance portability. One such framework is Kokkos, a performance

portable programming model with a C++ implementation which aims to provide a

single API that runs efficiently on different hardware. While Kokkos achieves its

goals of performance portability, its availability as a C++-only library negatively

impacts usability. C++ is a powerful and widely used programming language but is

notorious for being difficult to use. This is especially true for scientists with no formal

training in software development, a group that forms a large portion of Kokkos’s user

base. Instead, these users prefer higher level languages such as Python, a high-level,

dynamically-typed, and interpreted language that has historically prioritized usability

over performance.

This dissertation presents PyKokkos, a Python framework for writing parallel

performance portable kernels, as well as PyFuser, a kernel fusion framework which

provides further speedups.

Unlike C++ Kokkos, PyKokkos enables performance portability in Python

by providing software abstractions that allows programmers to write their kernels

entirely in Python. Internally, PyKokkos translates the Python kernel code to C++

Kokkos code, and automatically generates language bindings to allow for interoper-

ability between Python and the generated C++ code. Using PyKokkos, we ported a

number of existing C++ Kokkos examples to Python and showed that the PyKokkos

kernels match the original kernels in terms of performance while being easier to write.

These examples include ExaMiniMD, a ∼3k lines of code molecular dynamics mini-

application. Furthermore, PyKokkos achieves better performance than Numba, the

state-of-the-art Python library for writing kernels.

7

The dissertation then introduces PyFuser, a kernel fusion framework for PyKokkos.

PyFuser first uses lazy evaluation to delay PyKokkos kernel execution and stores them

in a trace. When the output of a kernel is accessed later, PyFuser automatically ex-

tracts the sequence of kernels that need to be executed to produce that output.

PyFuser does not require any modifications to the PyKokkos code it operates on and

is able to achieve speedups of 3.8× on average over the original unfused kernels.

8

Table of Contents

List of Tables . 11

List of Figures . 12

Chapter 1: Introduction . 13

Chapter 2: A Performance Portability Framework for Python 17

2.1 Introduction . 17

2.2 Background and Example . 20

2.2.1 Kokkos . 21

2.2.2 PyKokkos via an Example . 23

2.3 PyKokkos Programming Model . 26

2.3.1 Code Styles . 26

2.3.2 Features . 28

2.3.3 Syntax Rules . 30

2.4 PyKokkos Internals . 31

2.4.1 PKC . 32

2.4.2 Runtime . 34

2.5 Evaluation . 37

2.5.1 Evaluation Setup . 37

2.5.2 Subjects . 37

2.5.3 Performance: Small Applications 38

2.5.4 Performance: ExaMiniMD . 41

2.5.5 Pure Python Execution . 44

2.5.6 Code Characteristics . 44

2.5.7 Numba Comparison . 45

2.6 Conclusion . 47

Chapter 3: Fusing Performance Portable Python Kernels 48

3.1 Introduction . 48

3.2 Motivation . 50

3.2.1 Benefits . 50

3.2.2 Example . 52

3.3 Technique . 53

3.3.1 PyKokkos Runtime . 54

3.3.2 Tracing . 56

9

3.3.3 Fusion . 59

3.3.4 Code Transformations . 61

3.4 Evaluation . 65

3.4.1 Evaluation Setup . 65

3.4.2 Test Subjects . 66

3.4.3 Kernel Speedups . 67

3.4.4 Profiler Metrics . 73

3.4.5 Performance Analysis . 75

3.4.6 Run-time Overhead . 77

3.5 Conclusion . 77

Chapter 4: Related Work . 79

4.1 Python HPC Frameworks . 79

4.2 Kernel Fusion . 80

Chapter 5: Future Work . 86

5.1 Run-time performance . 86

5.1.1 Just-in-time Optimizations . 86

5.1.2 Kernel Fusion Optimizations 87

5.2 Usability . 87

5.3 Debugging . 87

5.4 Code Translation . 88

Chapter 6: Conclusion . 89

Works Cited . 90

10

List of Tables

2.1 Kokkos Features Supported in PyKokkos. 28

2.2 Comparison of Execution Time of PyKokkos and Kokkos Applications
with OpenMP. 39

2.3 Comparison of Execution Time of PyKokkos and Kokkos Applications
with CUDA. 40

2.4 ExaMiniMD Performance Metrics for the Largest Number of Atoms in
Figure 2.5. 42

2.5 Comparison of Pure Python Execution to OpenMP and CUDA in
PyKokkos. 44

2.6 Code Characteristics of PyKokkos and Kokkos Applications. Numbers
for Tutorials and PRK show Total for all Applications in those Groups. 45

2.7 Comparison of Execution Time of PyKokkos and Numba Applications
with OpenMP and CUDA. 46

3.1 Processors used in our experiments. 66

3.2 Kernel Fusion Speedup over Unfused Kernels on the GPUs. 68

3.3 Kernel Fusion Speedup over Unfused Kernels on the CPUs. 69

3.4 Effectiveness of Fusion and Optimization on Reducing Arithmetic In-
structions. A Positive Number Means that the Number of Instructions
Decreased while a Negative Number Means that they Increased. . . . 70

3.5 Effectiveness of Fusion and Optimization on Reducing Memory In-
structions. A Positive Number Means that the Number of Instructions
Decreased while a Negative Number Means that they Increased. . . . 70

3.6 Effectiveness of Fusion and Optimization on Memory Loaded from
DRAM. 71

3.7 Overhead with PyFuser from tracing, fusion, and transformations av-
eraged across all subjects on all processors. 77

11

List of Figures

2.1 An example of a matrix-weighted inner product kernel from the Kokkos
tutorial written in PyKokkos. 18

2.2 Visual summary of the three code styles supported in PyKokkos; the
highlighted boxes represent the code that is translated to C++. . . . 26

2.3 An overview of the PyKokkos framework implementation. 31

2.4 The wrapper function generated by PyKokkos for the inner product
example. 32

2.5 ExaMiniMD total execution time. 42

2.6 ExaMiniMD kernel time for the largest number of atoms in Figure 2.5.
Number of kernel calls is shown in parentheses. 43

3.1 Fusion of two simple PyKokkos kernels where the compiler cannot fully
optimize the code. 51

3.2 PyFuser integration with PyKokkos Runtime. 55

3.3 The algorithms to log kernel calls and retrieve kernel calls associated
with some data. 57

3.4 The Tracer’s internal state over time while executing the example
shown in Figure 3.1a. 58

3.5 Applying transformations to the fused kernels. 62

3.6 Kernel fusion speedup over unfused kernels with our transformations
for adi (A), BabelStream (BS), covariance (C), fdtd 2d (F), GUPS (G),
GUPS Atomic (GA), jacobi 1d (J), mvt (M), Gaussian Naive Bayes (NB),
NSTREAM (NS), syrk (S), syr2k (S2), and Transpose (T). 67

4.1 PyFuser is the first framework for dynamic fusion of general purpose
kernels that runs on different processing units. 81

12

Chapter 1: Introduction

High performance computing (HPC) relies heavily on multi-core processors

that enable high levels of parallelism. In order to fully utilize all cores on these

processors, programmers must use low-level, shared memory parallel programming

frameworks such as OpenMP [52], CUDA [21], HIP [33] and others. These frameworks

require the user to be aware of architecture-specific details in order to write efficient

and high performance code. For example, the optimal memory access pattern on

a CPU typically relies on cached memory accesses, whereas GPUs perform better

with coalesced memory accesses. Therefore, the optimal memory layout for multi-

dimensional arrays varies across different types of processors. Additionally, each

framework has its own syntax for expressing parallel execution patterns, so that an

application written with one framework is tightly coupled to that framework’s syntax

and idioms and is not portable across different frameworks and processors.

Recently, there has been a paradigm shift in shared-memory parallel program-

ming models to account for the issues mentioned above. Kokkos [25] and RAJA [13]

are two models that provide layers of abstraction over existing frameworks to enable

programmers to write performance portable code, i.e., code that runs on different

types of processors with good performance. Both models include high-level abstrac-

tions for expressing common parallel execution patterns and memory layouts while

hiding low-level details about the processor from the user.

While Kokkos and RAJA have achieved their goal of performance portabil-

ity [30], they are implemented as C++ libraries, meaning that general usability re-

mains an issue. Templates, cryptic error messages, manual memory management,

complicated build processes, and other aspects of C++ make for a high barrier of

entry for scientists with limited backgrounds in computer science and programming,

despite scientific computing being the main use-case for HPC.

13

Due to these shortcomings, higher level dynamic languages such as Python and

Julia [15] are preferred to C++ in the scientific computing and machine learning com-

munities [51], both for algorithmic exploration but also increasingly for production. In

the past decade, numerous libraries have been developed for writing high-performance

Python code [8, 31, 50, 55, 69]. For example, the NumPy library [31] provides a high-

performance multi-dimensional array type that is at the core of scientific computing

in Python, while the CuPy library [50] provides the same API but targets GPUs.

We believe that a performance portability framework for Python is essential to

enable more widespread usage of modern parallel processors. Performance portability

is needed to enable usage of different types of processors, while the use of Python

enables faster and easier development and makes these processors available to a wider

audience. Furthermore, the use of a dynamic language such as Python enables op-

portunities for dynamic program optimizations and transformations that are typically

not easily achievable with C++.

We introduce PyKokkos, the first framework for writing performance portable

applications in (a subset of) Python. PyKokkos is an implementation of the Kokkos

programming model. It provides an API that enables developers to write high-

performance, device-portable code entirely in Python. Additionally, PyKokkos inter-

operates with NumPy and CuPy arrays, allowing for easy integration with existing

scientific applications written in Python.

PyKokkos translates Python kernel code to C++ Kokkos. Furthermore, it

automatically generates the necessary Python language bindings to interoperate be-

tween the users’ Python code and the C++ code it generates. It also makes use

of existing (manually-written) Kokkos bindings for memory allocations. Crucially,

PyKokkos makes no changes to the Python language or its interpreter.

We then introduce an automated kernel fusion framework dubbed PyFuser to

further improve the performance of PyKokkos applications. PyFuser delays execution

of kernels and dynamically records traces of kernel invocations within a Python en-

14

vironment. Once a delayed kernel’s outputs are accessed by the application, PyFuser

lazily executes the recorded kernels by fusing them into a single kernel. PyFuser re-

places the kernel calls recorded in the trace with a single call to the fused kernel. This

fused kernel is expected to perform better than the originally recorded kernels as it

will benefit from reuse of data loaded from memory, improved compiler optimizations,

and reduced kernel launch overhead.

To augment the performance of the fused kernels generated by PyFuser, we

also introduce optimizations during the PyKokkos code generation phase that further

improve the performance of the fused kernels. Since PyKokkos generates Kokkos ker-

nels that are optimized statically by a C++ compiler, data sharing patterns between

the kernel arguments are not known, which greatly reduces the compiler’s ability to

optimize code. In a typical PyKokkos kernel, programmers are expected to hand opti-

mize kernels which gives them more control over how the compiler generates code. For

the automatically fused kernels PyFuser generates, programmers do not have direct

access to the fused code and so these optimizations must be applied again to obtain

good performance. We therefore dynamically analyze arguments passed to kernels

and implement code transformations in PyKokkos that enable the C++ compiler to

further optimize the code.

The key contributions of this dissertation include the following:

⋆ Design of a framework, dubbed PyKokkos, for writing performance portable Python

code. PyKokkos is designed to closely follow the Kokkos programming model

while being more concise and easier to use than C++ Kokkos. We implemented

PyKokkos by combining code translation and automatic binding generation.

⋆ Design and implementation of PyFuser, a framework for automatic kernel fusion.

PyFuser records traces of PyKokkos kernel calls and fuses them lazily to generate

more performant kernels. We also introduce dynamic code transformations in the

PyKokkos code generation phase in order to further improve the performance of

the fused kernels.

15

⋆ We perform an extensive evaluation of PyKokkos and PyFuser. We evaluate

PyKokkos by manually porting C++Kokkos applications to Python and PyKokkos,

including ExaMiniMD [4], a scientific application for molecular dynamics. Our re-

sults show that the kernels generated by PyKokkos can match the performance of

manually written C++ kernels. We also evaluated PyFuser on the same bench-

marks as well as a Particle-in-cell code originally implemented in PyKokkos [11].

Additionally, we evaluated PyFuser on a PyKokkos implementation of scikit-learn’s

Gaussian Naive Bayes classifier as well as NPBench, a collection of Python bench-

marks. We assess the benefits of PyKokkos and PyFuser using multiple CPUs and

GPUs. We also perform a deep dive into our results and report our findings for

various (kernel, processor) pairs. The insights gained here are broadly applicable

to other frameworks, including Kokkos and its underlying backends.

⋆ PyKokkos and PyFuser are both open source and are publicly available at https:

//github.com/kokkos/pykokkos.

16

https://github.com/kokkos/pykokkos
https://github.com/kokkos/pykokkos

Chapter 2: A Performance Portability Framework

for Python

In this chapter, we present PyKokkos, a Python implementation of the Kokkos

programming model. Kokkos provides abstractions for data management and com-

mon parallel operations, allowing developers to write portable high performance code

with minimal knowledge of architecture-specific details. Kokkos was originally im-

plemented as a heavily-templated C++ library. However, C++ is not ideal for rapid

prototyping and quick algorithmic exploration. An increasing number of developers

use Python for scientific computing, machine learning, and data analytics. PyKokkos

enables writing performance portable applications entirely in Python. It provides

Kokkos-like abstractions that are easier to use and more concise than the C++ in-

terface. We implemented PyKokkos by building a translator from a subset of Python

to C++ Kokkos and bridging necessary function calls via automatically generated

Python bindings. PyKokkos is also compatible with NumPy and CuPy, two widely-

used high performance Python libraries. By porting several existing Kokkos applica-

tions to PyKokkos, including ExaMiniMD (∼3k lines of code in C++), we show that

the latter can achieve efficient execution with low performance overhead. 1

2.1 Introduction

PyKokkos is a framework that enables writing performance portable kernels en-

tirely in Python. It provides a domain specific language and abstractions that allow

developing high-performance Python applications. Unlike existing Python libraries

that operate within the same domain [8, 31, 55, 69], PyKokkos enables developers to

write custom, high-performance, parallel kernels that can run efficiently on different

1Parts of this chapter are published at ICS 2021 [9] and ICSE DEMO 2022 [10]. I led the design,
implementation, and evaluation of PyKokkos, as well as the analysis of the data and writing of the
papers.

17

1 import pykokkos as pk

2

3 @pk.workunit

4 def yAx(

5 m: pk.TeamMember, acc: pk.Acc[int],

6 N: int, M: int, y: pk.View2D[int], x: pk.View2D[int], A: pk.View3D[int]

7):

8 e: int = m.league_rank()

9

10 def team_reduce(j: int, team_acc: pk.Acc[int]):

11 def vector_reduce(i: int, vector_acc: pk.Acc[int]):

12 vector_acc += self.A[e][j][i] * self.x[e][i]

13

14 tempM: int = pk.parallel_reduce(

15 pk.ThreadVectorRange(m, self.M), vector_reduce)

16 team_acc += self.y[e][j] * tempM

17

18 tempN: int = pk.parallel_reduce(

19 pk.TeamThreadRange(m, self.N), team_reduce)

20

21 def single():

22 nonlocal acc

23 acc += tempN

24

25 pk.single(pk.PerTeam(m), single)

26

27 # Assume E, N, M are given on command line and parsed before use

28 if __name__ == "__main__":

29 pk.set_default_space(pk.OpenMP)

30 y = pk.View([E, N], dtype=int)

31 x = pk.View([E, M], dtype=int)

32 A = pk.View([E, N, M], dtype=int)

33

34 policy = pk.TeamPolicy(pk.Default, E, pk.AUTO, M)

35 result = pk.parallel_reduce(policy, yAx, N=N, M=M, y=y, x=x, A=A)

Figure 2.1: An example of a matrix-weighted inner product kernel from the Kokkos
tutorial written in PyKokkos.

18

processors. It dynamically (i.e., at run-time) translates the PyKokkos kernels into

C++ Kokkos, while also automatically generating language bindings to interface be-

tween the two languages. PyKokkos compiles the C++ code it generates using any

supported C++ Kokkos compiler (e.g., GCC, Clang, NVCC, etc.) and imports it

into Python. The compiled code is cached on the file system so that it can be re-used

during later runs instead of re-compiling. All of this is done dynamically and trans-

parently to the programmer by the PyKokkos Runtime. Figure 2.1 shows an example

of a PyKokkos kernel which is discussed in detail in Section 2.2. We implemented

PyKokkos as a Python library that integrates seamlessly and naturally with existing

Python code.

Prior to PyKokkos, calling a high-performance kernel from Python requires

implementing it in C or C++ instead of Python itself for performance reasons. These

kernels are then wrapped in manually written language bindings for interoperability

with other languages, including Python. This is commonly done in practice and can

be seen in some of the most popular Python packages, including SciPy [69], a Python

library for scientific computing, and machine learning libraries such as TensorFlow [8]

and PyTorch [55]. However, if a C++ implementation of a kernel is not available,

developers have to look for alternatives.

Numba [39] is a just-in-time compiler for Python that targets LLVM [41].

Numba can target a number of different processors but does not provide high-level ab-

stractions to hide processor-specific code, so portability remains an issue. Cython [14]

is a static compiler that extends Python with C-like syntax to achieve better perfor-

mance. However, these extensions make Cython a superset of Python, which may

not be desirable, and Cython supports only OpenMP for parallelism at this point.

PyKokkos is the first framework for writing performance portable applica-

tions through Python. PyKokkos is an implementation of the Kokkos programming

model. It provides an API that enables developers to write high-performance, device-

portable code entirely in Python. Additionally, PyKokkos provides interoperability

19

with NumPy and CuPy arrays, allowing for easy integration with existing high per-

formance Python applications.

To demonstrate the efficacy of PyKokkos in writing performance portable

kernels, we ported a number of existing C++ Kokkos applications to Python and

PyKokkos. Our results show that the kernels generated by PyKokkos match their

respective C++ Kokkos kernels in terms of run-time performance while also being

easier to write, while the overhead introduced by PyKokkos itself is negligible.

The main contributions of the PyKokkos project include:

⋆ Design of a framework, dubbed PyKokkos, for writing performance portable Python

code. PyKokkos is designed to closely follow the Kokkos programming model while

being more concise and easier to use than C++ Kokkos.

⋆ Implementation of the framework by combining code translation and automatic

binding generation. PyKokkos supports three styles to write PyKokkos applications

and can currently run on both CPUs and GPUs.

⋆ Evaluation of PyKokkos using a number of applications, including existing high-

performance kernels and ExaMiniMD, which is a large-scale molecular dynamics

application. Our results show that the kernels generated by PyKokkos can match

the performance of manually written C++ kernels.

The PyKokkos source code and applications that we wrote are available at https:

//github.com/kokkos/pykokkos.

2.2 Background and Example

In this section, we first provide some background on Kokkos (Section 2.2.1),

then we introduce PyKokkos via an example (Section 2.2.2).

20

https://github.com/kokkos/pykokkos
https://github.com/kokkos/pykokkos

2.2.1 Kokkos

Kokkos is a programming model that provides abstractions for writing per-

formance portable HPC code. The two major components of the Kokkos model are

execution spaces and memory spaces. Given a computing node, the processors are

modeled as execution space instances, and the different memory locations are mod-

eled as memory spaces. For example, on a machine with a CPU and a GPU, there

could be two (or more) execution spaces, the CPU and the GPU, and two correspond-

ing memory spaces, main memory and GPU memory. The other main abstractions

provided by Kokkos include:

• Execution patterns: an execution pattern represents a parallel operation includ-

ing parallel for, parallel reduce, and parallel scan, as well as task-based program-

ming abstractions.

• Execution policies: an execution policy specifies how a parallel operation runs.

The simplest policy is RangePolicy, which specifies that an operation will run

for all values in a range. Another policy is the TeamPolicy that can be used for

hierarchical (also known as nested) parallelism. The execution policy can also be

used to set the execution space.

• Memory layouts: the memory layout specifies how data buffers are laid out

in memory. For example, Kokkos supports column-major and row-major layouts

among others.

• Memory traits: the memory trait specifies access properties of data buffers. For

example, this could be set to Atomic, so that all accesses to elements of the data

buffer are atomic.

The C++ Kokkos library (Kokkos for short) is a concrete instantiation of the pro-

gramming model described above. The main data structure is a multi-dimensional

array referred to as a View. It is implemented as a C++ class templated on the data

type, number of dimensions, memory space, memory layout, and memory trait. It

maintains a memory buffer internally and uses reference counting for automatic mem-

21

ory management. The following code snippet shows an example of a one-dimensional

View of size N holding elements of type int.

Kokkos::View<int*> v("v", N);

Kokkos uses C++ functors to define the computational body of parallel opera-

tions. Functors are classes or structs that define operator() as an instance method.

The body of this method is therefore the kernel and it represents the operation that

will be executed by each thread. The following code shows a simple example of a

functor that performs a reduction over all the elements of a View.

struct Functor {

Kokkos::View<int*> v;

Functor(Kokkos::View<int*> v) : v(v) { }

KOKKOS_FUNCTION void operator() (int tid, int& acc) const {

acc += this->v(tid);

}

};

KOKKOS FUNCTION is a macro that abstracts framework-specific function type

qualifiers for portability (e.g., host device for CUDA). A work index (tid in

the example above) parameter representing the thread ID is included in the operator()

method signature. Since this is a reduction operation, a scalar result must be re-

turned, so the definition includes an additional parameter, called an accumulator,

that is passed by reference to hold that result. The scan operation additionally re-

quires a boolean parameter to indicate whether the scan operation is on its final pass;

the final pass is used to update the elements of a View. The parallel for operation

only requires a work index as a parameter.

All the variables and Views needed by a functor are defined as instance vari-

ables (see v in the snippet above). An alternative to functors is C++ lambdas, or

anonymous functions. Instead of instance variables, lambdas capture all the variables

they need from the scope they are defined in. Lambdas are commonly more concise

than functors, but the two are otherwise equivalent.

22

Kokkos provides a different function for each parallel operation: parallel for,

parallel reduce, and parallel scan. These functions accept as input an execution

policy (or simply the number of threads) as the first argument and a functor object

or a lambda as the second argument. As mentioned before, reduce and scan return a

scalar result, so their functions accept as input a third argument passed by reference

to hold that result. The following code shows how the functor defined earlier is used

to call parallel reduce, where N represents the number of elements of the View.

Functor f(v);

int acc = 0;

Kokkos::parallel_reduce(Kokkos::RangePolicy<>(0, N), f, acc);

Kokkos implements these operations for all the HPC backends it supports,

including OpenMP, CUDA, and others. The user selects which backends to enable

when invoking the compiler. During compilation, Kokkos selects the default execution

spaces from the enabled backends, the corresponding memory spaces, and the optimal

memory layouts for those spaces. An application can be ported to other devices by

re-compiling with the needed execution spaces.

2.2.2 PyKokkos via an Example

PyKokkos is a Python implementation of the Kokkos model that enables de-

velopers to write performance portable Python applications. It is implemented as a

Python framework and provides an API that is similar in structure to the Kokkos

API, but is as easy to use as existing Python libraries. Internally, PyKokkos trans-

lates certain parts of the application into Kokkos and C++, automatically generates

Python bindings for interoperability, and compiles and imports them. It also makes

use of existing bindings to Kokkos to perform memory allocation.

Figure 2.1 shows an example written entirely in Python using PyKokkos. This

example is taken from the team vector loop exercise in the Kokkos tutorials repos-

itory [2], and is used to demonstrate hierarchical parallelism in Kokkos. It calculates

23

a matrix-weighted inner product yTAx. We manually ported this example from C++

and Kokkos to Python and PyKokkos.

The first step in writing a PyKokkos application is to import the pykokkos

package (line 1). The as pk statement added after the import statement indicates

that pk is an alias for pykokkos.

A PyKokkos workunit represents the body of the parallel operation. It is

defined by decorating a function definition with @pk.workunit (line 3). Since this

particular workunit is a reduction operation, its first two parameters are a work in-

dex and an accumulator variable (line 5). The work index for this workunit is of

type pk.TeamMember since it uses hierarchical parallelism. Since the accumulator is

modified in the workunit, it cannot be a primitive type in Python, so we use the

pk.Acc class type parameterized with a specific data type. The remaining param-

eters are user-specified and can be used to pass Views and scalars to the workunit.

PyKokkos provides type annotations for Views that include the number of dimensions,

i.e., View1D, View2D, etc. up to eight dimensions (the maximum allowed by Kokkos)

as well as the data type. PyKokkos also provides type annotations for fixed width

types (e.g., float32) but native Python types can be used as well. Specifying these

type annotations in the workunit signature is optional as PyKokkos can determine

the types dynamically from the arguments passed to the kernel call at run-time.

The Views y, x, and A are created by calling the View() constructor (lines 30-

32). The first argument to the constructor is a list of the View’s dimensions. In this

example, y and x are two dimensional Views, and A is three dimensional; E, N, and

M are arbitrary integer values provided through the command line by the user. The

second argument is the data type of the View. Additional arguments could include

memory layouts, memory spaces, and memory traits. If not specified, these are set

based on the current default execution space.

The execution policy of the functor is a TeamPolicy (line 34) since it uses

hierarchical parallelism. The first argument is the execution space, OpenMP in this

24

case since it was set as the default. The second argument is the number of thread

teams. In Kokkos, a single thread team is a group of threads that share a common

team index. The third argument is the size of each team; AUTO tells Kokkos to select

the appropriate team size based on the target architecture. The final argument is the

vector length, i.e., the number of threads on the final level of parallelism.

To run the workunit, parallel reduce is called with the execution policy,

workunit, and user-specified kernel arguments passed as arguments (line 35). When

the workunit finishes execution, parallel reduce returns the result of the reduction

operation. This is in contrast to Kokkos, which returns the result through a variable

passed by reference.

We will now discuss the body of the workunit. On the outermost team level,

each thread obtains its team index via league rank() (line 8), a value shared across

threads in the same team. The second level is the thread level and the third and

final level is the vector level. The operations in the inner levels are defined using

nested functions (lines 10 and 11). Nested functions capture the variables that are in

scope when they are defined. In this case, both functions capture e (the team index),

and the innermost function captures j (the thread index). The nested functions can

then be invoked by calling parallel reduce with the appropriate execution policy

(lines 15 and 19). Finally, one thread per team member updates the outermost

accumulator variable (line 25). The nonlocal statement is needed in Python so that

acc is not redefined in the nested function. Once all threads are finished executing,

the reduction result is returned through the original parallel reduce on line 35.

This example can be executed with CUDA by simply changing the default

execution space (line 29). PyKokkos takes care of setting the proper memory spaces

and layouts in the View constructors.

25

@pk.functor
class functor:

ClassSty ClassStyWithMain FunctionSty

@pk.workunit
def kernel(...):

if __name__ == "__main__":
 f = functor(...)
 pk.parallel_for(N, f.kernel)

@pk.workload
class workload:

@pk.workunit
def kernel(...):

pk.parallel_for(N, kernel)

@pk.main
def run():

if __name__ == "__main__":
 w = workload(...)
 pk.execute(space, w)

...

... if __name__ == "__main__":
 pk.parallel_for(N, kernel, ...)

@pk.workunit
def kernel(...):

def __init__(...):
...

def __init__(...):

...

...

Figure 2.2: Visual summary of the three code styles supported in PyKokkos; the
highlighted boxes represent the code that is translated to C++.

2.3 PyKokkos Programming Model

In this section, we first show three styles for writing PyKokkos workunits

(Section 2.3.1), then we show the Kokkos features that are currently supported (Sec-

tion 2.3.2), and finally we describe what Python syntax is allowed for the parts of the

application that get translated to C++ (Section 2.3.3).

2.3.1 Code Styles

At present, PyKokkos supports three styles to organize workunits, which we

call ClassSty, ClassStyWithMain, and FunctionSty. We show the differences between

these styles in Figure 2.2. The highlighted boxes in each style represent the code that

is translated to C++. In this section, we will describe each of three styles and show

how they compare to the syntax of C++ Kokkos. Note that developers do not have

to stick to a single style, as they are allowed to arbitrarily mix and match the styles

across a single application.

26

PyKokkos uses Python decorators to annotate functions and classes that define

workunits. Line 3 in Figure 2.1 illustrates the use of decorators available in PyKokkos.

2.3.1.1 ClassSty

In the ClassSty style, workunits are defined as methods, and a single class can

contain one or more workunits. Each class is similar in style to a Kokkos functor,

with the major difference being that workunits are annotated with @pk.workunit

instead of the operator() method in C++. Only Views and other member variables

that are defined with type-annotations in the constructor can be used in workunits.

Additionally, Kokkos functions can be defined as methods inside a PyKokkos class

using the @pk.function decorator. These methods can then be called from any

workunit within the class.

2.3.1.2 ClassStyWithMain

The ClassStyWithMain style is similar to the ClassSty style except that it

also contains a special method decorated with @pk.main, which we refer to as the

PyKokkos main method. This method allows us to use parts of the Kokkos API

for which we currently do not have bindings, such as BinSort. We add Python

endpoints similar to the Kokkos API and translate those calls directly to the cor-

responding C++ version. This can also be used to call parallel operations, which

similarly get translated to Kokkos. To execute the main method, the user calls

pk.execute(execution space, instance), where instance is an instance of a

pk.workload class.

2.3.1.3 FunctionSty

With this style (used in Figure 2.1), PyKokkos attempts to mimic C++

lambda usage in Kokkos. (Using Python lambdas is not an option since they are

limited to a single expression unlike lambdas in C++.) The FunctionSty style al-

27

Table 2.1: Kokkos Features Supported in PyKokkos.

Feature Details

Views Multi-dimensional Views, Subviews, Dual Views

Memory Spaces HostSpace, CudaSpace, CudaUVMSpace, HIPSpace

Memory Layouts LayoutRight, LayoutLeft

Memory Traits Atomic, RandomAccess, Restrict, Unmanaged

Execution Spaces OpenMP, CUDA, HIP, Threads, Serial

Execution Patterns parallel for, parallel reduce, parallel scan

Execution Policies RangePolicy, MDRangePolicy, TeamPolicy, TeamThreadRange,
ThreadVectorRange, TeamThreadMDRange, WorkTag

Hierarchical Parallelism Team Loops, Vector Loops

Atomic Operations All atomic fetch [op] operations

Other Kokkos Functions, BinSort, Timer, printf

lows standalone workunits that are defined as global functions (outside any class).

In addition to the specific arguments required by each operation (e.g., accumulator

for reduction), all Views and variables needed by the workunit are passed as type-

annotated arguments. These arguments are passed to the workunit when the parallel

operation is called.

We recommend using this style over the others as it is more familiar to Python

programmers and will be the main style we support in the future.

2.3.2 Features

Table 2.1 shows what parts of Kokkos are supported in PyKokkos. The first

column shows the names of the key Kokkos features and the second column shows

the parts that are supported in PyKokkos.

PyKokkos Views are created through a regular constructor call (see lines 30-32

in Figure 2.1). Multi-dimensional Views are supported, as well as Kokkos Subviews,

28

which are slices of Views that reference a subset of an existing View’s data, and View

resizing. Kokkos DualViews contain both a host and device buffer and are used to

easily transfer data between the two. PyKokkos does not provide an abstraction

for DualViews explicitly; instead, data is copied implicitly to device memory when

necessary, as we will show in Section 2.4.2.3. This avoids burdening the user with

having to explicitly copy memory between host and device memory and is in line with

our view that PyKokkos can be used for rapid prototyping.

PyKokkos Views can be allocated in HostSpace (main memory), CudaSpace

(CUDA GPU global memory), CudaUVMSpace (CUDA GPU unified memory), or

HIPSpace (HIP GPU global memory). The supported memory layouts are LayoutRight

(row-major) and LayoutLeft (column-major). All memory traits that are available

in Kokkos are supported.

The supported Kokkos backends are OpenMP, CUDA, HIP, Threads, and Se-

rial. In the future, other backends can be supported simply by adding API endpoints

that allow the user to select them. All major loop-based execution patterns are sup-

ported. There is also support for most execution policies, including RangePolicy,

MDRangePolicy (multi-dimensional range), as well as the other policies needed for

hierarchical parallelism shown in Figure 2.1.

In Kokkos, WorkTags are used as identifiers for operator() methods in func-

tors, since these methods cannot have user-defined names and a functor could have

multiple workunits. Unlike Kokkos, PyKokkos identifies workunits through the @pk.-

workunit decorator (line 3 in Figure 2.1), so the user-defined kernel names can be

used instead of WorkTags.

There is also support for various Kokkos features including some atomic op-

erations, Kokkos functions (functions called from workunits), BinSort, the Kokkos

Timer, and printf() in workunits.

29

2.3.3 Syntax Rules

PyKokkos translates all functions and classes that are annotated with @pk.functor,

@pk.workunit, and @pk.function, which we collectively refer to as annotated code,

to C++ Kokkos. This forces restrictions on what is allowed in annotated code. In

this section, we describe these restrictions in detail.

Python is a dynamically typed language, meaning that variable types can

change at run-time. On the other hand, C++ is statically typed, meaning that all

variable types need to be known at compile-time and cannot be altered at run-time.

Therefore, annotated code must have type annotations for all variables and Views;

this includes both local and instance variables. However, the type annotations for

workunit parameters are optional as PyKokkos can determine them at run-time when

the kernel is called. One other restriction is that variables cannot be assigned to values

of a different type. These restrictions do not apply outside annotated code.

Another characteristic of Python that affects translation is scoping. Whenever

a function is called in Python, it creates a new local scope. Variables defined inside

control blocks like if and for are scoped to the containing function. If the body

of a control block contains a variable definition, then that variable can be accessed

after the control block provided that it is executed. If the body of the control block

is not executed, accessing the variable results in a run-time error. In C++, variables

defined in control blocks go out of scope at the end of those blocks. Attempting to

access these variables outside the block they were defined in results in a compile-time

error. Therefore, PyKokkos annotated code has to conform to the C++ scoping rules

in this regard.

Finally, not all variable types are allowed in annotated code. As of now, the

types allowed are int, float, bool, C++ integer and floating point types of dif-

ferent sizes (e.g., int32 t, double, etc.), pk.View, and some NumPy primitive types.

PyKokkos also allows user-defined classtypes that can be used in annotated code.

These classtypes are Python classes with constructors and methods decorated with

30

Runtime

TranslatorParser Serializer Compiler
Python AST C++ AST C++ source

Import + Call

Results

PKC

.so files

3

2

4

1

Kernel Call

5

6

7

8

Figure 2.3: An overview of the PyKokkos framework implementation.

@pk.function (classtypes are therefore also considered as annotated code). Other

types are not supported either because they are not necessary (strings), there is no

clear C++ equivalent, or the C++ equivalent cannot be used in Kokkos code. Addi-

tionally, using modules from the Python Standard Library is not allowed in annotated

code, except for several functions from the math module that can be mapped to C++

cmath functions.

In summary, PyKokkos annotated code is a subset of Python that adds re-

strictions to its dynamic typing, scoping rules, and allowed types in order to enable

translation to C++.

2.4 PyKokkos Internals

In this section, we describe the PyKokkos framework internals. We imple-

mented PyKokkos entirely in Python in order to allow for easy integration into exist-

ing Python codebases. Additionally, the Python Standard Library contains modules

for working with the Python AST.

At a high level, PyKokkos first translates annotated code written in Python

into C++ Kokkos code, compiles that code into a shared object file that can be im-

ported as a Python module, and finally imports that module and calls the workunits as

required. The process is illustrated in Figure 2.3. The main component of PyKokkos

is PKC (Section 2.4.1), which generates C++ source files for each kernel call. At run-

time, the PyKokkos Runtime component handles invoking PKC, importing modules,

calling bindings, and creating Views (Section 2.4.2).

31

1 int bind_yAx(

2 int N, int M,

3 Kokkos::View<int **> y,

4 Kokkos::View<int **> x,

5 Kokkos::View<int ***> A,

6 int league_size, int team_size, int vector_length) {

7 // Functor is translated from Python

8 Functor functor(N, M, y, x, A);

9 int acc = 0;

10

11 Kokkos::parallel_reduce(

12 Kokkos::TeamPolicy<Functor::yAx>(

13 league_size, team_size, vector_length),

14 functor, acc);

15 return acc;

16 }

Figure 2.4: The wrapper function generated by PyKokkos for the inner product
example.

2.4.1 PKC

During translation, PyKokkos obtains the types of the workunit parameters

statically if they are specified in the code or dynamically through the arguments

passed to the kernel call. The types in the workunit body are obtained statically.

Parser. PKC first calls the Parser (step 1○ in Figure 2.3) passing as input the files

containing the annotated code. The Parser uses the ast module to generate an AST

from the Python source. It then scans the AST to find and obtain all annotated code.

All of the relevant AST nodes are then passed to the Translator (step 2○).

Translator. The next step is translating the AST into C++. First, the Translator

checks that the PyKokkos annotated code does not use types and Standard Library

functions that are not allowed. (PyKokkos does not currently type-check annotated

code but this could be done by the user using type-checkers such as MyPy [1].)

The Translator proceeds by extracting type information for all kernel parame-

ters. C++ Views are templated on data type, dimensionality, memory layout, memory

32

space, and memory traits, so PyKokkos has to collect this information per View, ei-

ther statically or by examining the Python View objects. Since the memory space

depends on the execution space, PyKokkos needs to generate a different template

argument per memory space. To avoid generating multiple types per memory space,

we use a C++ macro that we set to the enabled execution space’s memory space

during compilation.

Note that regardless of the PyKokkos style used, annotated code is always

translated into Kokkos functors and not lambdas, as this simplifies the translation

process. The member variables of the generated C++ Kokkos functor are the kernel

parameters extracted in the previous step.

The final step is to generate bindings to call the translated workunits. Since

there are no existing bindings for invoking the parallel operations, we cannot call them

directly from Python. To solve this, the Translator creates wrapper functions that call

the parallel operations internally. Figure 2.4 shows the wrapper function generated

for the example shown in Figure 2.1. The arguments of the wrapper are the members

extracted in the previous step and are passed to the functor constructor (line 8). The

wrapper then calls parallel reduce (line 11) and returns the result (line 15). The

Translator then binds these wrappers using the C++ pybind11 library [58]. The

Translator passes the C++ AST to a Serializer (step 3○) which generates a source

file and passes it to a C++ compiler (step 4○) which compiles it into a shared object

file (step 5○).

Finally, PKC calls a C++ compiler to compile the generated source file. If a

CPU execution space is selected (e.g., OpenMP), PKC uses a host compiler such as

GCC or Clang. If a GPU space is selected (e.g., CUDA or HIP), PKC uses a device

compiler such as NVCC or HIPCC.

33

2.4.2 Runtime

The PyKokkos API can be divided into two groups: an interface for executing

code and an interface for Views. First, we show how the PyKokkos Runtime (and by

extension Kokkos) is initialized. Second, we show how the Runtime invokes parallel

operations. Third, we discuss how Views are created and shared between Python and

C++. Finally, we describe how annotated code can be run sequentially in Python,

which can help debug kernels.

2.4.2.1 Initialization

PyKokkos is initialized when the import pykokkos statement is executed.

This creates all the necessary entities that are needed by PyKokkos at run-time: the

Runtime, Parser, Translator, and Serializer. Additionally, PyKokkos internally calls

Kokkos::initialize(). This initializes all Kokkos internal objects and acquires

hardware resources. PyKokkos also registers Kokkos::finalize() to be called when

Python terminates.

2.4.2.2 Parallel Execution

To call a parallel operation, the user has to pass in a workunit and execution

policy. This workunit can either be a method in an initialized object, i.e., ClassSty, or

a free function, i.e., FunctionSty. For the latter, the user also passes in all the neces-

sary arguments. For the former, the Runtime automatically extracts these arguments

from the class members. The ClassStyWithMain style does not require an execution

policy since it can execute multiple workunits, each of which could potentially have

a different execution policy specified at each kernel call in the @pk.main method.

The Runtime then checks whether a module (i.e., the shared object binary

file containing the compiled kernel) corresponding to the workunit has already been

generated with PKC. If not, this means that the compile-time phase was skipped by

the user, so the Runtime has to call PKC (step 6○).

34

The Runtime can then import the module and call the necessary wrapper

function (step 7○). For ClassSty and FunctionSty the execution policy passed by the

user provides additional arguments that are passed on to the wrapper function, where

they are used to construct the execution policy object (e.g., line 12 in Figure 2.4).

The wrapper function instantiates the Kokkos functor and execution policies,

and then calls the necessary parallel operations. After execution terminates, the

Runtime transfers the results of all reduction and scan operations back to Python.

For FunctionSty and ClassSty there is only a single result that will be returned directly

by the wrapper function (step 8○). For ClassStyWithMain, there could be multiple

calls to parallel reduce or scan, so the result of each operation is added to a View that

the Runtime can access.

2.4.2.3 Views

PyKokkos Views are classes created through regular constructor calls (see

lines 30-32 in Figure 2.1). Similar to Kokkos, the user is not expected to set the

memory space and layout of a PyKokkos View for portability reasons. Instead,

PyKokkos selects these based on the current default execution space. For the CPU

execution spaces such as OpenMP, the memory space is always set to HostSpace. For

GPU execution spaces such as CUDA or HIP, PyKokkos does not use CudaSpace or

HIPSpace since they are not accessible from Python. It has to select a host accessible

memory space i.e., HostSpace or CudaUVMSpace (Unified Virtual Memory [20]). At

run-time, HostSpace Views are copied to CudaSpace or HIPSpace as needed. This

approach allows the user to switch between different execution and memory spaces

without worrying about where the data is located in memory.

When the PyKokkos View constructor is called, it invokes the C++ Kokkos

View constructor internally through the available Python bindings [58]. This con-

structor allocates the memory for the View data buffer and the binding returns a

Python object that provides access to the underlying data buffer through a NumPy

35

array. The returned object can be passed by reference between C++ and Python

through pybind11.

Additionally, we implemented a binding for another Kokkos View constructor

that accepts as input an allocated memory buffer. This allows users to create a View

from a pre-existing NumPy or CuPy array, avoiding the cost of allocating memory

again. Additionally, for CuPy arrays, PyKokkos uses the existing GPU memory buffer

allocated by CuPy for the array to avoid re-allocating GPU memory and copying data

on kernel calls.

The PyKokkos View type is therefore a wrapper over NumPy and CuPy array.

Its purpose is to provide an interface that is similar to the Kokkos View interface,

specifically the constructor. Otherwise, it behaves as a regular NumPy or CuPy array

in Python. This allows PyKokkos to be easily added to existing Python codebases.

2.4.2.4 Pure Python Execution

Since valid annotated code is a subset of valid Python code, PyKokkos sup-

ports execution of workunits in Python. This is especially helpful for debugging

logic-based errors in Python rather than C++ due to the dynamic nature of Python.

We implement calls to parallel operations using sequential for loops. In every

iteration, we pass the current iteration counter to the workunit as the thread ID.

To support hierarchical parallelism, we pass an object which provides access to the

thread and team ID. MDRangePolicy iterates over multiple ranges, so we loop over

a combination of two thread IDs. In reduce and scan operations, the pk.Acc object

wraps the result as a substitute for Python’s lack of reference types for primitives.

We overloaded the arithmetic operators of pk.Acc so it can behave like a regular

primitive type without any extra function calls.

36

2.5 Evaluation

In this section, we present the results of our evaluation of PyKokkos. First,

we show how PyKokkos performance compares to C++ Kokkos for smaller applica-

tions where the running time is dominated by kernel execution. Second, we compare

PyKokkos and Kokkos performance for a larger application. Third, we report the cost

of pure Python execution of PyKokkos (i.e., Python sequential execution). Fourth,

we compare the PyKokkos code to Kokkos code in terms of the lines of code and

number of characters. Finally, we briefly compare PyKokkos with Numba.

2.5.1 Evaluation Setup

We ran all experiments on an Ubuntu 18.04.5 machine with a 6-core Intel

i7-8700 3.20GHz CPU and 64GB RAM and an NVIDIA GeForce RTX 2080 GPU

with 8GB of memory. For all our experiments, we used Python 3.8.3, Kokkos 3.1.01,

OpenMP 4.5, CUDA 10.2, GCC 7.5, and Numba 0.51.

2.5.2 Subjects

For the purposes of our experiments, we ported existing C++ Kokkos appli-

cations to PyKokkos. We implemented 7 exercises from the official Kokkos tutorials

repository [2]. All exercises follow a structure similar to the example in Figure 2.1:

calculate a matrix-weighted inner product using an outer loop and inner loop, each

of which performs a reduction operation. Each exercise introduces a feature that

improves on the previous exercise. The exercises we did not port use features that

we do not currently support or are not relevant to PyKokkos, e.g., 01 uses malloc()

instead of Views (so it is not meaningful to port to Python). Specifically, we ported

02, 03, 04, subview, mdrange, team policy, and team vector loop:

• 02: Introduces Views and uses the View constructors instead of malloc() in 01.

• 03: Introduces device (i.e., GPU) Views and shows how memory is copied between

host and device.

37

• 04: Introduces memory spaces, layouts, and RangePolicy.

• mdrange: Introduces MDRangePolicy to initialize matrix A.

• subview: Introduces subview to split each column of A into a one-dimensional

View that can be accessed separately.

• team policy: Introduces two-level hierarchical parallelism by replacing the inner

sequential reduction with a parallel version that uses TeamPolicy.

• team vector loop: Increases the dimensionality of each view and introduces

three-level hierarchical parallelism using Team-Thread-Range (shown in Figure 2.1).

We also implemented the NSTREAM, Stencil, and Transpose kernels from the Parallel

Research Kernels (or PRK) repository [35]; the bytes and flops, gups, and gather

benchmarks from the official Kokkos repository; and BabelStream [22]. Finally, we

ported ExaMiniMD [4], a ∼3k lines of code molecular dynamics application, entirely

to Python (and PyKokkos). We excluded code from the original implementation

(which is written entirely in C++) that was not executed by the inputs provided in

the repository. For all PyKokkos code, we used the ClassStyWithMain style. All

kernel execution times were collected with the Simple Kernel Timer from the kokkos-

tools repository [3].

2.5.3 Performance: Small Applications

In this section, we compare the performance of PyKokkos to Kokkos for smaller

applications where the running time is dominated by kernel execution. All values

shown (e.g., execution time) represent the mean of three runs. Additionally, each

application runs the kernel 1,000 times. All CUDA execution times are using CUDA

device memory (i.e., CudaSpace).

Tables 2.2 and 2.3 show execution time for all applications using OpenMP and

CUDA respectively. The first column shows the name of the application. The second

column shows the sizes we used for the largest input View per application. For the

tutorial exercises, this View is A. The rest of each table shows the execution time of

38

Table 2.2: Comparison of Execution Time of PyKokkos and Kokkos Applications
with OpenMP.

Application Size OpenMP Time [s]

Kernel Total

PyKokkos Kokkos Ratio PyKokkos Kokkos

02 218× 210 70.3 69.5 1.01 × 71.8 69.8

219× 210 140.5 139.2 1.01 × 142.4 139.8

03 218× 210 69.8 69.5 1.00 × 71.3 69.8

219× 210 139.5 139.2 1.00 × 141.3 139.8

04 218× 210 69.6 69.5 1.00 × 71.2 69.8

219× 210 139.5 139.2 1.00 × 141.5 139.8

mdrange 218× 210 70.2 69.5 1.01 × 72.9 69.8

219× 210 141.2 139.2 1.01 × 145.4 139.8

subview 218× 210 69.7 69.5 1.00 × 71.2 69.8

219× 210 139.9 139.2 1.01 × 141.7 139.8

team policy 218× 210 69.8 69.6 1.00 × 71.3 69.9

219× 210 139.9 139.4 1.00 × 141.6 140.0

team vector loop 28× 210× 210 70.6 70.4 1.00 × 72.1 70.7

29× 210× 210 141.0 140.5 1.00 × 142.7 141.1

nstream 227× 1 143.8 144.6 0.99 × 145.6 145.1

228× 1 286.7 287.9 1.00 × 289.0 288.9

stencil 212×212 15.9 15.7 1.01 × 26.5 25.3

213×213 63.1 62.1 1.02 × 102.5 100.2

transpose 212×212 23.9 24.0 1.00 × 25.2 24.1

213×213 95.4 95.8 1.00 × 96.8 96.1

bytes and flops 212× 210 127.2 129.8 0.98 × 128.4 129.8

213× 210 254.4 259.5 0.98 × 255.6 259.5

gather 221× 25 112.4 111.2 1.01 × 114.0 111.3

222× 25 223.3 222.7 1.00 × 225.4 222.9

gups 227× 1 104.0 104.0 1.00 × 105.5 104.3

228× 1 207.2 204.9 1.01 × 209.0 205.7

BabelStream 224× 1 71.3 71.5 1.00 × 72.5 71.9

225× 1 143.0 144.2 0.99 × 144.3 144.8

39

Table 2.3: Comparison of Execution Time of PyKokkos and Kokkos Applications
with CUDA.

Application Size CUDA Time [s]

Kernel Total

PyKokkos Kokkos Ratio PyKokkos Kokkos

02 218× 210 5.2 5.3 0.98 × 7.6 6.2

219× 210 10.7 10.7 1.00 × 14.2 11.6

03 218× 210 5.2 5.3 0.98 × 7.5 7.3

219× 210 10.7 10.7 1.00 × 14.0 13.8

04 218× 210 5.2 5.3 0.98 × 7.5 7.2

219× 210 10.7 10.7 1.00 × 14.1 13.8

mdrange 218× 210 5.2 5.3 0.98 × 7.3 6.2

219× 210 10.7 10.7 1.00 × 13.7 11.6

subview 218× 210 5.2 5.3 0.98 × 7.5 7.3

219× 210 10.7 10.7 1.00 × 14.0 13.8

team policy 218× 210 5.3 5.3 1.00 × 7.6 7.3

219× 210 10.4 10.4 1.00 × 13.7 13.5

team vector loop 28× 210× 210 7.9 8.0 0.99 × 10.2 9.9

29× 210× 210 15.9 15.9 1.00 × 19.3 19.1

nstream 227× 1 10.6 10.6 1.00 × 13.2 11.5

228× 1 21.1 21.1 1.00 × 25.3 22.1

stencil 212×212 4.0 4.0 1.00 × 6.4 6.1

213×213 15.7 16.0 0.98 × 22.0 21.5

transpose 212×212 1.7 1.7 1.00 × 2.9 2.6

213×213 6.5 6.5 1.00 × 8.2 7.4

bytes and flops 212× 210 53.0 53.7 0.99 × 54.2 54.5

213× 210 103.6 105.3 0.98 × 104.8 106.1

gather 221× 25 32.3 32.6 0.99 × 34.0 33.4

222× 25 64.3 65.7 0.98 × 66.6 66.5

gups 227× 1 2.5 2.5 1.00 × 4.7 4.1

228× 1 5.0 5.0 1.00 × 8.2 7.2

BabelStream 224× 1 4.1 4.1 1.00 × 5.4 5.3

225× 1 8.1 8.1 1.00 × 9.6 9.7

40

the main kernel and the total execution time of PyKokkos and Kokkos. The Ratio

columns show PyKokkos kernel execution time relative to Kokkos.

The results show that PyKokkos can achieve performance parity with Kokkos

for these applications. By comparing kernel execution time for both PyKokkos and

Kokkos across both backends, it can be seen that kernel code generated by PyKokkos

can match the corresponding Kokkos version for performance. Any slight difference

can likely be attributed to the overhead caused by running the Python interpreter

concurrently with the kernels. For the CUDA backend, this effect is less pronounced

since GPU execution is not as affected by the Python interpreter.

To measure the overhead introduced by PyKokkos, we compare the total run-

ning time to kernel execution time. It can be seen that for these applications, the

overhead introduced by the PyKokkos Runtime and Python itself is minimal. (The

stencil application total time is much longer than kernel time for both PyKokkos

and Kokkos since it calls a different kernel to increment the input View each itera-

tion.) Additionally, the overhead introduced by the Python interpreter on the total

execution time is negligible, as these applications spend extremely little time in non-

PyKokkos Python code.

In summary, PyKokkos can match Kokkos for smaller applications dominated

by kernel execution time. We expect this solid performance for all applications where

kernel execution time dominates the time spent inside the Python interpreter.

2.5.4 Performance: ExaMiniMD

In this section, we compare the performance of PyKokkos to Kokkos for Ex-

aMiniMD. We measure PyKokkos execution time without including the translation

and compilation time of the kernels, i.e., PyKokkos imports compiled kernels cached

on the file system from a previous run. ExaMiniMD first reads an input file and

initializes the position, velocity, and force Views in a sequential for loop. The size of

these Views is #atoms× 3. It then executes another sequential for loop for 100 time

41

40004000 3200032000 108000108000 256000256000 50000050000040004000 3200032000 108000108000 256000256000 500000500000

Atoms

0

1

2

3

4

5

6

T
im

e
 [

s
]

PyKokkos (OpenMP)

Kokkos (OpenMP)

PyKokkos (CUDA)

Kokkos (CUDA)

Figure 2.5: ExaMiniMD total execution time.

steps, updating the position, velocity, and force Views and calculating the tempera-

ture, potential energy, and kinetic energy values by calling parallel kernels.

In our initial PyKokkos implementation of ExaMiniMD we observed relatively

large execution times, around 18s using OpenMP for the largest size (x-axis) shown in

Figure 2.5. We profiled our implementation and discovered that the total execution

time was dominated by the sequential for loop that initializes the Views, not the

kernels written in PyKokkos. Since Python is an interpreted language, sequential

Table 2.4: ExaMiniMD Performance Metrics for the Largest Number of Atoms in
Figure 2.5.

Metric OpenMP CUDA

PyKokkos Kokkos PyKokkos Kokkos

Loop Time [s] 4.90 4.51 2.15 0.86

Total Time [s] 6.12 5.02 3.60 1.83

Atomsteps/s [1/s] 1.02e+07 1.11e+07 2.33e+07 5.78e+07

42

AssignOffsets (12)

exchange_self (6)

halo_exchange_self (39)

halo_update_self (570)

compute (101)

compute_energy (12)

final_integrate (100)

initial_integrate (100)

KinE (12)
fill_neigh_list_full (7)

Temperature (13)

Kernel Label

10−4

10−3

10−2

10−1
Ti

m
e

[s
]

PyKokkos (OpenMP)
Kokkos (OpenMP)
PyKokkos (CUDA)
Kokkos (CUDA)

Figure 2.6: ExaMiniMD kernel time for the largest number of atoms in Figure 2.5.
Number of kernel calls is shown in parentheses.

loops with large iteration counts (e.g., #atoms in ExaMiniMD) have significantly

more overhead than in C++. We rewrote the initialization loop using Numba [39], a

JIT compiler that translates Python to LLVM, to optimize the for loop. This resulted

in performance comparable to the C++ for loop.

Figure 2.5 shows a plot of the total execution time vs. number of atoms.

We used Unified Memory for all CUDA runs. For both OpenMP and CUDA, we

observe performance comparable to Kokkos. The extra performance overhead in the

PyKokkos implementation does not substantially increase as the size increases.

To understand this overhead, we first look at the kernel execution times shown

in Figure 2.6. For all PyKokkos kernels, we observe minimal to no overhead compared

to Kokkos. This result is in agreement with the results observed for the kernels in

tables 2.2 and 2.3.

Table 2.4 shows performance metrics collected during execution: loop time is

the amount of time spent in the main loop (that runs for 100 time steps), total time

is end-to-end execution time, and atomsteps per second is the number of atoms mul-

tiplied by time steps per second. In addition to kernel execution time, these metrics

include time spent during Python execution. Here, we observe larger performance

differences between PyKokkos and Kokkos than in the kernels themselves. Thus the

additional overhead observed in the loop time and total time can be attributed to

time spent in the Python interpreter, outside of the generated kernels.

43

Table 2.5: Comparison of Pure Python Execution to OpenMP and CUDA in
PyKokkos.

Application Size PyKokkos Time [s]

Python OpenMP CUDA

02 28× 210 169 1.1 1.2

03 28× 210 167 1.1 1.3

04 28× 210 169 1.1 1.2

mdrange 28× 210 173 1.1 1.3

subview 28× 210 139 1.1 1.2

team policy 27× 210 194 1.1 1.1

team vector loop 21× 27× 210 245 1.2 1.1

2.5.5 Pure Python Execution

In this section, we report the cost of pure Python execution in PyKokkos

(Section 2.4.2.4). Since all kernels are executed using Python sequential loops, we

expect substantial performance overhead. We use the tutorial exercises to highlight

the cost of each feature individually. Table 2.5 shows a comparison of total execution

time using different PyKokkos backends. We set the timeout to 300s and show the

largest size that completes within this budget. Clearly, this mode should be used

only for debugging logical errors, as it does not escape the Python interpreter and

provides users with a familiar debugging environment.

2.5.6 Code Characteristics

Table 2.6 shows basic code characteristics of the applications used in our ex-

periments. The first column shows the source of the applications. We do not use the

benchmarks since they include additional boilerplate for initialization or BabelStream

since it includes code for other frameworks. The second and third columns show the

lines of code (LOC) and number of characters (NOC) for Kokkos and PyKokkos,

respectively. For the Tutorials and PRK rows, we show a single entry that is the

44

Table 2.6: Code Characteristics of PyKokkos and Kokkos Applications. Numbers for
Tutorials and PRK show Total for all Applications in those Groups.

Application PyKokkos Kokkos Reduction [%]

LOC NOC LOC NOC LOC NOC

Tutorials 503 15758 592 18627 15 15

PRK 290 10004 385 11379 24 12

ExaMiniMD 2846 94811 3269 113210 12 16

summation of the values for each individual application. The fourth column shows

the reduction in code size of the PyKokkos implementation compared to Kokkos.

Table 2.6 shows that PyKokkos code is more concise than Kokkos. We iden-

tify several reasons. First, Kokkos applications have to add code to initialize and

finalize the Kokkos context. In PyKokkos, this is hidden from the user. Second,

C++ naturally tends to be more verbose than Python. Static typing in particular

contributes significantly to code clutter, even more so when templates and nested

namespaces are involved. Some Kokkos applications include typedef and using dec-

larations to avoid repeating long types, but even that still adds to the clutter. In

contrast, type annotations are optional in Python (outside of PyKokkos annotated

code), and dynamic typing subsumes the need for templates. Third, in C++, header

files need to be included for string manipulation, IO, and other functionality, most of

which is available in Python without any imports. Parsing command line arguments

in C++ needs to be done through string comparison and large contiguous blocks of

if statements, while in Python, this can be done with the argparse module from the

Standard Library.

2.5.7 Numba Comparison

In this section, we compare PyKokkos to Numba. Specifically, we are inter-

ested in examining the effort required to write kernels targeting CPUs and GPUs in

each framework. Of all of our test subjects, only the PRK applications have existing

45

Table 2.7: Comparison of Execution Time of PyKokkos and Numba Applications
with OpenMP and CUDA.

Application Size OpenMP Time [s] CUDA Time [s]

PyKokkos Numba PyKokkos Numba

nstream 228× 1 289.0 290.2 25.3 25.3

stencil 213×213 102.5 106.1 22.0 22.4

transpose 213×213 96.8 103.1 8.2 8.3

Numba implementations. However, the kernels do not make use of the parallelism

features in Numba, so we modified them by setting parallel=True and using prange.

We also made further changes to get performance closer to the PyKokkos implemen-

tation, but we note once again that our goal is not to provide a complete performance

comparison between the two, and that both implementations could be optimized fur-

ther. For stencil and transpose, we manually implemented tiling in the Numba kernels

to get better performance. This was not needed in the PyKokkos implementations due

to the availability of MDRangePolicy, which provides a multi-dimensional iteration

space with tiling.

We also implemented the kernels using CUDA through Numba. This required

us to to use syntax specific to CUDA and to manually set the number of threads and

blocks at each kernel launch.

Table 2.7 shows a comparison of total execution times. For all kernels, we

observe similar execution times. All PyKokkos kernels use one common code for both

OpenMP and CUDA, while for Numba, we had to re-implement the kernels for each

device and add loop tiling for the CPU kernel. PyKokkos kernels are therefore more

performance portable.

46

2.6 Conclusion

We presented PyKokkos, a new Python framework for writing performance

portable applications entirely in Python. PyKokkos provides Kokkos-like abstractions

that are easier to use and more concise than the C++ interface. We implemented

PyKokkos by building a translator from PyKokkos annotated code to C++ Kokkos

and bridging necessary function calls via automatically generated Python bindings.

Our results showed that PyKokkos can obtain performance close to Kokkos for appli-

cations that are dominated by kernel execution time. PyKokkos applications are more

concise than their Kokkos counterparts, and can achieve comparable performance in

most cases. Kokkos provides a performance portability programming ecosystem, and

we believe that PyKokkos enables developers to utilize such an ecosystem.

47

Chapter 3: Fusing Performance Portable Python

Kernels

In this chapter, we present PyFuser, a framework for PyKokkos kernel fusion.

While PyKokkos promises to increase productivity, the way developers organize their

parallel code by splitting it into separate kernels may result in suboptimal perfor-

mance. Kernels that operate on the same data will end up doing redundant work,

since they will likely access the same memory and do similar computations. Further-

more, splitting kernels excessively leads to more kernel calls, which increases the run-

time performance overhead introduced by PyKokkos and the underlying frameworks

it uses. PyFuser addresses these issues by automatically fusing performance-portable

PyKokkos kernels. PyFuser dynamically traces kernel calls and lazily fuses them once

the result is requested by the application. The generated fused kernels are expected

to execute faster due to better reuse of data, improved compiler optimizations, and

reduced kernel launch overhead. We also introduce automated code transformations

that further optimize the fused kernels generated by PyFuser. Our experiments on

HPC applications show that PyFuser achieves substantial speedups over the original

unfused kernels on NVIDIA and AMD GPUs, as well as Intel and AMD CPUs.

3.1 Introduction

HPC frameworks such as Kokkos and PyKokkos require developers to write

their parallel code in standalone kernels (or functions) that are separate from the

rest of the code. Dividing parallel code across different kernels is typically done to

increase code reuse and improve maintenance. While this greatly improves usability,

separating code in this way might result in suboptimal performance, because com-

pilers do not know statically in what ways those kernels will be invoked and do not

optimize across kernel boundaries. As a result, redundant computations and memory

48

accesses are frequently executed in different kernels, which would drive the developer

to fuse different kernels into one. In practice, finding opportunities for kernel fusion

can be tedious, especially in larger codebases with dozens of kernels.

We present PyFuser, a framework for dynamic fusion of performance portable

kernels written in PyKokkos, with the goal to improve the performance of kernel code.

PyFuser delays execution of kernels and dynamically records traces of kernel invo-

cations within a Python environment. Once a delayed kernel’s outputs are accessed

by the application, PyFuser first fuses the recorded kernels. PyFuser then replaces

kernel calls recorded in the trace with calls to the fused kernels, which should per-

form better than the original kernels as they benefit from reuse of data loaded from

memory, improved compiler optimizations, and reduced kernel launch overhead.

We also introduce code transformations during the PyKokkos code generation

phase to further improve the performance of the fused kernels. Since PyKokkos

generates Kokkos kernels that are optimized statically by a C++ compiler, data

sharing patterns between kernel arguments are not known, reducing the compiler’s

ability to optimize code. When writing a PyKokkos kernel, the programmer hand

optimizes the code by fusing loops and eliminating redundant memory operations. For

the fused kernels that PyFuser automatically generates, these optimizations cannot

be applied by the programmer. We therefore implemented code transformations in

PyKokkos that require run-time information about the arguments that are passed to

the kernels. These code transformations help the C++ compiler optimize the code

PyKokkos generates more effectively.

We assess the benefits and limitations of PyFuser using a number of existing

HPC applications written in PyKokkos, including a Particle-in-cell (PIC) code [11],

ExaMiniMD [4], a Gaussian Naive Bayes classifier, NPBench [77], and benchmarks we

extracted from the examples in the PyKokkos repository. The fused kernels PyFuser

generates achieve speedups of 3.8× on average over the original unfused kernels across

all processors.

49

The key contributions of this chapter include:

⋆ Framework. We present PyFuser, a framework for automatic kernel fusion. Py-

Fuser records traces of kernel calls and fuses them to generate more performant

kernels. We also introduce dynamic code transformations to PyKokkos that fur-

ther improve the performance of fused kernels.

⋆ Evaluation. We perform an extensive evaluation of PyFuser on a number of

PyKokkos kernels. We assess the benefits of PyFuser using four different processors.

⋆ Analysis. We perform a deep dive into our results and report our findings for

various (kernel, processor) pairs. The insights gained are broadly applicable to

other frameworks, including Kokkos and its underlying backends.

The source code for PyFuser is available at https://github.com/kokkos/pykokkos.

3.2 Motivation

In this section, we discuss the need for kernel fusion in Kokkos and PyKokkos

by discussing the performance benefits (Section 3.2.1). We then show a concrete

example of two PyKokkos kernels a user might want to fuse motivating the need for

automated kernel fusion in PyKokkos (Section 3.2.2).

3.2.1 Benefits

When fusing multiple parallel kernels into one, we expect the resultant fused

kernel to perform better than the unfused kernels due to better data reuse, improved

compiler optimizations, and lower total kernel launch overhead.

Despite the potential benefits of kernel fusion, there is no performance portable

automated solution. It frequently falls to the programmer to decide how to organize

parallel code across kernels. One factor influencing this decision is code reuse i.e.,

moving code to a separate kernel to reuse it in different parts of a codebase. Another

factor is availability of existing kernel implementations in libraries (e.g., NumPy),

50

https://github.com/kokkos/pykokkos

1 @pk.workunit

2 def add(tid, A, B, N, scalar):

3 for i in range(N):

4 A[tid][i] = scalar + B[tid][i]

5

6 @pk.workunit

7 def mul(tid, A, B, C, N):

8 for i in range(N):

9 C[tid][i] = A[tid][i] * B[tid][i]

10

11 pk.parallel_for(num_threads, add, A, B, N, scalar)

12 pk.parallel_for(num_threads, mul, A, B, C, N)

(a) Example PyKokkos kernels.

1 @pk.workunit

2 def add_mul(tid, A0, B0, N0, scalar, A1, B1, C, N1):

3 for i in range(N0):

4 A0[tid][i] = scalar + B0[tid][i]

5 for i in range(N1):

6 C[tid][i] = A1[tid][i] * B1[tid][i]

(b) An example fused kernel.

1 @pk.workunit

2 def add_mul(tid, A, B, C, N, scalar):

3 for i in range(N):

4 A[tid][i] = scalar + B[tid][i]

5 C[tid][i] = A[tid][i] * B[tid][i]

(c) An example fused kernel with argument and loop
fusion.

1 ld.global.u32 %r8, [%rd17]; (load B)

2 add.s32 %r9, %r8, %r4;

3 st.global.u32 [%rd18], %r9; (store A)

4 ld.global.u32 %r10, [%rd17]; (load B)

5 mul.lo.s32 %r11, %r10, %r9;

6 st.global.u32 [%rd19], %r11; (store C)

(d) PTX for the fused kernel above.

Figure 3.1: Fusion of two simple PyKokkos kernels where the compiler cannot fully
optimize the code.

51

which forces programmers into having their code separated into different kernels at

arbitrary boundaries with little room for customization. Finally, there is also the pro-

grammer’s subjective interpretation of writing modular code with proper separation

of concerns [68].

3.2.2 Example

At present, programmers are required to refactor their code to fuse Kokkos

kernels, as C++ compilers do not fuse kernels automatically. Figure 3.1a shows two

PyKokkos kernels that a programmer might want to fuse. These kernels both access

common data, so we expect fusion to be beneficial: instead of loading each element of

B twice (lines 4 and 9), we only need load it once and reuse the value later. Similarly,

instead of loading each element of A in mul, we can reuse the value produced in add.

However, fusing these two simple kernels and achieving good performance proves to

be challenging.

The first challenge is to actually write the fused kernel. Figure 3.1b shows

how a programmer might do this: the fused kernel parameters and body are formed

by combining the lists of parameters and bodies of the unfused kernels and renaming

the parameters to avoid name conflicts. In order to write a functionally correct

fused kernel, the programmer must keep the parameters separate (e.g., A0 and A1)

and the loops unfused, as these optimizations depend on the run-time values of the

arguments. While this is a general-purpose solution, it does not reuse data effectively:

the compiler cannot optimize the memory accesses as they occur in different loops

(lines 3 and 5) and the arrays are accessed through different identifiers (A0 and A1).

Even if loop bounds are known to be the same by compilers, we found that they will

not consistently fuse loops, so users must do this manually.

Alternatively, the programmer could maintain multiple implementations of

each fused kernel specialized to the run-time arguments. However, this approach will

not scale, especially for larger kernels with more parameters.

52

Suppose for the particular case in Figure 3.1a the programmer wrote the spe-

cialized fused implementation in Figure 3.1c, fusing the parameters and loops. Even

here, the compiler cannot fully optimize the memory accesses as a programmer might

expect: the second load from array B on line 5 cannot be safely removed. This can

be confirmed by looking at the optimized PTX (low level NVIDIA ISA) generated

by NVCC in Figure 3.1d (we show PTX instead of SASS as PTX is higher level and

easier to understand, but the generated SASS follows the same pattern). The reason

is that the store to array A on line 4 in Figure 3.1c prevents the compiler from re-

moving the second load from B, as it cannot prove that A and B do not alias, and so

the store to A invalidates the previously loaded value from B. The programmer can

avoid this issue by removing the redundant load or use the restrict keyword, which

tells the compiler that the arrays do not alias.

The final remaining challenge is that the programmer must then locate all

occurrences of consecutive calls to add and mul in the codebase in order to replace

them with a single call to a fused kernel. The two kernel calls on lines 11 and 12 in

Figure 3.1a are an example of one such occurrence. In this case, it is straightforward

to replace these two calls. However, in larger codebases, this pattern can occur

frequently, so replacing all occurrences by hand will not scale.

We will now present PyFuser, an automated kernel fusion framework for

PyKokkos which handles these challenges.

3.3 Technique

In this section, we describe the design and implementation of PyFuser. Py-

Fuser contains two components, the Tracer and the Fuser, which are integrated into

the PyKokkos Runtime, and run prior to the PyKokkos transpilation and compila-

tion steps. When enabled, PyFuser dynamically records all PyKokkos kernel calls

and stores them in a trace. It then fuses kernels in the trace and replaces them with

the fused kernels. We first describe how PyFuser is integrated with the PyKokkos

53

Runtime (Section 3.3.1). Second, we describe the Tracer, which uses lazy evaluation

to record and retrieve traces (Section 3.3.2). Third, we describe how the Fuser fuses

multiple kernels into a one through code transformation (Section 3.3.3). Finally, we

describe additional code transformations that are needed to realize the full benefits

of fusion (Section 3.3.4).

3.3.1 PyKokkos Runtime

The Tracer and the Fuser contain the bulk of PyFuser’s implementation. The

Tracer dynamically records all kernel calls at run-time into traces while the Fuser

generates the fused kernels. PyFuser integrates with PyKokkos by passing these

fused kernels to the PyKokkos Compiler, which transpiles kernels to C++ and Kokkos

before compiling them with a C++ compiler.

Figure 3.2a shows how PyFuser’s Tracer is integrated into the PyKokkos Run-

time. In PyKokkos, every kernel call invokes the call kernel() Runtime method

(line 5). If tracing is enabled by the user, PyKokkos logs the call using PyFuser’s

Tracer (line 8). For reduce and scan kernels, the caller expects that the scalar value

of the reduction result is returned. Since PyFuser delays the kernel’s execution, the

result is not immediately available. Instead, PyFuser creates a Future object and

returns it to the caller (line 9). The Future contains a field representing the scalar

value and implements all the Python arithmetic operators (e.g., add ()) and so

behaves as a Python scalar type would.

Due to lazy evaluation, a kernel’s output is not immediately visible following

a kernel call. Kernels output data either by writing to arrays or by returning a scalar,

which we replace with a Future when tracing is enabled. Therefore, we must ensure

that the programmer receives the correct data when reading from an array or a Future

by actually running the kernels that generate that data. Therefore, we introduce the

flush data() Runtime method (line 14 in Figure 3.2a), which given an array or

Future returns the sequence of kernel calls, i.e., the trace, that must run in order to

54

1 class Runtime:

2 self.tracer: Tracer

3 self.fuser: Fuser

4

5 def call_kernel(self, policy, kernel, args):

6 if self.tracing_enabled():

7 future = Future()

8 self.tracer.log(policy, kernel, args, future)

9 return future

10

11 handle = self.compile(kernel)

12 return self.call(policy, handle, args)

13

14 def flush_data(self, data):

15 trace = self.tracer.get_trace(data)

16 fused_ops = self.fuser.fuse_trace(trace)

17

18 for op in fused_ops:

19 handle = self.compile(op.kernels)

20 result = self.call(op.policy, handle, op.args)

21 op.future.value = result

(a) Tracer and Fuser additions to PyKokkos Runtime.

Runtime

Supreme

Tracer

Fuser

add

mul

log(add, …)

log(mul, …)

get_trace(C)

fuse_trace()

add mul

add_mul

1

2

3

(b) PyFuser workflow for Figure 3.1a.

Figure 3.2: PyFuser integration with PyKokkos Runtime.

55

generate that data. We modify the PyKokkos array and Future implementations to

automatically call flush data() whenever the user reads from them.

When an array or Future calls flush data(), PyFuser first retrieves the trace

associated with that data from the Tracer (line 15) and generates fused kernels using

the Fuser (line 16). It then resumes the PyKokkos compilation process (i.e., transpi-

lation, compilation, and invocation) for each fused kernel (lines 18-20). If the kernel

returns a scalar result, i.e., it is a reduce or a scan, the Tracer retrieves the result

after the kernel finishes execution and sets the Future’s value to the result at this

point (line 21).

This sequence of events is illustrated in Figure 3.2b for the example in Fig-

ure 3.1a. With tracing enabled, the PyKokkos Runtime uses PyFuser to log the calls

to add and mul (step 1). When the user reads from the C array, PyFuser retrieves the

trace (step 2) and fuses the kernels (step 3).

3.3.2 Tracing

The Tracer’s purpose is to log kernel calls and retrieve traces when data is

requested by the user. Figure 3.3 shows the algorithms implemented in the Tracer.

The log function (line 1) receives the execution policy of the kernel call, the kernel

being called, the kernel arguments, and the Future object associated with that call

(set to None for kernels that don’t return scalars), all of which are needed for executing

it later, while the get trace() function (line 13) retrieves the part of the trace

associated with the requested data, which we call a trace partition.

The first step in log is storing the arguments to allow executing the kernel

later. This includes storing the values of scalar arguments and references to the

array arguments. Line 2 extracts all the array parameters the kernel reads from and

associates them with the array arguments. Each array the kernel reads from is a

dependency that needs to be fulfilled when the kernel is executed later. In order to

correctly replay execution later, the Tracer must keep track of their versions at the

56

Require: policy - The execution policy of the kernel call
Require: kernel - The kernel being called
Require: args - The arguments passed to the kernel
Require: future - The Future associated with the kernel
1: function log(policy, kernel, args, future)
2: read arrays← get read set(kernel, args)
3: dependencies← get dependencies(read arrays)
4: op← TracerOp(policy, kernel, args, future, dependencies)
5: add to trace(op)
6: write arrays← get write set(kernel, args)
7: for array in write arrays do
8: version← get current version(array)
9: set data version(array, version+ 1)
10: map array to op(op, version+ 1)
11: end for
12: end function
Require: data - The array or Future being requested
Require: version - Optionally specify the requested version
13: function get trace(data, version)
14: if version is None then
15: version← get current version(data)
16: end if
17: op← get op(data, version)
18: trace← {}
19: for d in op.dependencies do
20: new ops← get trace(d.array, d.version)
21: trace.extend(new ops)
22: end for
23: return trace
24: end function

Figure 3.3: The algorithms to log kernel calls and retrieve kernel calls associated with
some data.

57

pk.parallel_for(add, A, B, N, scalar)
...
pk.parallel_for(mul, A, B, C, N)
...
access(C)

Tracer

add Op 1 Op 2 mul

pk.parallel_for(add, A, B, N, scalar)
...
pk.parallel_for(mul, A, B, C, N)
...
access(C)

Tracer

add Op 1 Op 2 mul

pk.parallel_for(add, A, B, N, scalar)
...
pk.parallel_for(mul, A, B, C, N)
...
access(C)

Tracer

Op 1 Op 2

Op 3

Op 3

Op 3

Figure 3.4: The Tracer’s internal state over time while executing the example shown
in Figure 3.1a.

58

kernel call site and record them in the trace. The array arguments plus their current

versions form the read dependencies of the kernel (line 3). The tracer can then add

the kernel call to the trace (line 5).

The next step is to update the version numbers of all arrays the kernel writes

to. The Tracer identifies those arrays (line 6), iterates over each one to get its current

version (line 8), increments that version (line 9), and finally maps the new version to

this kernel call (line 10).

When the user requests some data associated with a trace (array or Future),

the PyKokkos Runtime calls get trace(). The Tracer first identifies the current

version of the data (line 15) and then maps this version of the data to a delayed

kernel call (line 17). This kernel call alone is not enough, as it might depend on

arrays that are written to by earlier kernel calls. Therefore, the tracer finishes building

the trace by iterating over the dependencies of the current kernel call (line 19) and

recursively getting all the kernel calls needed (line 20), specifying the exact version

of the dependency, before finally returning the trace (line 22).

Figure 3.4 shows how Tracer’s internal state changes during execution of the

example in Figure 3.1a. When execution reaches the calls to add and mul, the Tracer

adds them to the trace, along with other kernel calls that might occur during execution

(shown in gray). Later, when the user requests the contents of array C (through the

access() function), the Tracer finds the current version and maps it to mul, which

itself depends on the results of the add call. The other kernel calls in the trace are

not needed to fulfill the user’s request and so they are left untouched. The calls to

add and mul form the trace partition retrieved by the Tracer. The Tracer removes

these kernels from the trace following retrieval.

3.3.3 Fusion

Given a trace partition, the Fuser selects the kernels that can be fused and

generates the code of the fused kernels. We refer to the process of selecting the

59

kernels to be fused as the fusion strategy. The current fusion strategy implemented in

PyFuser’s Fuser is greedy, i.e., it attempts to fuse as many kernels as possible. Ideally,

this strategy would replace the entire trace partition with a single call to one fused

kernel. However, certain factors prevent that: first, each fused kernel can contain at

most one reduce or scan kernel. Since reduce and scan kernels return a single scalar,

fusing more than one such kernels would require returning multiple scalars, which is

currently not supported in PyKokkos and is left for future work. The second factor is

safety, i.e., preserving the semantics of the original code, which is a similar condition

to safely implement loop fusion [36]. In order to safely fuse two kernel calls, they must

run the same number of threads (or iterations in loop terminology) and there should

be no negative distance dependencies between the two kernels, i.e., one of the kernels

uses a value in a thread that is computed by another thread in the other kernel.

In order to prevent unsafe fusion of kernels, the Fuser runs a safety check

that inspects the current kernel and the next kernel to be fused. In PyKokkos, scalar

arguments cannot be modified by the kernels, so only the data in arrays can be shared

between threads. We consider fusion to be unsafe if the same threads from different

kernels access different elements from the same array when one of those accesses is

writing to the array.

The Fuser first retrieves all indexing expressions of arrays that are common

between the two kernels, using the parser in PyKokkos to obtain the abstract syntax

trees (ASTs). For all common arrays that at least one of the kernels writes to, the

Fuser looks at expressions used to index the array. If the expression is the thread ID

or a constant (or a function of the two), i.e., if each element of the array is accessed

by at most one thread, and both kernels use the same expression, then the kernels

are accessing the same element from that array and are safe to fuse.

The Fuser therefore iterates over the trace partition and partitions it further

according to the above conditions. This process is initiated by the PyKokkos Runtime

when data is requested by the user (line 16 in Figure 3.2a).

60

Finally, the Fuser generates a fused kernel from each trace partition in the form

of a Python AST for easy integration with PyKokkos. It first gets the AST of each

kernel called in the trace partition. Each kernel AST contains a list of statements in

the kernel’s body and a list of parameters passed to the kernel, so the Fuser forms

the fused AST by concatenating all the body and parameter lists from the unfused

ASTs. In order to prevent any naming conflicts in the fused code, the Fuser first

pre-processes each unfused AST’s body and renames all variables by adding a prefix

unique to each kernel.

The fused Python AST then proceeds through the typical PyKokkos compila-

tion pipeline (Section 2.4.1), which transpiles the kernel to C++, generates language

bindings to call it, and compiles it using a C++ compiler. This results in a single

fused kernel which the PyKokkos Runtime calls (lines 19-20 in Figure 3.2a).

3.3.4 Code Transformations

Looking at the output of the Fuser in Figure 3.1b, we observe that it suffers

from the issues that prevents the compiler removing redundant memory instructions

and reusing data effectively. First, the same array object is referred to with different

identifiers (e.g., A0 and A1 on line 2), meaning that the compiler does not know it can

reuse data loaded from one in another. Second, the memory accesses are in different

loops (lines 3 and 5) and therefore scopes, so the compiler cannot optimize them

together. Third, the potential for aliasing between the arrays prevents the compiler

from reusing loaded values. To account for these issues, we implement three code

transformations in PyKokkos that enable the compiler to optimize the fused kernel

code better. Figure 3.5 shows the transpiled C++ code of the fused kernel before

(Figure 3.5a) and after (Figures 3.5b-3.5c) applying the transformations.

61

1 class add_mul {

2 int scalar0, N0, N1;

3 Kokkos::View<int**> A0, B0, A1, B1, C1;

4 void operator()(int tid) const {

5 for (int i = 0; i < N0; i++) {

6 A0(tid, i) = scalar0 + B0(tid, i);

7 }

8 for (int i = 0; i < N1; i++) {

9 C1(tid, i) = A1(tid, i) * B1(tid, i);

10 }

11 }};

(a) Generated Kokkos kernel before transformations.

1 class add_mul {

2 int scalar0, N0;

3 Kokkos::View<int**> A0, B0, C1;

4 void operator()(int tid) const {

5 for (int i = 0; i < N0; i++) {

6 A0(tid, i) = scalar0 + B0(tid, i);

7 C1(tid, i) = A0(tid, i) * B0(tid, i);

8 }

9 }};

(b) After argument and loop fusion transformations.

1 class add_mul {

2 int S0, N0;

3 Kokkos::View<int**> A0, B0, C1;

4 // Kokkos function with restrict

5 KOKKOS_FUNCTION void kernel(

6 int tid,

7 int* __restrict__ A0, int A_S_0, int A_S_1,

8 int* __restrict__ B0, int B_S_0, int B_S_1,

9 int* __restrict__ C1, int C_S_0, int C_S_1

10) const {

11 for (int i = 0; i < N0; i++) {

12 A0[tid * A_S_1 + A_S_0] = S0 + B0[tid * B_S_1 + B_S_0];

13 C1[tid * C_S_1 + C_S_0] = A0[tid * A_S_1 + A_S_0] * B0[tid * B_S_1 + B_S_0];

14 }

15 }

16 // Kernel calling Kokkos function

17 void operator()(int tid) const {

18 kernel(tid,

19 A0.data(), A0.stride_0(), A0.stride_1()),

20 B0.data(), B0.stride_0(), B0.stride_1()),

21 C1.data(), C1.stride_0(), C1.stride_1());

22 }

23 };

(c) After the restrict transformation.

Figure 3.5: Applying transformations to the fused kernels.
62

3.3.4.1 Argument fusion

The first transformation fuses kernel parameters by dynamically identifying

the passed arguments that refer to the same Python object at run-time (using the

Python built-in id() function). Figure 3.5b shows this transformation on lines 2

and 3, where A1, B1, and N1 are all removed from the kernel arguments (which are

listed as member variables in C++ Kokkos kernels). All references to A1, B1, and

N1 in the kernel body are replaced by A0, B0, and N0 respectively (lines 5-7). This

is a form of run-time specialization that depends on the input arguments, so we

modify PyKokkos to handle multiple specialized versions of the same kernel. This

is necessary as multiple calls of the same kernel at run-time might have different

arguments which could be fused differently, and thus different calls might lead to

different code transformations, with each being specialized to a specific kernel call.

3.3.4.2 Loop fusion

The second transformation fuses for loops in the kernels to move memory

accesses to the same scope. Since compilers are not guaranteed to always fuse loops,

we implement our own loop fusion code transformation in PyKokkos to fuse for loops

in kernels, following the typical safety requirements [36]. Applying this to our kernel

results in a single for loop replacing the original two loops (line 5 in Figure 3.5b).

Moving all memory accesses to the same scope enables the compiler to recognize that

the value stored to A0 on line 6 can be reused, eliminating a redundant load.

3.3.4.3 Restrict

The third transformation applies the restrict keyword1 to the arrays in the

fused kernel code, which tells the compiler that the arrays do not point to overlapping

regions of memory, enabling more memory optimizations.

1https://en.cppreference.com/w/c/language/restrict

63

https://en.cppreference.com/w/c/language/restrict

Applying the argument and loop fusion code transformations and compiling

the kernel in Figure 3.5b results in the PTX shown in Figure 3.1d, where the same

memory location in B0 is loaded twice. By default, compilers must assume that all

function parameters passed as a pointer or reference could alias. Due to the presence

of a store to another array (A0) between the two loads, the value loaded from B0 on

line 6 in Figure 3.5b cannot be reused on the next line.

We therefore implemented a code transformation to apply the restrict key-

word to arrays. As with argument fusion, it depends on the run-time values of

the input arguments. Before adding restrict, we inspect the input arrays in the

PyKokkos Runtime and record those that do not alias.

Kokkos provides the Kokkos::Restrict memory trait for use as a template

argument to its arrays. However, this information is not used by compilers such as

NVCC and HIPCC during optimization, since the actual array pointer is defined as

a member variable in a class (Kokkos::View, the C++ Kokkos array type). Adding

restrict to pointers which are member variables is ignored by most compilers (likely

due to restrict being part of the C but not the C++ standard). The only way to

use restrict reliably across C++ compilers is to apply it to kernel parameters.

However, this is currently not possible in C++ Kokkos kernels, which are defined as

overloaded operator() methods or lambdas with no parameters (besides the thread

ID and other Kokkos parameters).

We found a workaround to the Kokkos restrict issue by introducing a new

Kokkos function (i.e., a function that can be called from a kernel) which accepts the

array arguments as raw pointers, which we can then add restrict to. In order to

index these array pointers, we need to obtain their strides, which tell us the distance

in memory between two array elements in a particular dimension. Using these strides,

we can calculate an element’s location from a multi-dimensional index.

The restrict transformation is shown in Figure 3.5c. The new Kokkos function

is defined on line 5. The parameters of this function are same as the parameters of

64

the kernel. We replace each array with a raw pointer and stride variables passed as

parameters, instead of a Kokkos::View which would contain all this information. This

requires that we replace each array indexing operation with C-style array indexing

(line 12), taking the memory layout into account. Finally, we call the Kokkos function

from the kernel, using the View data() method to access the raw pointer and the

stride method for each dimension to get the corresponding stride value (line 18).

Together, these transformations enable the compiler to more effectively opti-

mize code. Applying them manually to C++ Kokkos code is tedious as the run-time

specialization transformations (i.e., argument fusion and restrict) require maintaining

multiple implementations of each kernel to dispatch calls to the appropriate imple-

mentation according to run-time conditions. Run-time systems such as PyKokkos are

naturally more suited to apply these transformations.

Following these transformations, the fused kernel is compiled and called by

the PyKokkos Runtime.

3.4 Evaluation

In this section we present our evaluation of PyFuser. First, we describe our

evaluation setup (Section 3.4.1) and introduce our test subjects (Section 3.4.2). Sec-

ond, we show the kernel speedups we obtain by applying PyFuser to our test subjects

before and after applying our code transformations (Section 3.4.3). Third, we study

the impact of kernel fusion on performance related profiler metrics (Section 3.4.4).

Fourth, we analyze the kernel speedups obtained by looking at the machine code gen-

erated by the compilers and the profiler metrics (Section 3.4.5). Fifth, we examine

the run-time overhead of PyFuser (Section 3.4.6).

3.4.1 Evaluation Setup

We used Python 3.11, the latest version of PyKokkos at the time we conducted

our experiments (commit 3d4afd2), and Kokkos 3.7.02. We ran our experiments on

65

Table 3.1: Processors used in our experiments.

Processor DRAM Backend Compiler

NVIDIA V100 16 GB CUDA 12.0 NVCC 12.0
NVIDIA A100 40 GB CUDA 12.0 NVCC 12.0
AMD MI250X 128 GB HIP 5.4.3 HIPCC 15.0
Intel Xeon E5-2620 128 GB OpenMP GCC 12.2
AMD EPYC 7763 256 GB OpenMP GCC 11.2

multiple processors, including NVIDIA and AMD GPUs as well as Intel and AMD

CPUs. Table 3.1 shows the full list of processors we used, the size of the processor’s

memory, the relevant Kokkos backend, as well as the compilers we used.

All results shown are the arithmetic mean of data collected across three runs.

We used the simple kernel timer from the Kokkos Tools repository [3] to measure ker-

nel execution time. This measures the execution time of the generated C++ Kokkos

kernel, which includes the raw kernel execution time and any performance overhead

introduced by C++ Kokkos, but not Python, PyKokkos, or PyFuser overheads.

3.4.2 Test Subjects

Our test subjects include existing examples from the PyKokkos repository

that contain multiple kernel calls, third-party PyKokkos applications, and new code

we added to evaluate PyFuser. Much of these new subjects are ported from exist-

ing NumPy implementations by using PyKokkos as a drop-in replacement for those

libraries. Our test subjects include:

• ExaMiniMD: a molecular dynamics mini-application that was originally im-

plemented in C++ Kokkos [4]. The PyKokkos version has ∼3k lines of code

and 14 distinct kernels (Section 2.5.2).

• Particle-in-cell code: a particle-in-cell (PIC) solver of the electron Boltzmann

equation implemented originally in PyKokkos [11].

66

• Gaussian Naive Bayes: a PyKokkos implementation of scikit-learn’s Gaus-

sian Naive Bayes (GNB) classifier, which was originally written in NumPy [16].

• NPBench: a collection of NumPy code samples for evaluating frameworks

that accelerate NumPy [77]. Of the original 52 samples, PyKokkos currently

supports 12, of which 7 contain multiple kernel calls that can be fused. These

include adi, covariance, fdtd 2d, jacobi 1d, mvt, syrk, and syr2k. Adding

support for more NPBench subjects is possible but requires some additional

engineering effort.

• Benchmarks: includes BabelStream, GUPS, GUPS Atomic, NSTREAM, and

Transpose. Originally written in C++ the PyKokkos versions of these bench-

marks achieved the same performance as Kokkos (Section 2.5).

We verified that the fused kernels produce the correct output by comparing

with the unfused versions.

3.4.3 Kernel Speedups

Figure 3.6: Kernel fusion speedup over unfused kernels with our transformations for
adi (A), BabelStream (BS), covariance (C), fdtd 2d (F), GUPS (G), GUPS Atomic

(GA), jacobi 1d (J), mvt (M), Gaussian Naive Bayes (NB), NSTREAM (NS), syrk (S),
syr2k (S2), and Transpose (T).

67

Table 3.2: Kernel Fusion Speedup over Unfused Kernels on the GPUs.

Subject Kernel # Kernels Speedup
V100 A100 MI250X

U/O O U/O O U/O O

PIC DSMC 3 1.03 1.96 1.16 1.78 0.92 1.77

ExaMiniMD F + C 2 0.98 0.99 0.87 0.88 0.97 1.02
ExaMiniMD F + C + FI 3 0.87 0.91 0.94 0.88 0.90 0.96
ExaMiniMD FI + II 2 1.40 1.52 1.60 1.60 1.28 1.62
ExaMiniMD FI + II + E 3 1.24 1.61 1.67 1.69 1.18 1.30

GaussianNB NB 0 3 1.88 1.92 1.65 1.65 1.63 1.91
GaussianNB NB 1 2 1.41 1.43 1.27 1.29 1.23 1.59
GaussianNB NB 2 5 4.56 4.65 3.89 4.28 3.35 3.47
GaussianNB NB 3 2 1.74 1.74 1.60 1.62 1.53 1.81
GaussianNB NB 4 2 1.96 1.94 1.93 1.92 1.78 1.76

Microbenchmarks BS 4 1.93 2.03 2.25 2.25 2.14 2.55
Microbenchmarks G 2 2.02 2.01 1.94 1.88 1.88 1.90
Microbenchmarks GA 2 1.96 1.96 1.94 1.94 1.86 1.56
Microbenchmarks NS 50 4.67 27.70 5.12 25.41 3.23 32.86
Microbenchmarks T 50 2.22 39.32 1.81 45.34 1.41 64.97

NPBench A 0 5 5.00 5.00 4.28 4.22 4.06 4.29
NPBench A 1 7 6.30 6.18 5.51 5.43 4.75 5.28
NPBench A 2 2 2.00 2.00 1.95 1.82 1.80 1.91
NPBench A 3 2 2.03 2.03 1.91 1.91 1.81 1.81
NPBench A 4 3 2.73 2.81 2.77 2.72 2.50 2.55
NPBench A 5 5 5.00 4.95 4.28 4.22 4.04 4.28
NPBench A 6 7 6.30 6.30 5.45 5.45 4.77 5.25
NPBench A 7 2 2.00 2.00 1.90 1.80 1.74 1.82
NPBench A 8 3 2.73 2.87 2.91 2.81 2.53 2.56
NPBench A 9 2 1.99 2.01 1.95 1.95 1.79 1.81
NPBench C 3 1.12 1.25 1.24 2.35 1.03 1.20
NPBench F 2 0.73 1.74 0.82 0.73 1.00 1.01
NPBench J 0 4 3.86 3.79 3.08 2.99 3.40 3.40
NPBench J 1 4 3.78 3.78 2.95 2.73 3.36 3.49
NPBench M 2 1.84 1.79 1.63 1.87 1.63 1.63
NPBench S 0 2 2.00 2.00 1.72 1.67 1.82 1.84
NPBench S 1 2 1.76 1.76 1.61 1.57 1.69 1.76
NPBench S2 0 4 3.64 3.68 3.55 3.49 2.99 3.32
NPBench S2 1 2 1.94 1.92 1.95 1.95 1.84 1.84
NPBench S2 2 2 1.71 1.72 1.83 1.69 1.69 1.69

Tables 3.2 and 3.3 and Figure 3.6 show the speedups we get by fusing the

kernels in our test subjects. Tables 3.2 and 3.3 show the speedups both with and

68

Table 3.3: Kernel Fusion Speedup over Unfused Kernels on the CPUs.

Subject Kernel # Kernels Speedup
Xeon EPYC

U/O O U/O O

PIC DSMC 3 1.21 1.21 1.35 1.38

ExaMiniMD F + C 2 1.01 1.10 1.03 1.01
ExaMiniMD F + C + FI 3 1.17 1.16 1.04 1.00
ExaMiniMD FI + II 2 1.51 1.43 1.60 1.67
ExaMiniMD FI + II + E 3 1.82 1.69 1.88 1.92

GaussianNB NB 0 3 2.88 2.72 2.33 2.57
GaussianNB NB 1 2 1.59 1.42 1.70 1.80
GaussianNB NB 2 5 3.64 3.76 3.93 4.30
GaussianNB NB 3 2 2.60 2.08 1.47 1.47
GaussianNB NB 4 2 1.63 1.64 1.58 1.73

Microbenchmarks BS 4 3.01 3.07 0.89 2.57
Microbenchmarks G 2 1.56 1.57 1.22 1.22
Microbenchmarks GA 2 6.16 5.90 1.01 1.02
Microbenchmarks NS 50 6.55 24.63 1.25 2.28
Microbenchmarks T 50 7.06 12.62 1.09 3.52

NPBench A 0 5 4.12 3.69 3.63 3.74
NPBench A 1 7 5.71 5.55 6.00 5.68
NPBench A 2 2 1.88 1.69 1.79 1.72
NPBench A 3 2 1.92 1.80 1.95 1.59
NPBench A 4 3 2.64 2.38 2.22 2.71
NPBench A 5 5 4.18 4.02 4.19 4.02
NPBench A 6 7 5.70 5.47 6.15 5.90
NPBench A 7 2 1.87 1.74 1.90 1.74
NPBench A 8 3 2.66 2.31 2.74 2.55
NPBench A 9 2 1.96 1.85 1.93 1.97
NPBench C 3 1.50 1.47 1.01 1.10
NPBench F 2 1.04 1.04 1.36 1.33
NPBench J 0 4 2.25 1.58 1.59 1.22
NPBench J 1 4 2.25 1.56 1.62 1.24
NPBench M 2 2.04 2.12 3.84 3.34
NPBench S 0 2 1.81 1.79 2.73 2.64
NPBench S 1 2 1.85 1.77 6.17 2.31
NPBench S2 0 4 3.54 3.13 2.83 2.85
NPBench S2 1 2 2.18 1.74 1.83 1.87
NPBench S2 2 2 1.49 1.28 1.71 1.77

without transformations applied to evaluate the impact of the compilers’ optimiza-

tions on our GPUs and CPUs respectively. Columns 1 and 2 show the source of the

69

Table 3.4: Effectiveness of Fusion and Optimization on Reducing Arithmetic Instruc-
tions. A Positive Number Means that the Number of Instructions Decreased while a
Negative Number Means that they Increased.

Kernel Arithmetic Instructions Saved [%]

V100 A100 MI250X

U/O O U/O O U/O O

DSMC 0 28 1 28 0 40

F + C -3 -3 -4 -4 1 1

F + C + FI -3 -3 1 0 1 1

FI + II 30 43 24 44 23 33

FI + II + E 43 46 39 46 39 47

Table 3.5: Effectiveness of Fusion and Optimization on Reducing Memory Instruc-
tions. A Positive Number Means that the Number of Instructions Decreased while a
Negative Number Means that they Increased.

Kernel Memory Instructions Saved [%]

V100 A100 MI250X

U/O O U/O O U/O O

DSMC 0 52 3 52 -3 68

F + C 0 0 0 0 0 1

F + C + FI 0 1 0 1 0 2

FI + II 0 27 0 27 4 38

FI + II + E -8 36 -8 36 12 44

kernels and the name of the fused kernel respectively. Column 3 shows the number

of kernel calls that PyFuser fused together to form the fused kernel, i.e., the size

of the trace partition fused to form a single kernel. The remaining columns show

speedups on different processors when fusing these kernels before and after applying

our code transformations, corresponding to Unoptimized (U/O) and Optimized (O),

respectively. Each row corresponds to a trace partition fused into a single kernel by

PyFuser. To better visualize the impact of kernel fusion, we also show all speedups

only with transformations applied in the bar plot in Figure 3.6. The x-axis shows the

abbreviated name of each fused kernel and the y-axis shows the speedup.

70

Table 3.6: Effectiveness of Fusion and Optimization on Memory Loaded from DRAM.

Kernel DRAM Bytes Saved [%]

V100 A100 MI250X

U/O O U/O O U/O O

DSMC 71 65 76 69 2 49

F + C 70 71 82 83 -2 4

F + C + FI 85 85 89 90 -3 4

FI + II 51 51 59 54 29 35

FI + II + E 68 67 73 69 37 39

We calculate speedup by comparing the time to execute the original unfused

kernels called consecutively (i.e., how they existed originally) to the time to execute

the fused kernel. As we are interested in speedups of wall clock times, we do not show

roofline analysis as it deals with execution rates.

3.4.3.1 Particle-in-cell Code

The PIC code uses a direct simulation Monte Carlo scheme (DSMC) to model

particle collisions. Originally implemented in three kernels that are called consecu-

tively, PyFuser fuses them into one kernel. We used 4M particles as the input size

for the results in tables 3.2 and 3.3.

The results in tables 3.2 and 3.3 show that fusion alone does not always result

in a large speedup when compared to the original unfused kernels. On the V100,

A100, and MI250X GPUs, we see speedups of 1.03×, 1.16×, and 0.92× respectively

without our transformations. After applying all of our transformations, we observe

much larger speedups of 1.96×, 1.78×, and 1.77× on the V100, A100, and MI250X

GPUs, respectively.

In contrast to the GPUs, both CPUs attained their highest speedup without

the need for the transformations. Applying them does not result in a noticeable

speedup improvement.

71

3.4.3.2 ExaMiniMD

Of the original 14 kernels in ExaMiniMD, PyFuser fuses 4 trace partitions into

4 new fused kernels, each represented in a separate row in tables 3.2 and 3.3.

The first two fused kernels, F + C and F + C + FI, both contain the Force

(F) and the Compute (C) kernels and the latter also contains the Final Integrate

(FI) kernel, as PyFuser dynamically creates and fuses trace partitions according to

the kernels called, which differ in each time step. Fusion here has a relatively smaller

impact compared to other kernels. For the F + C kernel, we see speedups of 0.98×,

0.87×, and 0.97× on the V100, A100, and MI250X GPUs. Applying our transforma-

tions resulted in negligible improvements on the NVIDIA GPUs, while the MI250X

GPU rose to a 1.02× speedup. For the F + C + FI kernel, we see speedups of 0.87×,

0.94×, and 0.90× on the V100, A100, and MI250X GPUs. Applying our transfor-

mations resulted in improvements on the V100 and the MI250X, rising to 0.91× and

0.96× respectively, while decreasing the speedup on the A100 to 0.88×.

The two other kernels in ExaMiniMD are FI + II and FI + II + E. Both

contain the Initial Integrate (II) and Final Integrate (FI) and the latter also

contains Exchange Self (E). These kernels operate on the same arrays and do similar

computations, leading to speedups on all devices, with transformations on the GPUs

further improving performance.

As before, the results on our CPUs show strong speedups even without the

need for our transformations.

3.4.3.3 Gaussian Naive Bayes, NPBench, & Benchmarks

The Gaussian Naive Bayes and NPBench [77] subjects consist primarily of

kernels that perform NumPy-style array operations. The Benchmarks include less

than five (unfused) kernels each, with most being small. In total, PyFuser generates

30 fused kernels.

72

Looking at Figure 3.6, we observe speedups for all kernels on all processors

except for fdtd 2d (F) on the A100, which achieves a 0.73× speedup. On average,

across all test subjects on all processors, we observe a speedup of 3.8×.

3.4.4 Profiler Metrics

In this section, we report relevant profiler metrics we obtain from kernel fu-

sion and from our transformations. Recall that two main reasons we expect speedups

from kernel fusion are improved compiler optimizations and better data reuse (Sec-

tion 3.2.1). To test the validity of this hypothesis, we use profilers to examine the

reduction in instructions executed and memory traffic to DRAM in tables 3.4, 3.5,

and 3.6. The first column shows the name of the kernel. The second column shows

the reduction in the total number of arithmetic instructions executed, both integer

and floating point. The third column shows the reduction in the total number of

memory instructions executed (i.e., loads and stores). The fourth column shows the

reduction in the total number of bytes loaded from and stored to DRAM. We gath-

ered these metrics using NVIDIA’s NCU [5] and AMD’s Omniperf [45] profilers. We

do not show CPU metrics as collecting them proved to be noisy due to non-kernel

code. We only show the PIC and ExaMiniMD kernels than others as they are larger.

We first note that for all kernels on all GPUs, better caching leads to significant

reductions in DRAM traffic.

For the DSMC kernel, we initially observe no improvement in the number of

arithmetic and memory instructions executed. The reason becomes apparent when

looking at the fused kernel: the bulk of the work in each of the unfused kernels is done

in a sequential for loop. Fusing the three kernels results in three separate for loops

with three separate scopes. This prevents the compilers from effectively optimizing

redundant computations and memory accesses. We even observe a slight increase in

memory instructions executed on the MI250X (-3%) due to increased register pressure,

which leads to register spills to memory. After applying our transformations, we see

73

significant reductions in the numbers of instructions executed: 28% and 52% for

arithmetic and memory instructions respectively on both NVIDIA GPUs and 40%

and 68% reductions on the MI250X GPU.

For the ExaMiniMD F + C and F + C + FI kernels, we initially see little

improvement or even a small increase in arithmetic and memory instructions executed

prior to applying transformations (the increases are due to register pressure forcing

more loads and address calculations). For both fused kernels, the first kernel they are

fused from (Force) initializes three arrays to zero, while the second kernel (Compute)

further updates these arrays. Intuitively, it would seem that fusing these kernels

allows the compiler to optimize the code further: first, the initial value stored in

the arrays (in Force) does not have to be loaded when they are updated later (in

Compute) as it is known at compile-time; second, since this value is zero, the compiler

can eliminate an add instruction; third, the compiler can also eliminate the initial

store as the second kernel overwrites it, making the first kernel’s code completely

redundant. Instead, the fused F + C kernel shows no improvement in arithmetic

and memory instructions after fusion (second row in tables 3.4 and 3.5). Inspecting

the assembly reveals that the compilers cannot perform any of the aforementioned

optimizations due to the potential for aliasing between the three input arrays.

Our transformations help on the MI250X but not on the NVIDIA GPUs.

Looking at the assembly with transformations enabled, we see that NVCC is not

doing the aforementioned optimizations, while HIPCC is, resulting in a 1% reduction

in memory instructions on the MI250X (Table 3.5). We have reached out to NVIDIA

asking why that is the case.

For the fused FI + II and FI + II + E kernels, we see significant reductions in

arithmetic instructions executed on all GPUs prior to applying our transformations.

For FI + II, we see 30%, 24%, and 23% reductions on the V100, A100, and MI250X

GPUs respectively, while for FI + II + E, we see 43%, 39%, and 39%. These kernels

do not contain loops so the compiler optimizes the arithmetic operations in the fused

74

kernel even without our transformations. As for the memory instructions, we only see

a reduction after applying the restrict optimization. This also reduces the arithmetic

instructions further by eliminating the memory address calculations.

3.4.5 Performance Analysis

In this section, we analyze our results and explain the obtained speedups and

slowdowns on our GPUs and CPUs.

3.4.5.1 GPUs

We initially observed low speedups or slowdowns for the DSMC kernel, which

only improved after applying our transformations. From the observed profiler metrics

(Section 3.4.4), we can see that the compiler cannot optimize the code effectively and

remove redundant instructions due to each kernel body being completely wrapped

in a different loop. Prior to applying our transformations, we expect some speedup

due to reduced kernel launch overhead, as PyFuser fuses three kernel calls into one,

and to improved caching. While this is true for the NVIDIA GPUs, we observe a

small slowdown on the MI250X due to the slight increase in memory instructions

executed. Enabling our transformations allows the C++ compiler to optimize the

code further by eliminating a large number of redundant instructions, which leads to

large speedups for all GPUs.

For the F + C kernel, we do not see speedups initially as the compilers’ cannot

optimize the fused code and remove redundant instructions. The slowdowns observed

for the F + C kernel on the A100 compared to the V100 are due to differences in

NVCC’s register allocation strategies across the two generations of GPU, which leads

to more register pressure and a slower kernel on the A100. Applying our transfor-

mations is not very effective on the NVIDIA GPUs as NVCC does not remove the

redundant instructions, while HIPCC removes them for the MI250X leading to a

small speedup in the fused kernel. The F + C + FI kernel exhibits similar behavior,

75

although we see worse performance on the V100 due to Kokkos selecting a suboptimal

CUDA block size. Manually overriding it gives us similar results to F + C.

For the last two ExaMiniMD kernels, we see large speedups even in the unop-

timized case as the compiler removes redundant instructions. The restrict transfor-

mation removes memory instructions and improves performance further.

For Gaussian Naive Bayes, NPBench, and benchmarks, we observe speedups

for almost all kernels as shown in Figure 3.6, especially in cases where PyFuser is

able to fuse large trace partitions. For example, NSTREAM (NS) and Transpose (T)

call all their kernels in a loop that runs for fifty iterations, which PyFuser can fuse

into one kernel each, leading to large reductions in kernel launch overhead and the

largest speedups among all our benchmarks. In contrast, GUPS (G) and GUPS Atomic

(GA) show relatively smaller speedups due to smaller trace partitions composed of two

kernel calls.

We see a slowdown for one kernel: 0.73× for fdtd 2d on the A100. The as-

sembly shows that NVCC reorders memory instructions in the fused kernel leading to

more memory stalls and worse performance. Interestingly, NVCC selected a different

order on the V100, which proved to be better.

In summary, kernel fusion leads to speedups when compilers can optimize away

redundant instructions. Reduced kernel launch overhead and improved caching help

but the main benefit of fusion comes from removing redundant instructions, which

the compiler cannot always do without our transformations. Additionally, varying

results across processors and compilers imply that further processor and compiler

specific optimizations can provide even better results.

3.4.5.2 CPUs

We observe speedups for all kernels on both CPUs. Our transformations were

not needed to obtain large speedups as the fused kernels already benefit greatly from

improved cache utilization.

76

Table 3.7: Overhead with PyFuser from tracing, fusion, and transformations averaged
across all subjects on all processors.

Processor Tracing [%] Fusion (U/O) [%] Fusion (O) [%]

V100 2.1 4.5 5.3

A100 2.2 3.9 4.5

MI250X 4.1 7.4 8.2

Xeon 2.8 6.8 7.5

EPYC 7.4 16.1 16.8

Mean 3.7 7.7 8.5

3.4.6 Run-time Overhead

In this section, we examine the run-time overhead introduced by PyFuser

during tracing, fusion, and applying the code transformations. Table 3.7 shows the

overhead of different modes of PyFuser as a percentage of original running time,

averaged across all subjects. The first column shows the name of the processor. The

remaining columns show the measured overheads of each mode: tracing without fusion

(only lazy evaluation) in the second column, tracing with fusion in the third column,

and tracing with fusion and code transformations applied in the fourth column.

The results show that PyFuser introduces minor overhead. Tracing alone

is lightweight, adding 3.7% to running time on average. Adding fusion to tracing

increases overhead to 7.7%, largely due to applying the fusion safety check. Adding

transformations on top of fusion is a relatively small increase to 8.5%, mostly due to

applying the restrict transformation.

3.5 Conclusion

In this chapter, we presented PyFuser, a framework for dynamic fusion of

Python Kokkos kernels. PyFuser dynamically traces kernel calls and lazily fuses ker-

nels. Fused kernels are invoked when the application accesses the result of a sequence

of kernel calls. We also introduced three code transformations to the PyKokkos to

77

enable further optimizations of fused kernels. These changes provide performance

benefits to dynamically generated fused kernels due to improved compiler optimiza-

tions. Our experiments on HPC applications and benchmarks show that PyFuser

achieves substantial speedups on NVIDIA and AMD GPUs, as well as Intel and

AMD CPUs. We believe that PyFuser is a great step towards regaining performance

lost due to language abstractions and common coding patterns.

78

Chapter 4: Related Work

In this chapter, we describe prior research work most related to HPC in Python

and kernel fusion. First, we give a brief overview of Python HPC frameworks (Sec-

tion 4.1). Second, we describe various techniques and libraries that implement kernel

fusion (Section 4.2).

4.1 Python HPC Frameworks

There is a significant amount of prior work that aims to improve the per-

formance of Python. Numba [39] compiles a subset of the language to LLVM IR

and provides support for parallelism. Cython [14] extends Python with C types and

translates code to C; at this point Cython supports only OpenMP for several par-

allel constructs. Shed Skin [63] compiles pure Python 2 programs to C++ but only

supports a restricted subset of Python. Unlike prior work, PyKokkos enables perfor-

mance portability across HPC frameworks by targeting the C++ Kokkos library and

supports the latest version of Python. Dask [61] and Pygion [64] enable distributed

task-based programming in Python. In contrast, PyKokkos focuses primarily on

shared-memory parallelism instead.

There has been previous work on higher level abstractions to facilitate pro-

grammability and portability. PyTorch [55] and TensorFlow [8] are high perfor-

mance libraries that provide abstractions for tensor computing and machine learn-

ing. Halide [60] is a domain specific language (DSL) embedded in C++ for writ-

ing portable, high performance image processing code. DiffTaichi [34] is a high-

performance framework embedded in Python for building differentiable physical sim-

ulators. IrGL [53] is an intermediate representation for parallel graph algorithms

that is compiled to CUDA. PyKokkos closely follows the Kokkos model for perfor-

mance portability without necessarily specializing in a specific application domain.

79

Therefore, unlike the aforementioned frameworks, PyKokkos can be used to write

general-purpose parallel kernels.

Java has also experienced some interest in the field of GPU computing [23].

Lime [24] and HJ-OpenCL [32] are Java-based DSLs that can access GPUs while

providing limited support for various Java features. Lime is a Java-compatible object-

oriented language capable of generating GPU code for OpenCL or CUDA. HJ-OpenCL

generates OpenCL kernels from the Habanero-Java language, and further work [29]

adds support for dynamic object allocation. Rootbeer [57] translates Java code that

implements a specific kernel interface to CUDA workloads. Jacc [18] is another frame-

work that translates native annotated Java code, but takes a different approach by

directly generating NVIDIA PTX rather than OpenCL or CUDA. GVM [17] is a

Java interpreter that runs entirely on GPUs. TornadoVM [19] is a Java framework

for high-performance heterogeneous programming. PyKokkos is embedded in Python

rather than Java, and is not limited to GPU execution since it targets Kokkos instead

of device specific frameworks.

A recent approach to translating programming languages is unsupervised trans-

lation by training on monolingual source code [62]. PyKokkos takes a more traditional

approach to translation that does not include machine learning. Combining the two

approaches is worth exploring.

4.2 Kernel Fusion

Figure 4.1 shows how PyFuser compares to existing work on kernel fusion.

The majority of this existing work deals with fusing domain specific kernels (shown

beneath the horizontal line), specifically pre-existing kernels that are typically smaller

in size and mostly restricted to tensor arithmetic operations and deep learning op-

erators, whereas PyFuser is able to fuse arbitrary, general-purpose parallel kernels.

Furthermore, PyFuser is the only framework that does this dynamically at run-time,

which improves its ability to detect opportunities for kernel fusion.

80

1

Static Dynamic

Domain Specific

General Purpose
Legend
Processor Specific
Different Processors

Meng et al.
(SC '12)

Wahib &
Maruyama
(SC '14)

Kernel Weaver
(MICRO '12) GunRock

(PPoPP '16)

GraphIt
(OOPSLA '18)

Hipacc
(CGO '19)

Bohrium
(PACT '16)

Weld
(VLDB '18)

DelayRepay
(DLS '20)

LazyTensor

Torchy
(CC '23)

PyKokkos + PyFuser

Figure 4.1: PyFuser is the first framework for dynamic fusion of general purpose
kernels that runs on different processing units.

One of the earliest attempts at CUDA kernel fusion was a dataflow-driven ap-

proach [48]. Kernels are expressed as CPU code skeletons which are then analyzed to

extract data dependencies between iterations across consecutive kernel calls. Different

fusion strategies corresponding to different shared memory caching implementations

are exhaustively searched and evaluated through a GPU performance model [47] at

compile-time. The best projected implementation is then manually added back to

the code. This framework requires rewriting the code into a skeleton and manual

modifications to the users code, unlike PyFuser, which works with existing PyKokkos

code with no modifications.

Kernel Weaver [73] applies fusion to kernels for relational algebra operators

meant for use in data warehousing applications. Examples of these operators includes

SELECT, JOIN, UNION, etc. They use a heuristic that estimates a kernel’s expected

resource usage to decide which operators to fuse. Their evaluation is focused solely on

two queries that use some combination of these operators, through which they show

performance speedups with fusion. Similar work by the authors [74] also experimented

with kernel fission, splitting kernels to overlap computation with data transfer from

main memory to GPU memory.

81

Wahib and Maruyama [70] formulated kernel fusion as a combinatorial opti-

mization problem and used a genetic algorithm with a performance projection model

to explore the space of potential fusions, focusing on memory-bound CUDA kernels.

The kernels to be fused are extracted statically from the code, which requires im-

posing restrictions such as each kernel can only be called once, unlike PyFuser which

uses a dynamic approach and works with existing code with no restrictions.

Filipovic et al. [26] present a framework for fusing CUDA BLAS routines. The

programmer first writes down the routines to be fused in a separate script which the

framework then parses and maps to the kernels in the BLAS library. The frame-

work then selects which kernels to fuse by predicting the potential performance im-

provement. This work was later extended to evaluate the potential to fuse arbitrary

kernels [27], but code generation and transformation was not automated.

Helium [46] is a framework for reordering and fusing OpenCL kernels. The

kernels must be first written as strings and then used to create OpenCL kernel objects.

Helium will then use lazy evaluation to delay the execution of the kernels. When data

is requested by the user, Helium will reorder the kernels to achieve better performance,

while optionally fusing some of them. The evaluation of Helium focuses mainly on

the performance gains from reordering kernels and does not analyze the impact of

fusion itself.

Gunrock [71] and GraphIt [75] are frameworks for GPU graph analytics. While

evaluating Gunrock, the developers noted that excessive fragmentation of kernels

leads to significantly lower performance, and kernel fusion is required in these situa-

tions. Similarly, GraphIt is a DSL for graph applications which allows users to specify

which kernels should be fused. Both these frameworks require that the user explic-

itly specify which kernels to fuse. Furthermore, the DSLs used in these frameworks

introduce high-level abstractions unfamiliar to most HPC developers.

Hipacc [59] is a DSL that allows programmers to write fused stencil-based

image processing kernels. It decides which kernels to fuse together by predicting

82

the potential savings in executed cycles. Hipacc focuses mainly on image processing

kernels and domain specific optimizations it can apply to those specific kernels, which

are not applicable to PyFuser.

Kernel fusion was also implemented as an LLVM pass for C++ kernels [40].

The user specifies which kernels to be fused using C++ attributes. A loop fusion

pass that works with skewed loops was also developed. This approach imposes severe

restrictions on the user code, such as each kernel only being called once, and the body

of each kernel can only contain a single loop, with no instructions appearing outside

of the loop. A similar approach for OpenCL removed the need for user-specified

attributes using lazy evaluation [65]; however, it focuses only on CPU execution.

Kernel fusion based on code motion [28] is a dataflow-based fusion technique

that moves CUDA kernel calls to expose more opportunities for parallelism.

Tacker [76] is a framework for statically fusing CUDA core kernels with tensor

core kernels. Fusing these two types of kernels allows for better utilization of an

NVIDIA GPU’s resources as each type of kernel uses different types of cores.

An extension of the SYCL API [56] allows the programmer to specify kernels

that can be fused, which a JIT compiler then fuses at run-time. Thrust [6] is a

C++ library for writing parallel algorithms that run with CUDA. Its API includes

constructs that allow the programmer to specify multiple kernel calls as a call to a

single fused kernel. These frameworks require the programmer to explicitly specify

which kernels can be fused, unlike PyFuser, which automatically finds opportunities

for fusion.

Bohrium [37] is a runtime system for automatic parallelization. Bohrium sup-

ports Python array programming through an API similar to NumPy. Subsequent

work by the authors implemented fusion of Bohrium parallel array operations [38] by

modeling the decision of which operations to fuse as a partitioning problem. Since

the evaluation focuses on CPUs, the authors use a relatively simple cost function that

83

looks solely at the number of array accesses to evaluate candidate partitions. Fur-

thermore, the NumPy API is more restrictive than the PyKokkos API, which allows

writing general purpose kernels (note that PyKokkos also supports the NumPy API).

Weld [54] does lazy evaluation for a NumPy-like API meant specifically for

data science applications. It generates an intermediate representation which is lightly

optimized with classical compiler optimizations before passing it to LLVM. Addition-

ally, Weld only supports CPU execution, whereas PyFuser supports a more general

API than NumPy and supports both CPUs and GPUs.

DelayRepay [49] is a drop-in replacement for NumPy that provides delayed

execution of universal functions and then maps them to CUDA kernels. At every

call to a universal function, DelayRepay adds an AST node corresponding to that

function, e.g., a unary or binary mathematical expression. When a certain array’s

data is requested, this triggers fusion of the accumulated AST and generation of

CUDA code from that AST. The generated code is then compiled and executed and

the results are returned to the user. As mentioned before, PyFuser supports a more

general API than NumPy.

The increasing popularity of frameworks such as PyTorch [55] has reignited

interest in kernel fusion research for deep learning operators [44, 66]. LazyTensor [66]

implements delayed execution by building traces of PyTorch and Swift for TensorFlow

operations to generate XLA HLO IR [7], which is then compiled and called when data

is requested by the user. Torchy [44] is a tracing JIT compiler for PyTorch that delays

execution of PyTorch tensor operations and stores them in a trace. This trace can be

run directly or can be further optimized via the PyTorch neural network compiler,

before being flushed when data is requested by the user. These frameworks address

fusion of domain-specific deep learning operators and not general-purpose kernels

written in PyKokkos like PyFuser.

Task fusion [67] is similar in spirit to kernel fusion, but deals with fusing tasks,

which are higher level than kernels and can contain multiple kernel calls. The goal of

84

task fusion is mainly to reduce overheads of the tasking system, while in kernel fusion

the goal is to generate more efficient kernels.

Horizontal fusion [43] is a CUDA kernel fusion technique that differs from

classical (vertical) fusion. Instead of concatenating the contents of two consecutive

kernel calls, horizontal fusion attempts to interleave the execution of the two kernels

it fuses. The code from each original kernel is placed in a separate branch and each

thread is dispatched to a specific branch based on its thread ID. This effectively results

in each original kernel being executed simultaneously. This fusion technique could be

integrated into PyFuser along with classical fusion to further improve performance.

RAP [72] is a framework that improves GPU utilization in deep learning rec-

ommendation models (DLRMs) input pre-processing and training. It monitors GPUs

and assigns input pre-processing kernels to GPUs that have idle resources. RAP will

optionally horizontally fuse [43] certain pre-processing kernels to increase GPU uti-

lization and improve performance.

85

Chapter 5: Future Work

In this chapter, we describe ways in which PyKokkos and PyFuser can be

improved upon in multiple aspects, run-time performance, compilation-time, general

usability, and ease of debugging.

5.1 Run-time performance

We plan on exploring techniques to further optimize the run-time performance

of the kernels generated by PyKokkos and PyFuser.

5.1.1 Just-in-time Optimizations

Since PyKokkos kernels are compiled at run-time, it is possible to optimize

the kernels further by utilizing information known about the kernels only at run-

time. First, we can specialize each kernel call by replacing scalar variables used in the

kernel with their run-time values in the generated C++ code, allowing the compiler to

generate more optimal code. This can also be extended by specifying the dimensions

of each view explicitly in the generated code. While these optimizations can easily

be shown to produce more optimal code, specializing a kernel to a specific call means

that it must be re-compiled if these scalar values change during later calls. We plan

on exploring the trade-off between specialization and re-compilation in future work.

Another application of using run-time information to improve performance is

in autotuning kernel launch parameters. For CUDA and HIP, this means selecting

block sizes as well as other tunable knobs made available through their APIs. For

OpenMP, this means selecting the schedule kind and chunk size. Currently, Kokkos

handles these knobs using static information only, so there is potential for improve-

ment. Additionally, all compilers offer tunable knobs that can impact code generation,

which PyKokkos has the option of adjusting at run-time.

86

5.1.2 Kernel Fusion Optimizations

PyFuser fuses kernel calls in traces greedily. Once a kernel has been fused with

another, it is removed from the trace and can no longer be fused with other kernels.

In the future, we plan on exploring different fusion strategies that take into account

kernel characteristics and explore trade-offs between different fusion decisions. We

also plan on applying horizontal fusion [43] in PyFuser to fuse kernels which would

not benefit from vertical fusion.

Recording kernel calls in traces allows us to potentially run these kernels con-

currently if no dependencies exist between them. This is typically done by task

scheduling systems such as Parla [42] and Legate [12] where tasks could contain

multiple kernel calls. In the future, we will investigate how kernel fusion and task

scheduling systems can be combined to further improve performance.

5.2 Usability

PyKokkos currently supports a subset of the Kokkos API so additional engi-

neering work is needed to add other Kokkos features, such as scratch memory, scatter

Views, etc. So far, we have focused on the most commonly used features.

One additional benefit of PyKokkos over Kokkos is that the translation to

Kokkos happens dynamically during the execution of a program. This, for example,

enables users to build a kernel during the execution of a program. So far, we have

focused on migrating existing kernels to PyKokkos. However, it would be interesting

to see how we can benefit further from dynamic compilation, and if such a style could

lead to a novel way for writing kernels or supporting program analysis tools.

5.3 Debugging

Current support for debugging PyKokkos applications is limited to execution

in Python. This approach is helpful for finding logic-based bugs but not concurrency

87

bugs. In the future, we plan to add support for running PyKokkos with a debugger

by adding line number information to the generated C++ code. Optimizing pure

Python execution would also improve debugging experience.

5.4 Code Translation

PyKokkos currently includes a code translator that generates C++ code from

the Python kernels. Building the translator correctly requires significant engineering

effort as the two languages have very different semantics. We plan on experimenting

with using large language models to automatically translate PyKokkos kernels to

C++ Kokkos.

88

Chapter 6: Conclusion

With modern HPC hardware becoming more heterogeneous, writing parallel

code is increasingly difficult. This paper introduces PyKokkos, a framework for per-

formance portable parallel programming in Python, as well as PyFuser, a framework

that further enhances the performance of PyKokkos through kernel fusion.

PyKokkos allows programmers to write high-performance parallel code entirely

through Python. It automatically translates user designated parallel functions into

C++ and Kokkos, while generating language bindings to connect the two languages.

Through PyKokkos, we were able to show that programmers can write various HPC

programs entirely through Python, achieving performance parity with similar C++

and Kokkos implementations, which are more complex and harder to write.

PyFuser complement PyKokkos and further improves its performance through

kernel fusion. It uses lazy evaluation to delay kernel calls and store them in traces.

It then fuses the kernels called in the traces while also transforming the generated

code to allow the compilers to optimize the code further and improve performance.

PyFuser generates fused kernels that are 3.8× faster on average than their unfused

constituent kernels across all processors.

Through PyKokkos and PyFuser, we have shown that writing performance

portable, high-performance code is possible entirely through Python. We believe

that programming languages of the future will combine dynamic languages with the

ideas introduced in this dissertation to make HPC easier to use and more widely

accessible to a broader audience.

89

Works Cited

[1] Mypy. https://github.com/python/mypy, 2012.

[2] Kokkos Tutorials. https://github.com/kokkos/kokkos-tutorials, 2015.

[3] KokkosP Profiling Tools. https://github.com/kokkos/kokkos-tools, 2016.

[4] ExaMiniMD. https://github.com/ECP-copa/ExaMiniMD, 2017.

[5] Nsight Compute CLI. https://docs.nvidia.com/nsight-compute/

NsightComputeCli/index.html, 2024.

[6] Thrust: The c++ parallel algorithms library. https://nvidia.github.io/

cccl/thrust/, 2024.

[7] XLA:compiling machine learning for peak performance. https://openxla.

org/xla, 2024.

[8] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jef-

frey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard,

Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G.

Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin

Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: A system for large-scale

machine learning. In USENIX Symposium on Operating Systems Design and Im-

plementation, pages 265–283, 2016. https://www.usenix.org/system/files/

conference/osdi16/osdi16-abadi.pdf.

[9] Nader Al Awar, Steven Zhu, George Biros, and Milos Gligoric. A performance

portability framework for Python. In International Conference on Supercom-

puting, pages 467–478, 2021. https://doi.org/10.1145/3447818.3460376.

90

https://github.com/python/mypy
https://github.com/kokkos/kokkos-tutorials
https://github.com/kokkos/kokkos-tools
https://github.com/ECP-copa/ExaMiniMD
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html
https://nvidia.github.io/cccl/thrust/
https://nvidia.github.io/cccl/thrust/
https://openxla.org/xla
https://openxla.org/xla
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://doi.org/10.1145/3447818.3460376

[10] Nader Al Awar, Steven Zhu, Neil Mehta, George Biros, and Milos Gligoric.

PyKokkos: Performance portable kernels in Python. In International Confer-

ence on Software Engineering, Tool Demonstrations Track, pages 164–167, 2022.

https://doi.org/10.1145/3510454.3516827.

[11] James Almgren-Bell, Nader Al Awar, Dilip S Geethakrishnan, Milos Gligoric,

and George Biros. A multi-GPU Python solver for low-temperature non-

equilibrium plasmas. In International Symposium on Computer Architecture

and High Performance Computing, pages 140–149, 2022. https://doi.org/

10.1109/SBAC-PAD55451.2022.00025.

[12] Michael Bauer and Michael Garland. Legate numpy: accelerated and distributed

array computing. In International Conference for High Performance Computing,

Networking, Storage and Analysis, pages 1–23, 2019. https://doi.org/10.

1145/3295500.3356175.

[13] David A. Beckingsale, Jason Burmark, Rich Hornung, Holger Jones, William

Killian, Adam J. Kunen, Olga Pearce, Peter Robinson, Brian S. Ryujin, and

Thomas RW Scogland. RAJA: Portable performance for large-scale scientific

applications. In International Workshop on Performance, Portability and Pro-

ductivity in HPC, pages 71–81, 2019. https://doi.org/10.1109/P3HPC49587.

2019.00012.

[14] Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin, Dag Sverre Sel-

jebotn, and Kurt Smith. Cython: The best of both worlds. Computing in

Science and Engineering, 13(2):31–39, 2011. https://doi.org/10.1109/MCSE.

2010.118.

[15] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. Julia:

A fresh approach to numerical computing. SIAM Review, 59(1):65–98, 2017.

https://doi.org/10.1137/141000671.

91

https://doi.org/10.1145/3510454.3516827
https://doi.org/10.1109/SBAC-PAD55451.2022.00025
https://doi.org/10.1109/SBAC-PAD55451.2022.00025
https://doi.org/10.1145/3295500.3356175
https://doi.org/10.1145/3295500.3356175
https://doi.org/10.1109/P3HPC49587.2019.00012
https://doi.org/10.1109/P3HPC49587.2019.00012
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1137/141000671

[16] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas

Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort,

Jaques Grobler, Robert Layton, Jake VanderPlas, Arnaud Joly, Brian Holt, and

Gaël Varoquaux. API design for machine learning software: experiences from

the scikit-learn project. In ECML PKDD Workshop: Languages for Data Min-

ing and Machine Learning, pages 108–122, 2013.

[17] Ahmet Celik, Pengyu Nie, Christopher J. Rossbach, and Milos Gligoric. Design,

implementation, and application of GPU-based Java bytecode interpreters. In

International Conference on Object-Oriented Programming, Systems, Languages,

and Applications, pages 1–28, 2019. https://doi.org/10.1145/3360603.

[18] James Clarkson, Christos Kotselidis, Gavin Brown, and Mikel Luján. Boosting

Java performance using GPGPUs. In International Conference on Architec-

ture of Computing Systems, pages 59–70, 2017. https://doi.org/10.1007/

978-3-319-54999-6_5.

[19] James Clarkson, Juan Fumero, Michail Papadimitriou, Foivos S. Zakkak, Maria

Xekalaki, Christos Kotselidis, and Mikel Lujan. Exploiting high-performance

heterogeneous hardware for Java programs using Graal. In International Con-

ference on Managed Languages and Runtimes, pages 1–13, 2018. https:

//doi.org/10.1145/3237009.3237016.

[20] CudaUVM. Unified Memory in CUDA 6, 2013. https://developer.nvidia.

com/blog/unified-memory-in-cuda-6.

[21] CUDAWebPage. CUDA Zone, 2024. https://developer.nvidia.com/

cuda-zone.

[22] Tom Deakin, James Price, Matt Martineau, and Simon McIntosh-Smith. GPU-

STREAM v2.0: Benchmarking the achievable memory bandwidth of many-core

92

https://doi.org/10.1145/3360603
https://doi.org/10.1007/978-3-319-54999-6_5
https://doi.org/10.1007/978-3-319-54999-6_5
https://doi.org/10.1145/3237009.3237016
https://doi.org/10.1145/3237009.3237016
https://developer.nvidia.com/blog/unified-memory-in-cuda-6
https://developer.nvidia.com/blog/unified-memory-in-cuda-6
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone

processors across diverse parallel programming models. In International Work-

shop on Performance Portable Programming models for Manycore or Accelera-

tors, pages 489–507, 2016. https://doi.org/10.1007/978-3-319-46079-6_

34.

[23] Jorge Docampo, Sabela Ramos, Guillermo L. Taboada, Roberto R. Expósito,

Juan Touriño, and Ramón Doallo. Evaluation of Java for general purpose GPU

computing. In International Conference on Advanced Information Networking

and Applications Workshops, pages 1398–1404, 2013. https://doi.org/10.

1109/WAINA.2013.234.

[24] Christophe Dubach, Perry Cheng, Rodric Rabbah, David F. Bacon, and

Stephen J. Fink. Compiling a high-level language for GPUs: (via language

support for architectures and compilers). In International Conference on Pro-

gramming Language Design and Implementation, pages 1–12, 2012. https:

//doi.org/10.1145/2345156.2254066.

[25] H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. Kokkos: En-

abling manycore performance portability through polymorphic memory access

patterns. Journal of Parallel and Distributed Computing, 74(12):3202–3216,

2014. https://doi.org/10.1016/j.jpdc.2014.07.003.

[26] Jiri Filipovic, Matúš Madzin, Jan Fousek, and Luděk Matyska. Optimizing

CUDA code by kernel fusion: application on BLAS. The Journal of Supercomput-

ing, 71(10):3934–3957, 2015. https://doi.org/10.1007/s11227-015-1483-z.

[27] Jiŕı Filipovic and Siegfried Benkner. OpenCL kernel fusion for GPU, Xeon

Phi and CPU. In International Symposium on Computer Architecture and High

Performance Computing, pages 98–105, 2015. https://doi.org/10.1109/

SBAC-PAD.2015.29.

93

https://doi.org/10.1007/978-3-319-46079-6_34
https://doi.org/10.1007/978-3-319-46079-6_34
https://doi.org/10.1109/WAINA.2013.234
https://doi.org/10.1109/WAINA.2013.234
https://doi.org/10.1145/2345156.2254066
https://doi.org/10.1145/2345156.2254066
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1007/s11227-015-1483-z
https://doi.org/10.1109/SBAC-PAD.2015.29
https://doi.org/10.1109/SBAC-PAD.2015.29

[28] Junji Fukuhara and Munehiro Takimoto. Automated kernel fusion for GPU

based on code motion. In International Conference on Languages, Compilers,

and Tools for Embedded Systems, pages 151–161, 2022. https://doi.org/10.

1145/3519941.3535078.

[29] Max Grossman, Shams Imam, and Vivek Sarkar. HJ-OpenCL: Reducing the gap

between the JVM and accelerators. In International Conference on Principles

and Practices of Programming on The Java Platform, pages 2–15, 2015. https:

//doi.org/10.1145/2807426.2807427.

[30] Stephen Lien Harrell, Joy Kitson, Robert Bird, Simon John Pennycook, Jason

Sewall, Douglas Jacobsen, David Neill Asanza, Abaigail Hsu, Hector Carrillo

Carrillo, Hessoo Kim, and Robert Robey. Effective performance portability. In

International Workshop on Performance, Portability and Productivity in HPC,

pages 24–36, 2018. https://doi.org/10.1109/P3HPC.2018.00006.

[31] Charles R. Harris, K. Jarrod Millman, Stefan J. van der Walt, Ralf Gommers,

Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,

Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van

Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernandez del Rio, Mark Wiebe,

Pearu Peterson, Pierre Gerard-Marchant, Kevin Sheppard, Tyler Reddy, Warren

Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array

programming with NumPy. Nature, 585(7825):357–362, 2020. https://doi.

org/10.1038/s41586-020-2649-2.

[32] Akihiro Hayashi, Max Grossman, Jisheng Zhao, Jun Shirako, and Vivek Sarkar.

Accelerating Habanero-Java programs with OpenCL generation. In Interna-

tional Conference on Principles and Practices of Programming on the Java Plat-

form: Virtual Machines, Languages, and Tools, pages 124–134, 2013. https:

//doi.org/10.1145/2500828.2500840.

94

https://doi.org/10.1145/3519941.3535078
https://doi.org/10.1145/3519941.3535078
https://doi.org/10.1145/2807426.2807427
https://doi.org/10.1145/2807426.2807427
https://doi.org/10.1109/P3HPC.2018.00006
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1145/2500828.2500840
https://doi.org/10.1145/2500828.2500840

[33] HIPWebPage. HIP documentation, 2024. https://rocm.docs.amd.com/

projects/HIP/en/latest/.

[34] Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan

Ragan-Kelley, and Fredo Durand. DiffTaichi: Differentiable programming for

physical simulation. In International Conference on Learning Representations,

2020. https://openreview.net/forum?id=B1eB5xSFvr.

[35] Intel. PRK. https://github.com/ParRes/Kernels, 2013.

[36] Ken Kennedy and Kathryn S. McKinley. Maximizing loop parallelism and im-

proving data locality via loop fusion and distribution. In International Workshop

on Languages and Compilers for Parallel Computing, pages 301–320, 1993.

[37] Mads R.B. Kristensen, Simon A.F. Lund, Troels Blum, Kenneth Skovhede, and

Brian Vinter. Bohrium: A virtual machine approach to portable parallelism. In

International Parallel and Distributed Processing Symposium Workshops, pages

312–321, 2014. https://doi.org/10.1109/IPDPSW.2014.44.

[38] Mads R.B. Kristensen, Simon A.F. Lund, Troels Blum, and James Avery. Fu-

sion of parallel array operations. In International Conference on Parallel Ar-

chitectures and Compilation, pages 71–85, 2016. https://doi.org/10.1145/

2967938.2967945.

[39] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A LLVM-based

Python JIT compiler. In Workshop on the LLVM Compiler Infrastructure in

HPC, pages 1–6, 2015. https://doi.org/10.1145/2833157.2833162.

[40] Andrew Lamzed-Short, Timothy R. Law, Andrew Mallinson, Gihan R. Mudalige,

and Stephen A. Jarvis. Towards automated kernel fusion for the optimisation

of scientific applications. In Workshop on the LLVM Compiler Infrastructure in

HPC and Workshop on Hierarchical Parallelism for Exascale Computing, pages

45–55, 2020. https://doi.org/10.1109/LLVMHPCHiPar51896.2020.00010.

95

https://rocm.docs.amd.com/projects/HIP/en/latest/
https://rocm.docs.amd.com/projects/HIP/en/latest/
https://openreview.net/forum?id=B1eB5xSFvr
https://github.com/ParRes/Kernels
https://doi.org/10.1109/IPDPSW.2014.44
https://doi.org/10.1145/2967938.2967945
https://doi.org/10.1145/2967938.2967945
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1109/LLVMHPCHiPar51896.2020.00010

[41] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong

program analysis & transformation. In International Symposium on Code Gen-

eration and Optimization, pages 75–86, 2004. https://doi.org/10.1109/CGO.

2004.1281665.

[42] Hochan Lee, William Ruys, Ian Henriksen, Arthur Peters, Yineng Yan, Sean

Stephens, Bozhi You, Henrique Fingler, Martin Burtscher, Milos Gligoric, Karl

Schulz, Keshav Pingali, Christopher J. Rossbach, Mattan Erez, and George

Biros. Parla: a Python orchestration system for heterogeneous architectures. In

International Conference on High Performance Computing, Networking, Storage

and Analysis, pages 1–15, 2022. https://doi.org/10.1109/SC41404.2022.

00056.

[43] Ao Li, Bojian Zheng, Gennady Pekhimenko, and Fan Long. Automatic hori-

zontal fusion for GPU kernels. In International Symposium on Code Generation

and Optimization, pages 14–27, 2022. https://doi.org/10.1109/CGO53902.

2022.9741270.

[44] Nuno P. Lopes. Torchy: A tracing JIT compiler for pytorch. In International

Conference on Compiler Construction, pages 98–109, 2023. https://doi.org/

10.1109/MCSE.2021.3098509.

[45] Xiaomin Lu, Cole Ramos, Fei Zheng, Karl W. Schulz, Jose Santos, Keith Lowery,

Nicholas Curtis, and Cristian Di Pietrantonio. Amdresearch/omniperf: v1.1.0-

pr1 (13 oct 2023), October 2023.

[46] Thibaut Lutz, Christian Fensch, and Murray Cole. Helium: a transparent inter-

kernel optimizer for OpenCL. InWorkshop on General Purpose Processing Using

GPUs, pages 70–80, 2015. https://doi.org/10.1145/2716282.2716284.

[47] Jiayuan Meng, Vitali A. Morozov, Kalyan Kumaran, Venkatram Vishwanath,

and Thomas D. Uram. GROPHECY: GPU performance projection from CPU

96

https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/SC41404.2022.00056
https://doi.org/10.1109/SC41404.2022.00056
https://doi.org/10.1109/CGO53902.2022.9741270
https://doi.org/10.1109/CGO53902.2022.9741270
https://doi.org/10.1109/MCSE.2021.3098509
https://doi.org/10.1109/MCSE.2021.3098509
https://doi.org/10.1145/2716282.2716284

code skeletons. In International Conference for High Performance Computing,

Networking, Storage and Analysis, pages 1–11, 2011. https://doi.org/10.

1145/2063384.2063402.

[48] Jiayuan Meng, Vitali A. Morozov, Venkatram Vishwanath, and Kalyan Ku-

maran. Dataflow-driven GPU performance projection for multi-kernel trans-

formations. In International Conference on High Performance Computing, Net-

working, Storage and Analysis, pages 1–11, 2012. https://doi.org/10.1109/

SC.2012.42.

[49] John Magnus Morton, Kuba Kaszyk, Lu Li, Jiawen Sun, Christophe Dubach,

Michel Steuwer, Murray Cole, and Michael F. P. O’Boyle. DelayRepay: Delayed

execution for kernel fusion in Python. In International Symposium on Dynamic

Languages, pages 43–56, 2020. https://doi.org/10.1145/3426422.3426980.

[50] Ryosuke Okuta, Yuya Unno, Daisuke Nishino, Shohei Hido, and Crissman

Loomis. CuPy: A NumPy-compatible library for NVIDIA GPU calculations.

In Workshop on Machine Learning Systems, 2017. http://learningsys.org/

nips17/assets/papers/paper_16.pdf.

[51] Travis E. Oliphant. Python for scientific computing. Computing in Science and

Engineering, 9(3):10–20, 2007. https://doi.org/10.1109/MCSE.2007.58.

[52] OpenMPWebPage. OpenMP, 2024. https://www.openmp.org.

[53] Sreepathi Pai and Keshav Pingali. A compiler for throughput optimization of

graph algorithms on GPUs. In International Conference on Object-Oriented

Programming, Systems, Languages, and Applications, pages 1–19, 2016. https:

//doi.org/10.1145/2983990.2984015.

[54] Shoumik Palkar, James Thomas, Deepak Narayanan, Pratiksha Thaker, Rahul

Palamuttam, Parimajan Negi, Anil Shanbhag, Malte Schwarzkopf, Holger Pirk,

97

https://doi.org/10.1145/2063384.2063402
https://doi.org/10.1145/2063384.2063402
https://doi.org/10.1109/SC.2012.42
https://doi.org/10.1109/SC.2012.42
https://doi.org/10.1145/3426422.3426980
http://learningsys.org/nips17/assets/papers/paper_16.pdf
http://learningsys.org/nips17/assets/papers/paper_16.pdf
https://doi.org/10.1109/MCSE.2007.58
https://www.openmp.org
https://doi.org/10.1145/2983990.2984015
https://doi.org/10.1145/2983990.2984015

Saman Amarasinghe, Samuel Madden, and Matei Zaharia. Evaluating end-

to-end optimization for data analytics applications in weld. Proceedings of

the VLDB Endowment, 11(9):1002–1015, 2018. https://doi.org/10.14778/

3213880.3213890.

[55] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-

gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,

Alban Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison,

Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,

and Soumith Chintala. PyTorch: an imperative style, high-performance deep

learning library. In International Conference on Neural Information Processing

Systems, pages 8026–8037, 2019.

[56] Vı́ctor Pérez, Lukas Sommer, Victor Lomüller, Kumudha Narasimhan, and

Mehdi Goli. User-driven online kernel fusion for SYCL. Transactions on Archi-

tecture and Code Optimization, 20(2):1–25, 2023. https://doi.org/10.1145/

3571284.

[57] Philip C. Pratt-Szeliga, James W. Fawcett, and Roy D. Welch. Rootbeer:

Seamlessly using GPUs from Java. In International Conference on High

Performance Computing and Communication, pages 375–380, 2012. https:

//doi.org/10.1109/HPCC.2012.57.

[58] pybind11. Pybind11 Documentation, 2020. https://pybind11.readthedocs.

io/en/stable/intro.html.

[59] Bo Qiao, Oliver Reiche, Frank Hannig, and J̈ırgen Teich. From loop fusion to

kernel fusion: A domain-specific approach to locality optimization. In Interna-

tional Symposium on Code Generation and Optimization, pages 242–253, 2019.

https://doi.org/10.1109/CGO.2019.8661176.

98

https://doi.org/10.14778/3213880.3213890
https://doi.org/10.14778/3213880.3213890
https://doi.org/10.1145/3571284
https://doi.org/10.1145/3571284
https://doi.org/10.1109/HPCC.2012.57
https://doi.org/10.1109/HPCC.2012.57
https://pybind11.readthedocs.io/en/stable/intro.html
https://pybind11.readthedocs.io/en/stable/intro.html
https://doi.org/10.1109/CGO.2019.8661176

[60] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo

Durand, and Saman Amarasinghe. Halide: a language and compiler for op-

timizing parallelism, locality, and recomputation in image processing pipelines.

In Programming Language Design and Implementation, pages 519–530, 2013.

https://doi.org/10.1145/2491956.2462176.

[61] Matthew Rocklin. Dask: Parallel computation with blocked algorithms and task

scheduling. In Python in Science Conference, pages 126–132, 2015. https:

//doi.org/10.25080/Majora-7b98e3ed-013.

[62] Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanussot, and Guillaume

Lample. Unsupervised translation of programming languages. In In-

ternational Conference on Neural Information Processing Systems, pages

20601–20611, 2020. https://proceedings.neurips.cc/paper/2020/file/

ed23fbf18c2cd35f8c7f8de44f85c08d-Paper.pdf.

[63] ShedSkin. Shed Skin, 2020. https://shedskin.github.io.

[64] Elliot Slaughter and Alex Aiken. Pygion: Flexible, scalable task-based paral-

lelism with Python. In Parallel Applications Workshop, Alternatives To MPI,

pages 58–72, 2019.

[65] John A. Stratton, Jyothi Krishna V. S., Jeevitha Palanisamy, and Karthikadevi

Chinnaraju. Kernel fusion in opencl. In Euro-Par 2021: Parallel

Processing Workshops, pages 191–202, 2022. https://doi.org/10.1007/

978-3-031-06156-1_16.

[66] Alex Suhan, Davide Libenzi, Ailing Zhang, Parker Schuh, Brennan Saeta,

Jie Young Sohn, and Denys Shabalin. LazyTensor: combining eager execution

with domain-specific compilers, 2021. https://arxiv.org/abs/2102.13267.

99

https://doi.org/10.1145/2491956.2462176
https://doi.org/10.25080/Majora-7b98e3ed-013
https://doi.org/10.25080/Majora-7b98e3ed-013
https://proceedings.neurips.cc/paper/2020/file/ed23fbf18c2cd35f8c7f8de44f85c08d-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/ed23fbf18c2cd35f8c7f8de44f85c08d-Paper.pdf
https://shedskin.github.io
https://doi.org/10.1007/978-3-031-06156-1_16
https://doi.org/10.1007/978-3-031-06156-1_16
https://arxiv.org/abs/2102.13267

[67] Shiv Sundram, Wonchan Lee, and Alex Aiken. Task fusion in distributed run-

times. In Parallel Applications Workshop: Alternatives To MPI+X, pages 13–

25, 2022. https://doi.org/10.1109/PAW-ATM56565.2022.00007.

[68] P. Tarr, H. Ossher, W. Harrison, and S.M. Sutton. N degrees of separation:

multi-dimensional separation of concerns. In International Conference on Soft-

ware Engineering, pages 107–119, 1999.

[69] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler

Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,

Jonathan Bright, Stefan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-

rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern,

Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,

Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,

Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa,

Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algo-

rithms for Scientific Computing in Python. Nature Methods, 17:261–272, 2020.

https://doi.org/10.1038/s41592-019-0686-2.

[70] Mohamed Wahib and Naoya Maruyama. Scalable kernel fusion for memory-

bound GPU applications. In International Conference for High Performance

Computing, Networking, Storage and Analysis, pages 191–202, 2014. https:

//doi.org/10.1109/SC.2014.21.

[71] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and

John D. Owens. Gunrock: a high-performance graph processing library on the

GPU. In Symposium on Principles and Practice of Parallel Programming, pages

1–12, 2016. https://doi.org/10.1145/3016078.2851145.

[72] Zheng Wang, Yuke Wang, Jiaqi Deng, Da Zheng, Ang Li, and Yufei Ding. RAP:

Resource-aware automated GPU sharing for multi-GPU recommendation model

100

https://doi.org/10.1109/PAW-ATM56565.2022.00007
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/SC.2014.21
https://doi.org/10.1109/SC.2014.21
https://doi.org/10.1145/3016078.2851145

training and input preprocessing. In International Conference on Architec-

tural Support for Programming Languages and Operating Systems, pages 964–

979, 2024. https://doi.org/10.1145/3620665.3640406.

[73] Haicheng Wu, Gregory Diamos, Srihari Cadambi, and Sudhakar Yalamanchili.

Kernel Weaver: Automatically fusing database primitives for efficient GPU com-

putation. In International Symposium on Microarchitecture, pages 107–118,

2012. https://doi.org/10.1109/MICRO.2012.19.

[74] Haicheng Wu, Gregory Diamos, Jin Wang, Srihari Cadambi, Sudhakar Yala-

manchili, and Srimat Chakradhar. Optimizing data warehousing applications

for GPUs using kernel fusion/fission. In International Parallel and Distributed

Processing Symposium Workshops and PhD Forum, pages 2433–2442, 2012.

https://doi.org/10.1109/IPDPSW.2012.300.

[75] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian Shun,

and Saman Amarasinghe. GraphIt: a high-performance graph DSL. In Inter-

national Conference on Object-Oriented Programming, Systems, Languages, and

Applications, pages 1–30, 2018. https://doi.org/10.1145/3276491.

[76] Han Zhao, Weihao Cui, Quan Chen, Youtao Zhang, Yanchao Lu, Chao Li, Jing-

wen Leng, and Minyi Guo. Tacker: Tensor-CUDA core kernel fusion for im-

proving the GPU utilization while ensuring QoS. In International Symposium

on High-Performance Computer Architecture, pages 800–813, 2022. https:

//doi.org/10.1109/HPCA53966.2022.00064.

[77] Alexandros Nikolaos Ziogas, Tal Ben-Nun, Timo Schneider, and Torsten Hoe-

fler. NPBench: a benchmarking suite for high-performance NumPy. In

International Conference on Supercomputing, pages 63–74, 2021. https:

//doi.org/10.1145/3447818.3460360.

101

https://doi.org/10.1145/3620665.3640406
https://doi.org/10.1109/MICRO.2012.19
https://doi.org/10.1109/IPDPSW.2012.300
https://doi.org/10.1145/3276491
https://doi.org/10.1109/HPCA53966.2022.00064
https://doi.org/10.1109/HPCA53966.2022.00064
https://doi.org/10.1145/3447818.3460360
https://doi.org/10.1145/3447818.3460360

	List of Tables
	List of Figures
	Chapter 1: Introduction
	Chapter 2: A Performance Portability Framework for Python
	Introduction
	Background and Example
	Kokkos
	PyKokkos via an Example

	PyKokkos Programming Model
	Code Styles
	Features
	Syntax Rules

	PyKokkos Internals
	PKC
	Runtime

	Evaluation
	Evaluation Setup
	Subjects
	Performance: Small Applications
	Performance: ExaMiniMD
	Pure Python Execution
	Code Characteristics
	Numba Comparison

	Conclusion

	Chapter 3: Fusing Performance Portable Python Kernels
	Introduction
	Motivation
	Benefits
	Example

	Technique
	PyKokkos Runtime
	Tracing
	Fusion
	Code Transformations

	Evaluation
	Evaluation Setup
	Test Subjects
	Kernel Speedups
	Profiler Metrics
	Performance Analysis
	Run-time Overhead

	Conclusion

	Chapter 4: Related Work
	Python HPC Frameworks
	Kernel Fusion

	Chapter 5: Future Work
	Run-time performance
	Just-in-time Optimizations
	Kernel Fusion Optimizations

	Usability
	Debugging
	Code Translation

	Chapter 6: Conclusion
	Works Cited

