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Abstract

C++ remains one of the most widely used languages in vari-
ous computing fields, from embedded programming to high-
performance computing. While new features are constantly
being added to C++, an important aspect of the language that
is often overlooked is its compilation time. Merely including
a few header files can cause compilation time to increase
significantly. An alternative to including header files is using
forward declarations; however, the rules for forward declar-
ing classes and functions are non obvious and confusing to
most developers. Additionally, forward declaring methods,
as well as functions that accept lambdas as arguments, is not
possible. In this paper, we present a novel technique, termed
Header Substitution, to automatically detect opportunities
for forward declarations with the goal of replacing includes
of header files and improving compilation time. Header Sub-
stitution also introduces function wrappers as an alternative
to forward declaring methods and functions with lambda
arguments. We implemented Header Substitution in a tool,
dubbed Yalla, and applied it to various C++ projects in order
to speed up the development cycle, i.e., the debugging, edit-
ing, compiling, and rerunning loop, achieving up to a 24.5×
speedup when compiling C++ files and a 4.68× speedup of
the development cycle.
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1 Introduction

The local development cycle is a universal concept in soft-
ware development. Prior to deploying software to production,
developers clone the code to their local machine and iterate
over it by editing, compiling, and debugging it, as shown
in Figure 1. This cycle is ubiquitous across many software
development tasks, including bug fixing, prototyping, and
performance tuning [18, 20, 30].
The main benefit of developing locally is getting instan-

taneous feedback on changes made to the code. Therefore,
in order to increase developers’ productivity, it is necessary
to ensure that the local development cycle proceeds rapidly.
For compiled languages, the bottleneck in this cycle is fre-
quently the compilation step. C++ in particular is known to
suffer from long compile times which are disruptive to the
developer during the local development cycle [25, 29, 34, 35].
As C++ was designed to be backwards compatible with

the C language [31], C++ adopted the C include system,
where developers divide their code into source and header
files. Code that is meant to be shared across multiple files is
placed in header files, which can then be included in other
source or header files. In this system, re-compiling a source
file requires re-compiling all included header files. Since
these header files could include other header files transitively,
compilation times can grow sharply during the development
cycle as more files are included. This can be frustrating to
programmers as they must pay the cost of compiling all
included headers for even minor modifications made to un-
related parts of their code.

C++ programmers must therefore ensure that their head-
ers remain relatively lightweight. This can be achieved by
including in the headers only the code necessary to interface
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Figure 1. The universal local development cycle. In compiled
languages, compilation time is downtime for developers, so
we aim to speed it up in this paper.

with other parts of the program, while moving the rest into
source files. However, this is not always possible, as pro-
grammers might be using headers from third party libraries
written by others. These can be especially problematic in the
case of header-only libraries [12] which include an entire
library’s implementation in the user’s source code.
Instead of including a header file, an alternative that can

improve compilation time is to use forward declarations [13].
Programmers can avoid including header files by adding
function and class declarations defined in those header files
directly to their source files. However, this approach has
some drawbacks: first, the rules for forward declaration are
not straightforward and are hard to get right, which could re-
sult in hard to debug compilation and linking errors. Second,
forward declarations do not work well with C++ templates
and do not work at all with lambdas passed as template argu-
ments and class methods, all of which are extensively used
in modern C++ code.

Another technique to improve compilation time is to use
pre-compiled header files [11], or PCH for short. This enables
the compiler to parse headers beforehand so that compiling
any file that includes them later on is faster. However, this
only saves the cost of parsing the header files and not the
later stages of compilation, such as optimization and ma-
chine code generation. Another potential solution is to use
modules, a recent C++ feature introduced in C++20 [9]. Sup-
port for modules is still lacking in major C++ compilers, and
it remains to be seen whether they will be widely adopted
by the C++ community [5].

We present Header Substitution, a technique for automat-
ically replacing included header files in C++ source code
with forward declarations, applied locally on a developer’s
machine to speed up the development cycle. Header Sub-
stitution replaces include statements in source files while
guaranteeing that the code still compiles and runs correctly.
It makes extensive use of forward declarations for classes
and functions, even templated ones. It also relies on code
generation to allow forward declaration for templates, tem-
plates with lambdas, and class methods. Header Substitution
examines the user’s source code to determine which parts
of the included header files they actually use, generating a
lightweight header file much smaller in size than the header
being substituted.

We implemented Header Substitution in a tool named
Yalla and evaluated it on existing C++ projects, including
PyKokkos [16, 17], a Python framework for scientific com-
puting that generates and compiles C++ Kokkos code [32],
as well as a number of widely used C++ libraries, including
RapidJSON [3], OpenCV [2], and Boost.Asio [1].

The main contributions of this paper include:
★ Design of Header Substitution, a technique for replacing

header files that are costly to compile in C++ source files.
★ Implementation of header substitution in a tool, dubbed

Yalla, for header substitution in C++.
★ Evaluation of Yalla on C++ generated by PyKokkos, as

well as other popular C++ libraries. Our results show that
Yalla improves compilation time of C++ code by 24.5×
on average, significantly speeding the development cycle,
even when compared to using PCH files.

The source code for Yalla is available at https://github.com/
EngineeringSoftware/llvm-project-yalla/tree/yalla/clang-tools-
extra/clang-yalla.

2 Background

In this section, we illustrate the C++ compilation process
(Section 2.1) and introduce techniques used to speed it up
(Section 2.2). We then motivate the need for faster C++ com-
pilation in the development cycle (Section 2.3).

2.1 C++ Compilation

We illustrate the stages followed by most C++ compilers
using the example in Figure 2, focusing mainly on the pre-
processor phase and template instantiation. Figures 2a and 2b
show a C++ source file that includes a header file before and
after the template instantiation phase respectively. Figures 2c
and 2d show the same example with forward declarations,
which we discuss in the next section in detail.

The first step is passing the C++ source file (shown in
Figure 2a) to a compiler, which reads the file into memory
and removes comments. It then moves to the preprocessor
phase, which handles lines that begin with the # character,
such as #include, which can be seen on line 2 in Figure 2a.
The preprocessor searches for a header file (typically ending
with a .h or .hpp extension) with that name in a set of default
and user-defined search paths. Once found, the preprocessor
replaces the #includewith the contents of the found header
file. This process is repeated recursively on the included
header files until all directives have been processed. The
output of this stage is known as a translation unit.
The next phases include lexical, syntactic, and semantic

analyses, followed by template instantiation. Templates are a
C++ feature that enable generic programming, i.e., writing
definitions in terms of types that will be specified later. Line 9
in Figure 2a is an example of a function template. Other types
of templates in C++ are class and variable templates (not
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1 // main.cpp

2 #include "add.hpp"

3

4 int main() {

5 g_add <int >(1, 2);

6 }

7

8 // add.hpp

9 template <typename T>

10 T g_add(T x, T y) {

11 return x + y;

12 }

(a) The sample source and
header files.

1 template <typename T>

2 T g_add(T x, T y) {

3 return x + y;

4 }

5 template <>

6 int g_add <int >(

7 int x, int y) {

8 return x + y;

9 }

10 int main() {

11 g_add <int >(1, 2);

12 }

(b) The source file after tem-
plate instantiation.

1 // Forward declaration

2 template <typename T>

3 T g_add(T x, T y);

4

5 int main() {

6 // Template usage

7 g_add <int >(1, 2);

8 }

(c) Forward declaration of a
templated function.

1 // Template definition

2 template <typename T>

3 T g_add(T x, T y) {

4 return x + y;

5 }

6

7 // Explicit instantiation

8 template

9 int g_add <int >(

10 int x, int y);

(d) Template definition and ex-
plicit instantiation.

Figure 2. An example illustrating the C++ compilation process and forward declarations.

shown here). A generic template definition by itself does not
cause any code to be generated [10]. Rather, the template
must be instantiated by setting the generic types to concrete
ones, typically when the template is used (line 5 in Figure 2a).
The compiler generates a different version of the template
for every combination of concrete types used. The output of
this stage can be seen in Figure 2b.
The final phases typically include optimization, object

code generation, assembly, and linking. During linking, the
linker searches for missing definitions of symbols such as
classes and functions in other object code files.

2.2 Forward Declarations

The C++ include system can result in a relatively slow compi-
lation process. Forward declaration means declaring classes
or functions originally defined in other files. This can be
used instead of including those files to speed up compilation.
Libraries typically provide a few header files containing

most of their public API, which is problematic for several
reasons. First, these headers can contain definitions instead
of just declarations, meaning that they are larger than they
need to be and costly to compile. Separating definitions into
different source files requires more effort on the library devel-
oper’s part and can even be impossible for templates. Second,
the library header itself typically includes more files, includ-
ing standard library and system headers, so simply including
one file results in manymore files being included transitively,
further bloating the library header. Third, even if the user’s
code needs a small part of the API, it must include the en-
tire library header, so developers end up paying the cost of
compiling the whole file.
An alternative to including a header file is to forward

declare classes and functions needed from that header. A
forward declaration of a class or function makes it visible
to the user’s code without including the header file it was
originally declared in. Forward declaring a function means
specifying its return type, name, and parameters but not the
function body. Lines 2 and 3 in Figure 2c show an example

of a forward declared function as a substitute for including
the header file add.hpp. Its definition can be seen on lines 2
to 5 in Figure 2d. Forward declaring a class means simply
specifying its name while not providing any of its fields
or methods. Missing class and function definitions will be
linked to the user’s code at the end during the linking stage.

While the example shown in Figure 2 shows a case where
a forward declaration can easily replace a header include,
the two are not always functionally equivalent. Forward de-
clared classes are incomplete types and are not semantically
equivalent to class definitions. Since a forward declared class
does not list its fields and methods, any later references to
them results in a compilation error. Additionally, since the
compiler does not know the memory layout of the class, it
can only be used as a reference or pointer (except in func-
tion declarations). The rules for forward declared classes
and incomplete types are therefore non-trivial and require
significant effort from the developer to implement.
Further complications exist for templates. As with non-

templated code, adding a forward declaration is necessary
(line 2 in Figure 2c), but not sufficient. The compiler will only
generate code from a template definition once it sees a usage
of the template. Separating the template definition (line 2
in Figure 2d) and the template usage (line 7 in Figure 2c)
into different source files means that the compiler will not
generate the code in either file. It will not generate it in
the definition file since it is not aware of the usage in the
other file. Additionally, it cannot generate it in the usage file
since it does not know what the definition is. The solution
is to explicitly instantiate the function in the file containing
the definition using the desired template arguments (line 8
in Figure 2d), forcing the compiler to generate code with
those template arguments. However, this is not feasible for
library developers, as it requires them to know all possible
combinations of template arguments that users may need
for each template beforehand.
One other effect of separating definitions from usages

is that it impedes optimization since compilers optimize
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each translation unit separately. Link time optimization (LTO)
optimizes code across translation units during the linking
phase, partially alleviating this issue.

2.3 PyKokkos

PyKokkos [17] is a Python framework for writing perfor-
mance portable, high-performance kernels, i.e., code that
runs on different hardware architectures, such as CPUs and
GPUs, efficiently. When the user calls a kernel, PyKokkos
translates the user-written Python kernel code into C++ and
Kokkos [24] and generates language bindings to enable in-
teroperability between the two languages. Since the gener-
ated kernel uses the C++ Kokkos library, PyKokkos adds an
#include <Kokkos_Core.hpp> statement in the containing
file. PyKokkos then invokes a compiler to compile the gen-
erated C++ code into a module that it imports from Python.

When the usermakes code changes to the kernel, PyKokkos
recompiles the entire generated code, including large parts
of Kokkos due to the #include <Kokkos_Core.hpp> state-
ment. The user thus incurs the same compilation cost as the
initial compilation every time the kernel is changed, severely
slowing down the PyKokkos development cycle.

3 Header Substitution

In this section, we illustrate Header Substitution by applying
it to a C++ source file generated by PyKokkos. First, we
show the C++ source file, and briefly explain the input and
intended output which will lead to faster compilation times
(Section 3.1). We then show the steps needed for Header
Substitution, first through forward declarations (Section 3.2)
and then through code transformations (Section 3.3).We then
introduce function andmethod wrappers and show how they
are defined and instantiated (Section 3.4). Finally, we present
the full algorithm for Header Substitution (Section 3.5).

3.1 PyKokkos Kernel

Figure 3 shows an example of the C++ Kokkos code gen-
erated by PyKokkos, split across two files, functor.hpp
and kernel.cpp. The former contains the kernel’s signa-
ture while the latter contains its definition. In order to use
Kokkos, the code includes the main Kokkos header (line 3).
It also has a struct (line 12) containing the arguments
used by the kernels as member variables. The first variable
(line 14) is a simple integer scalar and the second (line 15)
is a Kokkos View, the Kokkos multidimensional array type.
Views include their datatype, dimensionality, and array lay-
out (row or column major) as template arguments. This view
is a two-dimensional integer array (int**) that uses the
LayoutRight memory layout. The rest of the code contains
the kernel signature (line 17) in functor.hpp and the kernel
definition (line 22) in kernel.cpp. Note that in Kokkos, the
kernel is defined as the overloaded call operator operator().

1 // ** functor.hpp **

2 // Library header include

3 #include <Kokkos_Core.hpp >

4

5 // Type aliases

6 using sp_t = Kokkos :: OpenMP;

7 using member_t =

8 Kokkos ::TeamPolicy <sp_t >:: member_type;

9 using Kokkos :: LayoutRight;

10

11 // Functor definition

12 struct add_y {

13 // Member variables (fields)

14 int y;

15 Kokkos ::View <int**, LayoutRight > x;

16 // Member functions (methods)

17 void operator ()( member_t &m);

18 };

19

20 // ** kernel.cpp **

21 // Member function definition

22 void add_y:: operator ()( member_t &m) {

23 int j = m.league_rank ();

24 Kokkos :: parallel_for(

25 Kokkos :: TeamThreadRange(m, 5),

26 [&]( int i) { x(j, i) += y; });

27 }

Figure 3. C++ Kokkos code that includes Kokkos_Core.hpp,
an expensive header. functor.hpp includes a class which
declares the kernel by overloading the call operator while
kernel.cpp contains the kernel’s definition.

As mentioned previously (Section 2.2), the Kokkos header
file contains the entire Kokkos API, of which only very little
is used here. Thus, the goal of Header Substitution is to
avoid including the entire file. However, simply removing the
#include statement is not enough as it results in compilation
errors due to the Kokkos symbols no longer being visible,
so we apply Header Substitution to Figure 3, resulting in
Figure 4, which we will explain in this section. Note that
developers do not need to worry about the code in Figure 4
as it is generated and maintained automatically.

3.2 Forward Declarations

At this stage, the compiler only needs the symbols to be
visible in the code, so it is enough to only move the declara-
tions, i.e., forward declare the symbols (Section 2.2) to make
them visible at compile time. Certain functions require the
introduction of function wrappers, which provide an extra
layer of indirection needed to call those functions. Together,
function forward declarations and wrappers form a light-
weight header that serves as a substitute for the original
header. Figure 4a shows the lightweight header that replaces
the original header.
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1 // ** lightweight_header.hpp **

2 namespace Kokkos {

3 // Forward declared classes

4 class OpenMP;

5 template <...> class View;

6 class LayoutRight;

7 template <...> class HostThreadTeamMember;

8 }

9

10 // Function wrappers

11 template <...>

12 TeamThreadRangeBoundariesStruct*

13 TeamThreadRange_w (...);

14 template <...>

15 void parallel_for_w(

16 TeamThreadRangeBoundariesStruct *,..);

17 template <class ObjectT >

18 int league_rank(ObjectT &);

19 template <class ObjectT >

20 int& paren_operator(ObjectT&, int , int);

21

22 // Functor replacing lambda

23 struct lambda_functor {

24 int j, y;

25 Kokkos ::View <int**, LayoutRight >* x;

26 void operator ()(int i) const {

27 paren_operator(x, j, i) += y;}

28 };

(a) New lightweight header file.
1 // ** functor.hpp **

2 // New header include

3 #include <lightweight_header.hpp >

4

5 // Type aliases

6 using sp_t = Kokkos :: OpenMP;

7 using member_t =

8 Kokkos :: HostThreadTeamMember <sp_t >;

9

10 struct add_y {

11 int y;

12 Kokkos ::View <int**, Kokkos :: LayoutRight > *x;

13 void operator ()( member_t &m);

14 };

15

16 // ** kernel.cpp **

17 void add_y :: operator ()( member_t &m) {

18 int j = league_rank(m);

19 parallel_for_w(

20 *TeamThreadRange_w(m, 5),

21 lambda_functor{x, j, i});}

(b) Modified C++ Kokkos code.

Figure 4. The result of applying Header Substitution to the
code in Figure 3. lightweight_header.hpp provides for-
ward declarations of functions, classes, and function wrap-
pers, while functor.hpp and kernel.cpp are modified to
use the new forward declarations and wrappers.

3.2.1 Classes. In Figure 3, the Kokkos classes that must
be forward declared are OpenMP, View, LayoutRight, and
TeamPolicy<sp_t>::member_type.

The actual classes to be forward declared are the ones
after the last scope operator ::, e.g., OpenMP. Symbols that
appear before a scope operator are either classes or, in this
case, namespaces (Kokkos). The forward declarations for
Kokkos::OpenMP, Kokkos::View, and Kokkos::LayoutRight
are straightforward and are shown on lines 4 to 6 in Figure 4a
(template parameters are omitted due to space limitations).
Forward declaring a symbol in a namespace requires defining
the namespace (line 2) before declaring the symbol.

The forward declaration for Kokkos::TeamPolicy<sp_t>
::member_type is more involved. Here, the symbol before
the last scope operator is a class (TeamPolicy<sp_t>) and
the class to be forward declared is member_type, referred
to as a nested class since it is defined inside another class.
As we rely on forward declaring classes extensively, and
forward declaration means that the definition is omitted, the
containing classes cannot be defined and the nested class can-
not be forward declared. In other words, forward declaring
nested classes is not possible and Header Substitution does
not currently support them. In our example, Kokkos defines
member_type as a type alias to HostThreadTeamMember that
is not nested so we forward declare that instead.

3.2.2 Functions. The other symbols to be forward de-
clared are functions. In Figure 3, the Kokkos functions used
are TeamThreadRange() and parallel_for().

Forward declaring Kokkos::TeamThreadRange() directly
results in a compilation error since its return type is Kokkos::
Impl::TeamThreadRangeBoundariesStruct, a class defined
in the Kokkos header file. The intuitive solution is to forward
declare this class as well, making it visible to the compiler
albeit as an incomplete type. However, compilation still fails
since the return type is now incomplete and the compiler
does not know its memory layout. In other words, forward
declaring functions with incomplete return types returned
by value (i.e., not pointers or a references) is not possible.
To account for functions with incomplete return types,

we introduce function wrappers. Function wrappers are an
additional layer of indirection that allow us to call functions
that would otherwise be inaccessible due to incomplete types.
Given some function 𝑓 , its function wrapper 𝑔 has the same
signature except for the return type, which will be a pointer
to the original return type. Internally,𝑔 dynamically allocates
an object on the heap using the new operator, passing the
value returned by the original function 𝑓 as an argument.
Dynamic allocation on the heap is necessary because the
object would be destroyed once the function resolves if it
were allocated on the stack. Lines 11 to 13 in Figure 4a show
the function wrapper declaration.

Similarly, we require function wrappers for functions that
take incomplete types by value as arguments, converting



CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Nader Al Awar, Zijian Yi, George Biros, and Milos Gligoric

those types to pointers in the wrapper’s signature. One such
function is Kokkos::parallel_for() which requires the
value returned by TeamThreadRange() to be passed by value
as the first argument. Since we introduced a wrapper that re-
turns a pointer instead, we add a wrapper for parallel_for
that has the corresponding parameter be a pointer type as
shown on line 16 in Figure 4a.

3.2.3 Methods. Class methods are also handled at this
stage. There are two methods in Figure 3, league_rank()
and and x(j, i) called on lines 23 and 26 respectively (note
that the latter is an overloaded call operator, equivalent to
x.operator()(j, i)). All methods must be declared within
class definitions, meaning that the methods of forward de-
clared class cannot be used. In otherwords, forward declaring
methods of forward declared classes is not possible.
To solve this issue, we introduce method wrappers. Like

function wrappers, method wrappers also add an extra layer
of indirection. However, their purpose is to call methods that
are otherwise inaccessible due to their classes being forward
declared. Method wrappers are similar to function wrappers
but add a parameter to the original signature to accept the
class instance as an argument, which we then use to call the
original method within the body of the wrapper (similar to
the implicit this introduced to methods by C++ compilers).
The method wrappers for league_rank() and x(j, i)

are shown on lines 18 and 20 respectively in Figure 4a. The
first argument is parameterized on the type of the class con-
taining the method. The rest of the arguments match the
original method.

3.3 Code Transformations

After adding the forward declarations, function wrappers,
and method wrappers, the next step is to modify the original
code to integrate the new additions, as compiling the code
at this stage would result in compilation errors due to the
rules concerning forward declared classes and incomplete
types, the function and method wrappers, and other issues.

3.3.1 Include. Since the goal of Header Substitution is to
replace header includes, the first transformation is replac-
ing the include statement of the expensive header with an
include of the lightweight header (line 3 in Figure 4b).

3.3.2 Classes. Since all Kokkos related classes at this stage
are forward declared, which makes them incomplete types,
we must modify the source file to account for this. Recall that
the compiler cannot know the memory layout of incomplete
types (Section 2.2). Therefore, simply replacing class defi-
nitions with forward declarations is not enough: we must
replace all direct usages of these classes with pointers or
references. Since we are using dynamically allocated objects
through our wrappers, we will use pointers.
An example of usage of a class that Header Substitution

makes into an incomplete type is on line 15 in Figure 3.

Header Substitution replaces this declaration with a pointer
to the type instead of just the type itself, i.e., it adds * directly
after the type. Line 12 in Figure 4b reflects this change.

3.3.3 Functions. Calls to forward declared functions do
not need to be modified. However, for each function and
method wrapper introduced by Header Substitution, we re-
place the original function calls with calls to the wrappers.
At the call site, we change the function being called from
its original name Kokkos::TeamThreadRange (line 25 in Fig-
ure 3) to the wrapper’s name TeamThreadRange_w (line 20
in Figure 4b). We also do the same for the other function
with a wrapper, Kokkos::parallel_for().

3.3.4 Methods. Methods of forward declared classes can-
not be referenced as they are not visible (Section 3.2.3). In-
stead, we introduced method wrappers.
In Figure 3, there are two method calls: x(j, i) and

team_member.league_rank(). Two changes are needed: re-
placing the original name with the wrapper name and pass-
ing the class instance as the first argument. In this case, we
replace x(j, i) with paren_operator(x, j, i) (line 27
in Figure 4a) and team_member.league_rank() with
league_rank(team_member) (line 18 in Figure 4b).

3.4 Wrapper Definition and Instantiation

The only remaining task is to provide the definitions for all
the new function and method wrappers introduced previ-
ously. This is necessary because so far we have only provided
declarations for these new functions but not definitions.
The first question is what the definitions will contain.

Since the goal of these wrappers is to provide a layer of
indirection, the wrappers must call the original function
within their body. This leads to another question: where
will the wrappers be defined? Defining them in the same
file as the kernel is not viable because the definitions will
call Kokkos functions, which requires including the Kokkos
header Kokkos_Core.hpp. The solution is to add the defini-
tions to a new source file that includes the Kokkos header,
then compile and link it with the kernel file.
Compiling the separate file with the definitions results

in no code being generated. Recall that compilers only gen-
erate code from templates at the site where they are used
(Section 2.2). If a file only contains templated function def-
initions and not usages of or calls to these functions, then
the compiler will not instantiate the wrappers when com-
piling the wrappers. The solution is to use explicit template
instantiation, a technique which forces the compiler to in-
stantiate the wrapper with the specified template arguments.
We therefore explicitly instantiate each wrapper with the
types used at call sites in Figure 4b.
Explicit instantiation of parallel_for_w is more com-

plex. Looking at the call site on line 24 in Figure 3, we can
see that the third argument is a lambda expression, an anony-
mous function object with a unique type that is specified
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Table 1. Summary of header substitution rules that show
how each C++ symbol is transformed.

Symbol Types Code Transformations

Class or struct Forward declare and replace usages
with pointers.

Type alias Resolve and forward declare.

Enum Replace usages with the datatype of
the size of the enum.

Function Forward declare if it does not use
forward declared classes. Otherwise
create a wrapper and replace usages
with calls to the wrapper.

Class method & field Create wrapper with class type as
the first argument. Replace usages
with call to wrapper, passing the ob-
ject as the first argument.

Lambda Create an equivalent functor that
overloads the call operator and then
replace the usage with a call to the
functor’s constructor.

by the file and line in which it is defined, meaning it is not
possible to explicitly write out the type of the lambda. There-
fore, it is not possible to explicitly instantiate a templated
function using a lambda as a template argument.
C++ lambdas are functionally equivalent to function ob-

jects, also known as functors [8]. A functor is a C++ class that
overloads the call operator (operator()). We have already
seen an example of a functor in Figure 3 on line 12. We will
therefore replace the lambda by generating a new functor
and overloading the call operator. The new functor is shown
in Figure 4b on line 23, and the lambda expression is replaced
with a call to the functor constructor shown on line 21. All
that is left is to explicitly instantiate parallel_for using
the newly generated functor as a template argument.

3.5 Header Substitution Algorithm

A summary of Header Substitution rules is in Table 1.
We will now present a formalized version of Header Sub-

stitution in Figure 5. The input is sources, the paths to the
C++ files from which we must replace an include statement,
and header, the path to the included C++ header file. The
example shown above illustrates Header Substitution on
Kokkos code but this technique works for any C++ code.

The first phase of the algorithm is the analysis phase, dur-
ing which the sources and header are parsed, and the used
functions, classes, and lambdas are extracted (lines 2 to 10).
This step involves getting the used symbols (classes and func-
tions) in sources and the defined symbols in header, and
finding the common symbols between them to determine
which symbols from the header file are used in sources
(lines 3 and 5). For classes, we also check whether they are

Require: 𝑠𝑜𝑢𝑟𝑐𝑒𝑠- The input source files
Require: ℎ𝑒𝑎𝑑𝑒𝑟 - The header to be substituted
1: function substituteHeader(𝑠𝑜𝑢𝑟𝑐𝑒𝑠, ℎ𝑒𝑎𝑑𝑒𝑟 )
2: 𝑎𝑛𝑎𝑙𝑦𝑧𝑒𝑟 ← 𝐴𝑛𝑎𝑙𝑦𝑧𝑒𝑟 (𝑠𝑜𝑢𝑟𝑐𝑒𝑠, ℎ𝑒𝑎𝑑𝑒𝑟 )
3: 𝑢𝑠𝑒𝑑𝐶𝑙𝑎𝑠𝑠𝑒𝑠 ← 𝑎𝑛𝑎𝑙𝑦𝑧𝑒𝑟 .𝑔𝑒𝑡𝑈𝑠𝑒𝑑𝐶𝑙𝑎𝑠𝑠𝑒𝑠()
4: 𝑎𝑛𝑎𝑙𝑦𝑧𝑒𝑟 .𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝐴𝑙𝑖𝑎𝑠𝑒𝑠(𝑢𝑠𝑒𝑑𝐶𝑙𝑎𝑠𝑠𝑒𝑠)
5: 𝑢𝑠𝑒𝑑𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 ← 𝑎𝑛𝑎𝑙𝑦𝑧𝑒𝑟 .𝑔𝑒𝑡𝑈𝑠𝑒𝑑𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠()
6: 𝑙𝑎𝑚𝑏𝑑𝑎𝑠 ← 𝑎𝑛𝑎𝑙𝑦𝑧𝑒𝑟 .𝑔𝑒𝑡𝐿𝑎𝑚𝑏𝑑𝑎𝑠()
7: for 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 in 𝑢𝑠𝑒𝑑𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 do
8: 𝑛𝑒𝑤𝐶𝑙𝑎𝑠𝑠𝑒𝑠 ← 𝑔𝑒𝑡𝐶𝑙𝑎𝑠𝑠𝑒𝑠𝐼𝑛𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛)
9: 𝑢𝑠𝑒𝑑𝐶𝑙𝑎𝑠𝑠𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑(𝑛𝑒𝑤𝐶𝑙𝑎𝑠𝑠𝑒𝑠)
10: end for

11: for 𝑐𝑙𝑎𝑠𝑠 in 𝑢𝑠𝑒𝑑𝐶𝑙𝑎𝑠𝑠𝑒𝑠 do
12: 𝑚𝑎𝑘𝑒𝐶𝑙𝑎𝑠𝑠𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝐷𝑒𝑐𝑙𝑎𝑟𝑎𝑏𝑙𝑒(𝑐𝑙𝑎𝑠𝑠, 𝑠𝑜𝑢𝑟𝑐𝑒𝑠)
13: 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑𝐷𝑒𝑐𝑙𝑎𝑟𝑒𝐶𝑙𝑎𝑠𝑠(𝑐𝑙𝑎𝑠𝑠, 𝑠𝑜𝑢𝑟𝑐𝑒𝑠)
14: end for

15: 𝑤𝑟𝑎𝑝𝑝𝑒𝑟𝑠 ← []
16: for 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 in 𝑢𝑠𝑒𝑑𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 do
17: if 𝑛𝑒𝑒𝑑𝑠𝑊𝑟𝑎𝑝𝑝𝑒𝑟 (𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛) then
18: 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ← 𝑐𝑟𝑒𝑎𝑡𝑒𝑊𝑟𝑎𝑝𝑝𝑒𝑟 (𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛)
19: 𝑤𝑟𝑎𝑝𝑝𝑒𝑟𝑠.𝑎𝑝𝑝𝑒𝑛𝑑(𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛)
20: end if

21: 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑𝐷𝑒𝑐𝑙𝑎𝑟𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑠𝑜𝑢𝑟𝑐𝑒𝑠)
22: end for

23: for 𝑙𝑎𝑚𝑏𝑑𝑎 in 𝑙𝑎𝑚𝑏𝑑𝑎𝑠 do

24: 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝐿𝑎𝑚𝑏𝑑𝑎(𝑙𝑎𝑚𝑏𝑑𝑎, 𝑠𝑜𝑢𝑟𝑐𝑒𝑠)
25: end for

26: 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝐼𝑛𝑐𝑙𝑢𝑑𝑒(𝑠𝑜𝑢𝑟𝑐𝑒𝑠, ℎ𝑒𝑎𝑑𝑒𝑟 )
27: 𝑤𝑟𝑖𝑡𝑒𝑊𝑟𝑎𝑝𝑝𝑒𝑟𝐹𝑖𝑙𝑒(𝑤𝑟𝑎𝑝𝑝𝑒𝑟𝑠)
28: end function

Figure 5. The Header Substitution algorithm.

type aliases to other classes and use those instead (line 4).
Additionally, all classes referenced in the used functions’
signatures are also added to the list of used symbols, as they
appear in the functions’ forward declarations (lines 7 to 10).

The second phase includes forward declaration and code
transformation. This involves forward declaring classes (lines 11
to 14) and functions (lines 16 to 22). For functions requir-
ing wrappers, a function wrapper is generated and forward
declared instead (lines 17 to 20). Next, lambdas are trans-
formed into functors (lines 23 to 25) to address the lambda
template instantiation issue and the include statement is re-
placed (line 26). Finally, the wrapper definitions are written
and instantiated in a separate file (line 27).

4 Implementation

In this section, we describe how we implemented Header
Substitution in a tool called Yalla (Section 4.1), as well as its
integration with the local development cycle (Section 4.2).

4.1 Yalla

We implemented Header Substitution in a standalone tool
we named Yalla. Yalla provides an interface similar to the
one shown in the algorithm in Figure 5: the user provides
a source file and the header file they want substituted and
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Figure 6. Yalla workflow and integration with the local
development cycle.

Yalla does all the analysis and code generation. Yalla uses
Clang [28], a compiler frontend for C/C++, to parse the code
and build an abstract syntax tree (AST). It then uses Clang’s
AST Matcher library [15] to match the nodes representing
the symbols in Table 1, while also using Clang’s refactoring
capabilities to implement the required changes.
Yalla goes over all nodes in the C++ AST to find defini-

tions and usages. It looks for classes and functions defined
in the header and used in the source file, as those will be
forward declared later. Additionally, Yalla records the us-
age’s nature, i.e., if the type is a pointer, reference, or a direct
usage of the class. Yalla also records usages of lambdas.

After the analysis phase, Yalla generates the lightweight
header and wrapper definitions, while also updating the
input sources according to the rules in Table 1.

4.2 Integration with Development Cycle

We now describe how Yalla integrates with the local de-
velopment cycle. Figure 6 shows the typical workflow of
using Yalla. We assume a user has source files that include
expensive headers they wish to substitute.
The user first passes the source files to Yalla by specify-

ing the exact options needed to compile the code (step 1○ in
Figure 6). Yalla applies Header Substitution by generating
the modified source files (saved to different paths), the light-
weight header that is included by the modified source files,
and a wrappers file to hold the wrapper definitions (step 2○).

The user then compiles the wrappers file into an object file
wrappers.o (step 3○). Since the wrapper definitions call the
original functions, this file includes the expensive headers
being substituted. This is as costly as compiling the original
input files but in the context of the local development cycle

it is only done once at the start since we assume that the
wrappers and expensive header (i.e., the library) are rarely
modified. Furthermore, we assume that the set of classes and
functions used from the expensive header does not change,
as this would require rerunning Yalla.

The user then compiles the modified source files into other
object files source.o (step 4○). As this only includes the
lightweight header and the user’s source code, this is much
faster to compile than the user’s original code. The final step
is to link the object files to generate an executable (step 5○).

After running Yalla and going through steps 1○ through 5○
initially, the only steps needed to recompile the code during
the development cycle are 4○ and 5○. The total number of
lines of code being compiled is much smaller than what it
was originally since Yalla replaces the expensive header
with a lightweight one.

5 Evaluation

In this section, we present the results of our evaluation of
Yalla. First, we show our experimental setup (Section 5.1)
and the test subjects we use (Section 5.2). We then look at
how well Yalla is able to improve compilation times com-
pared to the default configuration and to using pre-compiled
headers (PCH), while also looking at detailed compiler timers
in Clang to understand why Yalla and PCH are able to im-
prove compilation times (Section 5.3). We then examine how
the improved compilation times speed up the development
cycle (Section 5.4). Finally, we report the startup time of
Yalla, i.e., the cost to run Yalla initially (Section 5.5).

5.1 Experiment Setup

We ran all experiments on an Ubuntu machine with an 8-core
Intel i7-11700K 3.60GHz CPU and 64GB RAM. For all com-
pilers, frameworks, and test subjects, we used the latest ver-
sions available at the start of the project. This includes Clang
15.0.6 to compile our test subjects, PyKokkos commit 3d4afd2,
RapidJSON 1.1.0, OpenCV 4.10.0, and Boost.Asio 1.85.0. We
obtain similar results with GCC 9.4.0 but due to space con-
straints we only show summarized results. The compiler
flags we used are typically used by developers during the
development cycle: we enabled all optimizations, all warn-
ings, and debug info, e.g., -Wall -Wextra -march=native
-mtune=native -g -O3. We measured wall clock compila-
tion times using the Linux time command. All results re-
ported are the arithmetic average of three runs.

5.2 Subjects

We used examples available from the repositories of the
previously mentioned libraries as our test subjects. From
PyKokkos, we used the 02, team_policy, nstream, and Ex-
aMiniMD examples. These examples all generate kernels
as C++ Kokkos code, with ExaMiniMD being a larger ap-
plication that contains multiple such kernels. We use the
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Table 2. Compilation time with Clang and speedup using Yalla and PCH.

File Subject Default [ms] PCH [ms] Yalla [ms] PCH Speedup Yalla Speedup

02 02 650 187 17 3.4× 38.2×
team_policy team_policy 698 251 19 2.7× 36.7×
nstream nstream 638 174 16 3.6× 39.8×
BinningKKSort ExaMiniMD 663 194 17 3.4× 39.0×
FinalIntegrateFunctor ExaMiniMD 639 189 17 3.3× 37.5×
ForceLJNeigh_for ExaMiniMD 657 212 22 3.0× 29.8×
ForceLJNeigh_reduce ExaMiniMD 651 200 22 3.2× 29.5×
InitialIntegrateFunctor ExaMiniMD 656 196 18 3.3× 36.4×
init_system_get_n ExaMiniMD 667 209 33 3.1× 20.2×
KinE ExaMiniMD 651 191 17 3.4× 38.2×
Temperature ExaMiniMD 649 194 16 3.3× 40.5×

archiver RapidJSON 624 492 188 1.2× 3.3×
capitalize RapidJSON 532 429 70 1.2× 7.6×
condense RapidJSON 494 383 20 1.2× 24.7×

3calibration OpenCV 1209 670 622 1.8× 1.9×
drawing OpenCV 719 210 127 3.4× 5.6×
laplace OpenCV 656 162 186 4.0× 3.5×

chat_server Boost.Asio 2637 1835 277 1.4× 9.5×

Table 3. Code statistics before and after applying Yalla showing total lines of code (LOC) and header files included.

File Default LOCs Yalla LOCs Default Headers Yalla Headers

02 111301 77 581 2
BinningKKSort 111366 149 581 2
FinalIntegrateFunctor 111309 104 581 2
ForceLJNeigh_for 111360 182 581 2
ForceLJNeigh_reduce 111390 200 581 2
InitialIntegrateFunctor 111319 142 581 2
init_system_get_n 111386 190 581 2
KinE 111293 92 581 2
Temperature 111294 93 581 2
team_policy 111334 150 581 2
nstream 111292 71 581 2

archiver 46331 26075 270 192
capitalize 36534 15378 234 83
condense 33057 1141 227 30

3calibration 82454 31616 351 211
drawing 79523 21825 344 174
laplace 79477 30299 345 200

chat_server 170936 47249 2114 243

OpenMP backend in PyKokkos to run the contained kernels.
We selected the remaining libraries by first finding the most
starred C++ repositories that are libraries, and then from
those repositories, we selected examples using those libraries
as our test subjects. From RapidJSON, we used archiver, cap-
italize, and condense. From OpenCV, we used 3calibration,
drawing, and laplace. From Boost.Asio, we used chat_server.
Each of these examples include headers that are expensive
to compile from their respective libraries.

5.3 Compilation Time Speedup

We first examine the speedup in compilation time due to
Yalla. Table 2 shows compilation times for all test subjects.
The first column shows the name of the source file and the
second column shows the subject which the source file came
from. Columns three through five show the compilation time
of the source file (step 4○ in Figure 6) using the default, PCH,
and Yalla configurations, respectively. The last two columns
show the speedup of PCH and Yalla respectively over the
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Figure 7. Time taken in different Clang compilation phases
for two representative subjects.

default. Table 3 shows the statistics of the code being com-
piled. The first column shows the name of the source file.
The second and third columns show the total lines of code
(LOC) compiled with the default and Yalla configurations,
respectively. The fourth and fifth columns show the total
number of headers included (directly and transitively) with
the default and Yalla configurations, respectively. To accu-
rately measure the impact of each library on the compilation
time of our subjects, we substitute only the library header
files in the source files, even if they contain other includes.
For example, in the PyKokkos subjects, we substitute only
Kokkos_Core.hpp and not other header files.

Looking at Table 2, the results show that Yalla speeds up
compilation time by 24.5× on average (31.4× for GCC) while
PCH speeds up compilation time by 2.8× on average (2.7×
for GCC). The PyKokkos test subjects obtain the highest
speedups with Yalla, 35.1× on average compared to 3.2×
with PCH. We also observe speedups with Yalla of 11.9×,
3.7×, and 9.5× for RapidJSON, OpenCV, and Boost.Asio re-
spectively, compared to 1.2×, 3.1×, and 1.4×.

To understand why the configurations perform differently,
we look at Figure 7, which shows a detailed breakdown of
the time the compiler spends in the frontend (i.e., Clang
lexing, parsing, and semantic analysis) and backend phases
(i.e., LLVM optimizations and code generation) for our 02
and drawing test subjects. For the 02 subject (Figure 7a), we
observe that PCH greatly reduces the frontend time as the
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Figure 8. End to end development cycle speedup with Yalla
and PCH, including compilation and execution time.

pre-compiled header already has its AST generated. However,
the AST must still be loaded from the PCH file on disk which
is expensive. Furthermore, the frontend must still perform
the required template instantiations in the source file, as it
cannot be done without looking at the template usages. The
backend time is identical to the default configuration since
PCH only improves the frontend time by generating the AST.

Meanwhile, Yalla provides a larger speedup due to large
reductions in both frontend and backend times. To under-
stand why the frontend time is much smaller, we look at the
reduction in LOC in Table 3. Yalla reduces the LOC from
111301 to 77 by substituting Kokkos_Core.hpp, an expen-
sive header file which pulls in 581 headers in total, including
other Kokkos internal headers and standard library headers.
Most of these are not used directly in the subject and are
therefore removed by Yalla, which keeps only two headers,
the lightweight wrappers header and functor.hpp. Conse-
quently, the backend time is greatly reduced as well since
there is less code to optimize and generate.

We observe a relatively smaller speedup for drawing with
Yalla. Figure 7b shows that the improvement in frontend
time for Yalla is relatively smaller. Looking at Table 3, we
can see that after substituting the expensive headers, Yalla
was unable to reduce the total number of header files and
LOCs compiled as much as the 02 subject, as drawing directly
includes and uses header files other than OpenCV’s.
This comparison shows that Yalla provides the largest

speedups and improves on PCH for libraries with heavy-
weight headers (e.g., header-only libraries like Kokkos and
Boost.Asio), which commonly occur in the C++ ecosystem [12].

5.4 Development Cycle Improvement

We now look at a scenario where Yalla is used as part of
the development cycle: a developer wrote an initial version
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1 void operator ()(int j, int &acc)

2 const {

3 int temp = 0;

4 int i = 0;

5 for (i = 0; i < this ->M; i++) {

6 temp += A(j, i) * x(i);

7 }

8
9 acc += y(j) * temp;

10 }

(a) C++ Kernel.

...

c0: mov 24(%rbp ,%rsi ,8), %r2

c6: mov 16(%rbp ,%rsi ,8), %r3

cc: mul (%rbx ,%rsi ,8), %r2

d1: mul (%rbx ,%rsi ,8), %r3

d7: add %r1, %r2

db: mov 8(%rbp ,%rsi ,8), %r4

e1: mul (%rbx ,%rsi ,8), %r4

e7: add %r2, %r3

...

(b) x86 Assembly (Default).

...

70: movq 48(% rbx), %rdi

74: movl %r15d , %esi

77: movl %ebp , %edx

79: callq 0xfd70 <_Z14paren_operator >

7e: mov (%rax), %r0

82: mov %r0, 16(% rsp)

88: movq 40(% rbx), %rdi

8c: movl %ebp , %esi

8e: callq 0xf5f0 <_Z14paren_operator >

...

(c) x86 Assembly (Yalla).
Figure 9. The 02 PyKokkos kernel in (a) C++ form, (b) x86 assembly, and (c) x86 assembly after applying Yalla.

of their code and ran it once, following steps 1○ through 5○
from Figure 6, made some modifications to their code, and
proceededwith the remaining steps in the development cycle,
recompile and rerun. This includes steps 4○ and 5○ and the
time to rerun the executable. We used relatively small input
sizes while measuring the execution time of our subjects
after compilation, as we believe this mirrors how a developer
would behave when rapidly iterating over their code.

Figure 8 shows speedups provided by Yalla and PCH
during the development cycle. The x-axis shows the test
subject and the y-axis shows the speedup over the default.
We observe that Yalla and PCH both provide signifi-

cant speedups over the default configuration in all cases.
Compared to each other, Yalla is faster than PCH for all
PyKokkos subjects, as well as condense and archiver. In the
remaining subjects, the PCH configuration is equivalent to
or faster than Yalla. While Yalla is able to provide faster
compilation than PCH in almost all cases (see Table 2), this
does not always translate to improved development cycle
times. First, Yalla requires an additional linking step with
the wrappers. Second, the code generated by Yalla is less
optimized than the default configuration due to the separa-
tion of the class and function definitions from the usages,
which restricts the compiler’s ability to optimize, as well as
due to the introduction of wrappers and dynamic memory
allocation. This could lead to larger running times which
would slow down the development cycle.

Figure 9 shows how Yalla affects the compiler’s ability
to optimize our 02 PyKokkos test subject. Figure 9a shows
the 02 C++ kernel code generated by PyKokkos, Figure 9b
shows the corresponding x86 assembly of the for loop (9b),
and Figure 9c shows the x86 assembly after applying Yalla.

The 02 PyKokkos kernel performs a matrix weighted inner
product. It accesses two views in every iteration of a for loop
(line 6). Indexing views is a call to an overloaded operator()
method. In Figure 9b, which is the compiler output with all
optimizations enabled, these methods are inlined and we see
direct memory accesses instead of function calls. In Figure 9c,
we see calls to the paren_operator method wrapper.

The call instructions do not appear in Figure 9b as the
compiler inlines them, i.e., it replaces them with the contents
of the function body itself. In Figure 9c, the compiler cannot
do so as paren_operator is defined in a different translation
unit (wrappers.cpp).

The extra calls are detrimental to performance for multiple
reasons: first, they add performance overhead by creating
new stack frames for the called functions; second, inlining
the function body at the call site provides the compiler with
more context, enabling it to apply additional optimizations
that would not have been possible otherwise.

The solution is to inline functions across translation units
using link-time optimization (LTO) [14], a compiler tech-
nique that applies optimizations such as function inlining
across a whole program during the linking phase. We exper-
imented with LTO and found that it is able to generate code
with the functions inlined, which would look identical to
the code in 9b. However, the additional time needed by the
linker to apply these optimizations proved to be detrimental
to the development cycle, so we did not pursue this further.

5.5 Yalla Startup Cost

We now look at the startup cost of Yalla by measuring its
execution time. Note that this is only relevant during the
first compilation when Header Substitution takes place.
Figure 10 shows total time taken for initial compilation

of the 02 subject (we get similar results for other subjects).
The x-axis shows the configuration (Default or Yalla) and
the y-axis shows the time in seconds. We show compilation
time of the main source file (from which we substitute the
header), the tool’s execution time, and the compilation time
of the function and method wrappers when using Yalla.
The results show that the extra time needed by Yalla is

around 2 s, with around 1.5 s for Header Substitution and
0.5 s for wrapper compilation. As Yalla only runs initially,
this does not affect the development cycle. Yalla only re-
runs when a library header is modified or the set of used
features from the header changes, which rarely occurs when
a developer rapidly iterates on their code. Additionally, this
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Figure 10. First-time compilation of 02 with Yalla.

implementation of Yalla is a prototype focusingmore on cor-
rectness than speed, so its execution time can be improved.

6 Future Work

In the future, we plan to apply Header Substitution to entire
projects, automatically dividing definitions and declarations
across all files to further improve compilation times.
Yalla must be rerun if the set of used symbols from the

header file being substituted changes. We will address this by
allowing developers to specify all the classes and functions
they need prior to running Yalla for the first time.
Header Substitution does not currently support forward

declaring nested classes when the parent class must also
be forward declared. In the future, we will introduce code
transformations that extract nested classes from their parents
to allow them to be forward declared.
A drawback of PCH is that the generated files are quite

large (in the hundreds of megabytes for our test subjects).
Yalla is orthogonal in its approach to PCH so the two tech-
niques can be used simultaneously. We will study the possi-
bility of integrating Yalla with PCH to further improve the
development cycle. Additionally, as C++ modules [9] mature,
we will study how Yalla could be integrated with them.

7 Related Work

Egalito [33], Zipr++ [26], and BinRec [19] are recompilers
that analyze and modify binaries. In theory they can be used
to recompile our test subjects; however, this requires com-
piling source files to map the changes in code down to the
binary level which limits what architectures they support.

Copy-and-patch compilation [34] improves run-time com-
pilation speeds by mapping logic to pre-compiled code snip-
pets which are patched in through a run-time system. A
custom AST is needed to implement it on a minimal high-
level language. Header substitution is more general since

it works for any C++ code. ClangJIT [25] is a just-in-time
C++ compiler that instantiates templates at runtime to re-
duce compilation time. Our experimentation with ClangJIT
showed that it does not support all of C++’s features.
Include What You Use [7] is a Clang-based tool that de-

tects and removes unused header files. Dayani-Fard et al. [22]
presented an approach to detect dependencies at a finer level
by removing unused classes and functions from translation
units. Their approach is meant to help evolve legacy C++
codebases with bloated header files by making the headers
more lightweight. ABC [36] analyzes code changes in head-
ers to speed up incremental builds by skipping unnecessary
compilations of unaffected files. Header Substitution speeds
up the development cycle by modifying source files to al-
low classes and functions to be made forward declarable.
Molly [21] is a build system with lazy retrieval for Java
projects. It only retrieves necessary files for a build instead
of the entire library (i.e., the whole jar file), and it integrates
code into Java processes at runtime.
Pre-compilation [27, 35] improves build times of header

files that rarely change. Our evaluation of PCH and Yalla
showed that Yalla can produce code that compiles faster
and leads to a faster development cycle most of the time.

Several tools for improving C++ compilation speeds exist.
Ccache [4] caches previous compilations to detect if the same
compilation reoccurs. 𝑐Hash [23] hashes ASTs rather than
just preprocessed source code, allowing to avoid unnecessary
recompilations with more precision. Distcc [6] distributes
builds across machines on a network. These tools do not fit
our use case of speeding up the local development cycle.

8 Conclusion

We presented Header Substitution, a technique for improv-
ing C++ compilation times by eliminating header include
statements. Fast compilation time is crucial for a faster devel-
opment cycle, especially in C++, which suffers from relatively
long compilation times. Header Substitution replaces costly
header includes in C++ with lightweight headers and extra
generated code to enable full access to a substituted header’s
API. We implemented Header Substitution in a tool named
Yalla, showing that it speeds up compilation time by 24.5×
on average and development cycle time by 4.68× on average.
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A Artifact Appendix

A.1 Abstract

Our artifact provides the source code of Yalla and our test
subjects, along with scripts that reproduce the results in our
evaluation section on Ubuntu 20.04 (the version we used)
or newer. The script can also be run through Docker. We
use a pre-built Clang 15.0.6 x86-64 binary provided by the
llvm-project on GitHub.
The source code of Yalla is provided in our own fork of

Clang/LLVM here and is cloned and compiled by the pro-
vided script. The artifact itself is available at https://github.
com/EngineeringSoftware/yalla.

A.2 Artifact check-list (meta-information)

The following is a summary of the contents of this artifact.

• Algorithm: Header Substitution.
• Program: Yalla and test subjects from PyKokkos, RapidJ-
SON, OpenCV, Boost.Asio.
• Compilation: Clang 15.0.6.
• Transformations: Header Substitution implemented as a
Clang tool.
• Binary: We include a binary for Clang 15.0.6, which is the
compiler we use to measure compilation times.
• Run-time environment: The provided binary is for Ubuntu
Linux 20.04 (or newer) and x86-64. We also provide a Dock-
erfile for containerized execution.
• Hardware: Any x86-64 CPU will work. Other CPUs require
modifying the script to use a compatible Clang binary.
• Output: CSV and JSON files that contain compilation and
running times of our test subjects.
• Experiments: Implemented through provided bash scripts.
• Publicly available?: Yes.

A.3 Description

A.3.1 How delivered. A GitHub repository https://github.com/
EngineeringSoftware/yalla that contains directions on how to run
experiments. The source code of the tool itself and the test subjects
will be cloned by the contained scripts.

The hardware and software dependencies listed here are for
running the provided script.We provide all source code so switching
to other hardware architectures, operating systems, or compilers is
possible if the script is modified to use the appropriate binary.

A.3.2 Hardware dependencies. The provided script use a pre-
built Clang binary that requires an x86-64 CPU. The script must be
modified to obtain a different build in order to run on a different
architecture. These builds can be found on LLVM’s GitHub Releases
page at https://github.com/llvm/llvm-project/releases.

A.3.3 Software dependencies. The Clang binary we use as-
sumes Ubuntu Linux 20.04 and newer. For other operating systems,
the script must be modified to obtain a different build of Clang.
Other C++ compilers can also be used by modifying the script.

Additionally, we require CMake, git, and Ninja (the Makefile
substitute). All can be easily obtained through package managers.

A.4 Installation

To obtain our artifact from GitHub, run
git clone https://github.com/EngineeringSoftware/yalla.git

A.5 Experiment workflow

Two commands are needed to obtain the experimental results: the
first sets up the environment and the second runs the experiments.
From the base directory, run ./run.sh setup_all to obtain all the
source code, set up the required compiler, configure a conda environ-
ment, and install PyKokkos. Afterwards, run ./run.sh run_all
to run the experiments in the paper.

The experiments can also be run inside a Docker container. To
build the image, run docker build -t yalla-cgo-ae ., to execute
inside the container, run docker run -it yalla-cgo-ae:latest
/bin/bash for interactive mode, then running the experiments is
the same as above. It can also be run in detached mode with docker
run -d yalla-cgo-ae:latest ./run.sh <subcommand>.

A.6 Evaluation and expected result

All results can be found in the results/ directory. Compilation
times are in CSV files starting with compilation. There is a sepa-
rate CSV file per mode, i.e., normal, PCH, and Yalla, and there are
two sets of files, one for PyKokkos subjects (compilation_kokkos)
and one for benchmarks (compilation_other). Running times for
PyKokkos subjects are in the kernels CSV files for individual ker-
nels and total CSV files for the total Python application running
time, which is part of the development cycle time. Running times
for other subjects are in the compilation CSV files. The stats CSV
files show LOC and header file statistics.

The results in tables 2 and 3 can be found in the compilation time
CSVs and the stats CSV respectively. The development cycle times
and speedups in Figure 8 can be obtained by adding the compila-
tion, linking, and running time. Compilation trace results are under
results/traces in JSON files starting with the subject name and
ending with compilation mode (e.g., 02-yalla.json is for the 02
subject compiled with Yalla configuration). These files can be visu-
alized through Chrome’s Trace Viewer (chrome://tracing/) which
shows frontend and backend times for each compilation.

A.7 Experiment customization

The experiments can be run with a different compiler, e.g., g++, by
modifying the script run.sh to use that compiler instead.

A.8 Methodology

Submission, reviewing and badging methodology:
• http://cTuning.org/ae/submission-20190109.html
• http://cTuning.org/ae/reviewing-20190109.html
• https://www.acm.org/publications/policies/artifact-review-
badging

https://github.com/EngineeringSoftware/llvm-project-yalla/tree/yalla/clang-tools-extra/clang-yalla
https://github.com/EngineeringSoftware/yalla
https://github.com/EngineeringSoftware/yalla
https://github.com/EngineeringSoftware/yalla
https://github.com/EngineeringSoftware/yalla
https://github.com/llvm/llvm-project/releases
chrome://tracing/
http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
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