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Abstract—The collisional Boltzmann kinetic equations for low-
temperature plasmas find important applications in industry, for
example semiconductor processing. Particle-in-cell (PIC) methods
are the state-of-the art solvers for such problems, but they can be
quite expensive. We present GPU acceleration of PIC codes and
ways to increase programming productivity for rapid prototyping
and algorithmic exploration. First, we present algorithms that
minimize data movement and take advantage of modern GPU ar-
chitectures. Second, we discuss their HPC implementation using
Python-based productivity tools: CuPy, Numba, and PyKokkos.
We analyze their performance, interoperability, portability, and
overheads. We present performance analysis, comparing different
algorithms for the main computational kernels. On a single GPU
we observe 1.4 ns/particle/time step. We also report scaling results
on up to 16 NVIDIA Volta V100 GPUs using MPI.

Index Terms—Boltzmann, plasma, glow discharge, Kokkos,
GPU, Numba, Python, HPC, particle-in-cell methods

I. INTRODUCTION

Particle-in-cell (PIC) solvers combine grid-based methods
with Lagrangian particle tracking methods. We focus on
PIC solvers for industrial, non-equilibrium, low-temperature
plasmas (LTPs) [1]. LTPs find applications in semiconductor
processing, advanced manufacturing, and materials design.

LTPs are modeled by set of time-dependent partial differen-
tial equations (PDEs). These include the formidable electron
Boltzmann transport equation: a 6D integro-differential equa-
tion for the electron velocity distribution function f as function
of space, velocity, and time [2]. Characterizing f for different
plasma conditions is required for calculating parameters like
rate and transport coefficients, and enabling downstream tasks
like uncertainty quantification and experimental diagnostics.

LTP calculations are expensive. Scales in LTPs range from
microns for the electron mean free path, to the centimeter-scale
of the device; and from picosecond time scales to resolve elec-
tron collisions to the microseconds required to obtain steady
state. An additional challenge is that the collision kernel
comprises elastic, ionization, excitation, and recombination
terms each presenting different computational challenges, e.g.,
creation and destruction of particles, and two- and three-
body interactions. The creation and destruction through colli-
sions and boundary conditions introduces irregular data access
patterns and concurrent data structure updates. Accurately
calculating rate coefficients may require 1000s of particles per
cell and the total number of particles can be in the billions.

Contributions. Using a standard PIC discretization (sec-
tion II), we design and analyze computational kernels for

particle computations and their coupling to a grid solver
(section IV). Moreover, we examine the feasibility of under-
taking the implementation using Python-based rapid prototyp-
ing and performance portable techniques using Numba [3],
CuPy [4], and PyKokkos [5] (section III). PyKokkos is a
Python framework that implements the Kokkos programming
model for performance-portable shared memory parallel pro-
gramming [6]. We share a number of lessons and insights
for Python-based scalable HPC algorithm design on heteroge-
neous architectures that would be applicable to other HPC
applications (section VII). We introduce improvements to
PyKokkos, mainly coupling to CuPy arrays and removing
overheads for fine-grain computational kernels, and we provide
a detailed discussion on Python overheads (section V-B).
From an algorithmic perspective, we estimate that our scheme
provides a 5× improvement over the state-of-the-art on a
single GPU [7] (sections V and VIII).

II. MATHEMATICAL FORMULATION AND DISCRETIZATION

Examples of LTP gases include argon, helium, air, carbon
oxides, combustion gases, and others [1], [8]. The basic
mechanisms for these gases are multiple elastic, ionization,
excitation, and recombination collisions coupled to species
transport and possibly reacting compressible fluid flow. These
plasmas follow similar mathematical structure described here.
To make ideas concrete and present our numerical experi-
ments, we consider an argon LTP.

An argon LTP state is described by the following: (i) the
“heavies”, comprising the neutral argon nn(x, t); (ii) the ion-
ized argon ni(x, t), and metastable argon nm(x, t) (particles
per unit volume), which are evolved using transport continuum
PDEs; (iii) the free electrons, which are treated kinetically
with f(x, v, t) being the electron distribution function (in
m−6/s); (iv) and ϕ(x, t) (in volts), the instantaneous electric
potential driven by a radiofrequency imposed potential and
charge imbalances in the plasma. Let Ω represent the physical
domain, so that x ∈ Ω and v ∈ R3. Then, the evolution of the
state variables nn, ni, nm, ϕ, f is given by

∂f

∂t
+ v · ∇xf + q∇ϕ · ∇vfe =

∑
ckk

Cck[f ], (1a)

−

∇

ϕ = z(ni − ne[f ]), (1b)
∂nk

∂t
−∇ · (µknk∇ϕ+Dk∇nk) =

∑
c

Ckc[f ]. (1c)

1



TABLE I Collisions.

C1: Ar + e → Ar + e elastic electron-neutrals
C2: Ar + e → Ar+ + 2e ionization
C3: Ar + e → Arm + e metastable excitation
C4: Arm + e → Ar+ + 2e 2-step ionization
C5: Ar+ + 2e → Arm + e recombination

TABLE II PIC Scheme. Index c indicates collision type; index k
species; l particle; and j spatial cell.

S1a: Fc = {xc
l , v

c
l , w

c
l } =

∑
ck Cck[F0] DSMC-Coll

S1b: Ec
l = −q∇ϕ(xc

l ), ∀i DSMC-C2P
S1c: F+ = {x+

l = xc
l + δvcl ; vcl + δEc

l }l DSMC-Push
S2a: ∀j, n+

e (ωj) =
∑

x+
l ∈ωj

wl P2C
S2b: ∀j, k, c, compute C+

kc[Fc](ωj) P2C
S3a: ∀k, n+

k = Solve eq. (1c) w/ ϕ0 and C+
k PDE

S3b: ϕ+ = Solve eq. (1b) w/ n+
i , n

+
e PDE

Here k ∈ {i,m, n} for ion (Ar+), metastable (Arm), and
neutral argon atoms; q, z are constants related to vacuum
properties, electron mass, and charge; Dk and µk are the cor-
responding diffusion and mobility constants for each species;
ne[f ] =

∫
v
f is the number of electrons per unit volume.

Cck represents the cth collision operator [9] between electrons
and species k and depends on the collision cross-section
σck(∥v∥2). Equation (1) is furnished with boundary and initial
conditions (section V). Depending on the physical conditions,
LTPs models include different collisions. Our plasma model
includes five collisions, which we summarize in Table I.

These collisions represent multispecies elastic and inelastic
collisions found in most LTPs. C2 and C4 “create” electrons
by knocking them off neutral argon atoms; C5 removes free
electrons by recombining them with Ar+ to form Ar. The
second electron in C5 acts as a “catalyte” in this reaction, and
therefore is a three-body collision, which is more computation-
ally expensive and involves special algorithms that do not seem
to be discussed in the literature for GPU implementations.

A. Discretization

Following state-of-the-art hybrid PIC-formulations [10], we
discretize eq. (1a)–eq. (1c) as follows. We assume that Ω
is meshed using a regular grid with M “cells” {ωj}Mj=1;
eq. (1b) and eq. (1c) can be discretized on the regular grid
using any standard method, we use finite-differences. We
discretize eq. (1a) using a Direct-Simulation-Monte-Carlo
scheme (DSMC): a Lagrangian scheme that tracks the mo-
tion of N(t) particles with positions xl, velocities vl, and
weights wl. These particles represent a N(t)-point sample
from f(x, v, t): we define F(t) = {xl, vl, wl}Nl=1 and thus,∫
ωj

∫
v
f(x, v, t)g(x, v) ≈

∑
xl∈ωj

wlg(xl, vl), ∀ωj ⊂ Ω. N(t)
varies in time due to collisions and boundary conditions.
Particle position and velocity updates correspond to advecting
f in the left-hand-side of eq. (1a); the Monte-Carlo step
approximates the right-hand side of eq. (1a). Then, given the
current state n0

k, F0, ϕ0, and time step δ, we advance to
the new state n+

k , F+, ϕ+ using the operator-split scheme
summarized in table II. Here ϕ and nk are M -dimensional

grid functions and F are particles sampled from f . DSMC
steps 1 include collision; cell-to-particle (C2P) interpolation
of ∇ϕ to a particle; and advection (“Push”). S2a and S2b are
particle-to-cell operations (P2C) for the right-hand side terms
of eq. (1c). The steps are detailed in section IV.

We briefly discuss the cost of the scheme and revisit it
in section V-A. Ignoring particle creation and destruction (sec-
tion IV-B), steps S1 have O(N) work and O(1) depth (for reg-
ular grids). Steps S2 require sorting particles to cells followed
by segmented reductions, thus, requiring O(N +M)(logN)
work and O(logN + logM) depth [11]. An alternative im-
plementation uses atomic operations for the reductions while
avoiding sorting. We discuss it in section IV-D. steps S3 are
PDE solves that require O(M logM) work and O(logM)
depth, assuming that optimal algorithms like multigrid are
used for eq. (1b). Fast solvers for steps S3 are not in the
scope of the paper as they have been studied extensively in
the literature [10]. These solvers are crucial in 3D3V, but in
1D3V and 2D3V, the main cost is the Boltzmann solver [1].

Here we use explicit second-order finite differences with
upwinding for the transport equations; a standard-second order
stencil; a sparse Cholesky solver for the Poisson problem; and
focus on the 1D3V case for the PDEs. But in the DSMC
and P2C parts, we assume 3D3V [12] so that our algorithms
correspond to that of 6D simulations with regular 3D grids.
For irregular 3D grids, the only change is that sorting particles
to cells requires a binary search.

Summary. Using a well-known PIC scheme, we focus on
steps 1a–1c (Boltzmann kernel) and steps S2a and S2b for
the P2C calculations. Optimizing these steps is of extreme
importance as they constitute the bulk of the computations in
most LTP simulations. We detail these kernels in section IV.

III. HPC PRODUCTIVITY IN PYTHON

In recent years, Python has seen increasing use in the field of
scientific computing [13]–[15]. In this section, we discuss the
Python based HPC libraries and frameworks that enabled us
to write parallel, high-performance code on CPUs and GPUs.

Accelerated libraries. Python’s rise to prominence has been
mostly enabled by accelerated libraries and frameworks such
as NumPy [16], CuPy [4], and SciPy [17]. These libraries
provide high-performance data structures and kernels that are
typically implemented in low-level languages such as C, and
are then exposed to Python via language bindings.

Numba. While the aforementioned libraries provide a wide
variety of high-performance kernels, they are limited when it
comes to implementing custom kernels for different devices.
Numba [3] is a just-in-time compiler for Python that can
improve performance by compiling Python functions into
machine code. It memoizes the compiled functions so that they
only need to be compiled once per run. Numba can target
a number of devices, including CPUs and NVIDIA GPUs
(the AMD GPU backend is currently not maintened). We use
Numba to implement parallel CPU and GPU kernels.

PyKokkos. Unlike Numba, PyKokkos provides Python ab-
stractions for performance-portable shared memory parallel
programming of custom kernels. These abstractions allow us
to run the same code on multiple devices with minimal to
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TABLE III Comparing the Frameworks (High, Medium, and Low).

Framework Usability Performance Portability Overhead
NumPy/CuPy/SciPy H M M
Numba H M H
PyKokkos H H H
CUDA + pybind11 L L L

no code changes and no losses in performance. PyKokkos
then translates kernels written by the user into Kokkos [6]
and C++, using pybind11 for interoperability between the
two languages. Similar to Numba, PyKokkos memoizes the
compiled functions to avoid the cost of re-compiling the kernel
after the first call. PyKokkos through Kokkos uses OpenMP
for CPUs and CUDA for NVIDIA GPUs. Support for other
devices, such as AMD GPUs through HIP or SYCL, is
planned [18]. Due to the performance portability abstractions,
we do not need to change our code in the future to run it
on these devices. We implemented our GPU kernels using
PyKokkos: for every Numba GPU kernel, we also have a
PyKokkos implementation.

CUDA. Another option for writing kernels is to implement
them directly in CUDA, and then use language bindings to call
them from Python using pybind11, PyCUDA [19], and other
techniques. We used this approach for the segmented prefix
reduction in our P2C kernel (table II).

Table III shows a high level comparison between the differ-
ent approaches to writing high-performance Python code. Us-
ability refers to general ease-of-use of the framework: CUDA
+ pybind11 suffers from poor usability as it requires additional
effort on the user’s part to write the bindings, while the other
approaches provide Python interfaces which are intuitive to
Python programmers. Performance portability refers to the
portability of the code across different devices (e.g., CPUs and
GPUs) without loss of performance. PyKokkos excels here as
it is built on top of Kokkos, which was designed specifically
for this purpose, while other approaches either support only
one type of device (i.e., CUDA) or require rewriting the
code to target specific devices (i.e., Numba). Finally, overhead
refers to the performance overhead of each approach, meaning
how much of the execution time is spent outside of the GPU
kernel. We expect the overhead to be minimal for CUDA +
pybind11 compared to the other frameworks, which execute
Python code internally before calling the kernel. We measure
and report these overheads for our kernels in section V-B.

IV. PARTICLE KERNELS

In this section, we describe the data structures we used
(section IV-A), details regarding algorithms, implementation,
and performance for the DSMC collision kernel (section IV-B),
the recombination collision C5 in table I, (section IV-C), and
the particle-to-cell kernels (section IV-D). We remark that
although C5 is mathematically part of the DSMC step in
table II, we discuss it separately in the remainder of the paper.

A. Data Structures

We store particle positions and velocities together in a two-
dimensional N -by-6 CuPy array for all particles. CuPy arrays
are stored row major, improving locality during the collision
calculations. Other values required in the particle to cell

TABLE IV DSMC Collision Step for a particle l.

Draw six random numbers Rl CS0
Access particle data xl, vl, wl CS1
∀k, c cross-sections σck(||vl||2) CS2
∀k, c probabilities πlck(σck) CS3
Collision: update xl, vl CS4
Collision: if applicable, create particle l′ : xl′ , vl′ , wl′ CS5
Advection (Push): update xl, vl CS6
Boundary conditions: if applicable, set wl = 0 CS7

kernel—weights, source term contributions, and energies—
are stored together in a separate two-dimensional N -by-4
CuPy array. This separation allows our particle to cell kernel
(section IV-D) to run over contiguous memory.

During the simulation, the number of particles typically
grows due to ionization until it reaches steady state. We there-
fore preallocate additional memory during the setup phase for
all data structures. The size of this memory can be estimated
using the plasma parameters, e.g., by the expected ionization
and recombination rates; and can be adaptively adjusted every
1000s of time steps if necessary.

B. DSMC Collision Kernel

We now discuss the details of the DSMC collision kernel,
which performs steps S1a-c (table II) of the PIC scheme. This
step is not embarrassingly parallel due to the recombination
collision C5, which we discuss separately in section IV-C),
and due to particle creation (e.g., ionization) or loss (e.g.,
absorption by electrodes or dielectric walls, or recombination).

Algorithm. Table IV details the steps. In the DSMC-
Coll step for each particle l and each collision c with
species nk, we compute collision probabilities πlkc = 1 −
exp(−δ∥vl∥2σck(∥vl∥2)nk). Using πlck, we decide whether
and how to collide particle l, using (six in our case) random
numbers. For each timestep, we precompute these random
numbers for all particles using cupy.random.rand() be-
fore the kernel invocation (see section VII). If the particle
collides, we compute the post-collision velocities using con-
servation of mass and energy [9]. Last, advection in physical
and velocity space is applied and boundary conditions are
enforced. Referring to table II, notice that before CS6 we
need the C2P operation to compute ∇ϕ(xl). Depending on the
scheme this can be an expensive operation. Most PIC-DSMC
codes are low-order accurate and use constant interpolation;
we do the same. We precompute a constant ∇ϕ per cell, and
then retrieve it using the particle’s cell id.

Accuracy and numerical stability dictate overall collision
frequency to be low, say less than 10%. As a result, the kernel
spends most of its time in determining which collision (if any)
a particle will undergo (steps CS3-4 in table IV), rather than
performing collision calculations (step CS6). To determine
πlck, all particles need to compute σck(∥vl∥2), a function
of the particle’s speed; typically, this is done via lookup
tables [8]. Instead, we predetermine a piecewise polynomial
interpolation of each cross section. We thus reduce calculation
time while keeping cross section error under 2%.
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Fig. 1 PyKokkos Non-Atomic Updates DSMC Collision Kernel Break-
down.

A potential efficiency pitfall is thread divergence due to
particles undergoing different collisions. Due to low collision
rates, most particles undergo no collisions within each time
step. Implementations designed to minimize thread divergence
proved to be more costly due to the extra calculations required,
which outweighed the minimal thread divergence.

As mentioned, a challenge in implementing the collision
kernel is the varying number of particles in each time step.
Before executing the collision kernel, it is unknown how this
number will change due to creation or destruction of particles.
We discuss two algorithms for data structure updates due to
particle gain/loss: an atomic-operations-based version and a
non-atomic-operation version, the latter of which is easier to
analyze and it only requires concurrent load operations.

Non-Atomic Updates. Given N(t) particles at time step
t, we store new particles in an auxiliary buffer of size N(t).
In the event particle l ionizes a neutral and creates particle
l′, it writes the data for l′ into the buffer at l + N . Once
all particles are done, a separate GPU kernel is needed to
reshuffle particles so that they are stored contiguously. This
requires a parallel select to find which particles were created
and destroyed and then rearrange them in a contiguous buffer
of size N(t + 1). Reshuffling must be performed at every
time step to allow storing new particles in the auxiliary buffer
using the l+N rule. The theoretical complexity of a parallel
select has linear work and logarithmic depth [11]. However,
it requires significant data movement. Despite its elegance,
this scheme is slow because it does not exploit the hardware-
supported atomics available in modern GPU architectures.

Atomic Updates. Instead of using a size N buffer with
unique write indices, we maintain a single write index I
shared by all particles. When a particle is created, each thread
increments I atomically and writes the new particle into the
array at that index; thus, a full size N buffer is not required.
While the atomic operation adds some computational cost, low
ionization rates mean few atomic operations are performed,
keeping this extra cost minimal.

Performance. We implemented the collision steps as
Numba and PyKokkos kernels. Figures 1 and 2 show the
breakdown of the execution time of the particle steps for
the PyKokkos implementations of both the non-atomic and
atomic versions of the DSMC collision kernel respectively. We
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Fig. 2 PyKokkos Atomic Updates DSMC Collision Kernel Breakdown.

TABLE V Recombination Steps. RS0 is precomputed; RS1 is a
separate GPU kernel; RS2–RS5 are in the same GPU kernel.

CS3 (in table IV) computes P RS0
∀ cell ωj , construct Pc

j RS1
∀ particle l ∈ P :

Read ωj(l) RS2
Atomically pop l′ ∈ Pc

j (ωj(l)) RS3
Update catalyte velocity vl′ RS4
Destroy primary: wl = 0 RS5

split the runtime into kernel time (measured with the NVIDIA
profiler nvprof) and overhead time (wall clock time minus
kernel time). We also show the RNG time and the mandatory
reshuffling step that follows the kernel for the non-atomic
version. Figure 1 shows that reshuffling at every time step
dominates the execution time, particularly for smaller problem
sizes. In contrast, the cost of using atomics within the collision
kernel is almost nonexistent (fig. 2). Therefore, we adopt the
atomics-based collision version.

We also note that implementing the atomics-based version
allows for a simple extension to using operator split methods,
where multiple collision kernels are performed for each time
step of the continuum physics due to different time step
constraints. The use of atomics removes the need for a
synchronization step after each call to the collision kernel,
greatly improving the efficiency with which operator split
schemes can be implemented. The use of operator splitting is
particularly beneficial when considering communication costs
in multi-GPU implementations, as demonstrated in fig. 3.

C. Kernel for Recombination Collision C5
Collision C5 in table I is a three body interaction between

Ar+ and two electrons, the primary and the catalyte. This
collision requires global synchronization across GPU-blocks
to set up primary-catalyte pairs.

Algorithm. C5 is summarized in table V. The catalyte
particle must be in the same cell ωj as its primary. Each
particle in ωj is exclusively designated either as catalyte or
primary. Furthermore, primaries must be uniquely matched to
catalytes. We do this as follows. We define P to be the list
of all primaries, precomputed in step CS3 (table IV) of the
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collision kernel. For each primary l we also have precomputed
its cell ωj(l). For each cell ωj , we define Pc

j to be the set of
all possible catalyte particles l′ in ωj such that l′ ̸∈ P . Then
for a particle l ∈ P we execute steps RS2–RS5 in table V.

Implementation. We now consider steps RS1 and RS3, the
two major steps of this kernel. One potential implementation
of these steps is locally in space; if particle data is sorted by
position, these steps can be done by mapping of primaries to
non-primaries within a given cell. Since our particle data is
unsorted, we instead incorporate atomics in the same manner
as the collision kernel. Step RS1 atomically increments a
counter for each cell ωj , such that potential catalyte partners
in cell ωj are written into Pc

j [Ij ]. Step RS2 is a load operation,
as the ωj is precomputed. Similar to step RS1, step RS3 reads
values from Pc

j using atomically updated indices to ensure that
no two primaries in cell ωj select the same catalyte. Steps RS4
and RS5 can be done with minimal computation. We group the
steps such that steps RS1 and steps RS2–RS5 are implemented
as two separate kernels in both Numba and PyKokkos.

Performance. In the physical regime of the glow discharge
problem we consider, recombination collisions are rare; thus,
the cost for the collision steps RS2-RS5 is low. The majority of
time spent in this kernel is therefore in step RS1, the assembly
of the catalyte list, which is done for all grid cells. We report
detailed timings for this kernel in section V, where we see
that the performance of the kernel depends on the number of
cells and the number of particles per cell. There we report
aggregate timings for steps RS1–RS5.

D. Particle-to-Cell
The particle-to-cell kernel performs steps 2a-b in table II. It

computes per-cell right-hand sides for the PDEs in eq. (1),
as well as quantities of interest, for example the electron
temperature Te(ωx) = 1/|ωx|

∫
ωx

Ef [∥v∥2] [2]. For our solver,
we compute four variables, which are used for the calculation
of ne(x), ni(x), nm(x), and Te(x). For each particle l, we
define Vl to be the vector of these variables. We seek to
calculate the sum of these values Vj corresponding to particles
in each grid cell ωj . That is, Vj =

∑
xl∈ωj

Vl. Therefore,
our problem becomes a block reduction, where the prefix of
a particle is the spatial cell in which it lies. We consider two
algorithms for this kernel.

Algorithm 1. We first sort the particles to per cell arrays,
and then we use per cell parallel reductions. This is a scheme
that is implemented using only concurrent load operations.

Algorithm 2. Alternatively, we can use atomic reductions
for each V j . This scheme avoids the need for particle sorting.
If the number of particles per cell is very large it pays off to
introduce further partitioning of ωj to auxiliary subdomains
ωjm to atomic updates congestion. Then, with each particle
being assigned to a GPU thread, we find ωjm(xl), and then
atomically update V jm. Upon completion a number of threads
are assigned to ωj for the reduction V j =

∑
m V jm.

Implementation. We implemented Algorithm 1 using
ThrustRTC, a Python wrapper to the Thrust library, which
itself is written in CUDA for use in C++. We used
Sort_By_Key() for sorting and Reduce_By_Key() for
reductions. Thrust does not support vector prefix sums on the

CuPy data structures we employ, therefore we require four
kernel calls for V .

We implemented Algorithm 2 using both CUDA and
PyKokkos. For N from 100k to 16M , both CUDA and
PyKokkos implementations are 10×–20× faster than the
Thrust-based implementation of Algorithm 1.

E. Multi-GPU extension
To give a flavor of the relative costs of the solver com-

ponents in the context of large-scale applications, we imple-
mented a straightforward MPI extension: the PDE-calculations
(steps S3a and S3b in table II) are replicated on each MPI
task. For 1D3V and 2D3V simulations this replication is not
prohibitively expensive. In the scalability results in the next
section, we show results with up to 160K cells, which is a
typical resolution for 2D3V calculations [7]. Our scheme could
be extended successfully to 3D3V calculations in which Ω is
coarsely partitioned in large domains, and each large domain
has its own MPI communicator with PDE-grid replication. Our
scheme is suboptimal compared to domain-decomposing both
Ω and particles, but this is beyond the scope of this paper.

Algorithmically, our MPI extension is a single
MPI_AllReduce(). Specifically, let P be the number of
MPI tasks; each task owns N/P electrons and replicates
all {ωj}Mj=1 cells. Steps S1a–1b in table II are done in an
embarrassingly parallel manner at each task. Steps S2a and
S2b is where the communication takes place: a local P2C
operation (section IV-D), to compute a per task C+

k , n+
k

followed by an all-reduce with message size O(M) and
complexity O(M logP ) [20]. Finally steps S3 are replicated
at each MPI task. Since M = N/ρ the O(N/P ) calculation
dominates when ρ ≫ P . This resolves load balancing issues
since, although we destroy and create particles, all tasks are
statistically equivalent as they view the entire domain Ω. The
overall memory costs are O(N/P +M), where the prefactor
is 25 and accounts for positions velocities, cross-sections,
time-stepping and particle-to-cell interactions.

V. OVERALL SCALABILITY RESULTS

Setup. All runs are in double precision. We used “Lassen”,
a system at Lawrence Livermore National Laboratory. Each
node is equipped with an IBM Power9 CPU, 256GB of RAM,
and four NVIDIA V100 Volta GPUs with 16 GB of RAM
each. The V100 peak double precision performance is 7.8
TFLOPS and its memory bandwidth is 900 GB/sec. Lassen’s
infiniband interconnect’s bandwidth is 12.5 GB/sec. For the
strong and weak scaling experiments, we use one GPU per
MPI task, with up to four MPI tasks per node. We use Python
3.8.8, CUDA 10.2, GCC 8.3.1, mpi4py 3.1.3, Numba 0.54.1,
the “develop” branch of the PyKokkos GitHub repository, and
the IBM Spectrum MPI. We performed several runs of each
experiment and confirmed that the results are stable.

Normalized time results. In fig. 3 we report timings as
a function of the number of GPUs for differ problem sizes.
To present and discuss the results in fig. 3, we introduce
the following variables. Let N be the number of particles
(electrons). Let P be the number of GPUs or equivalently
MPI tasks as we use one GPU per MPI task. We define the
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(a) Strong; ρ = 1000, N = 16e6.
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(b) Weak; ρ = 1000, nP = 4e6.
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(c) Strong; ρ = 100, N = 16e6.
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(d) Weak; ρ = 100, nP = 4e6.
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(e) Strong; ρ = 1000, N = 16e6.
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(f) Weak; ρ = 1000, nP = 4e6.
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(g) Strong; ρ = 100, N = 16e6.
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(h) Weak; ρ = 100, nP = 4e6.

Fig. 3 Normalized time in nanoseconds for strong and weak scaling runs using the PyKokkos kernels. In particular, we report T̂P =
TP /nP = TPP/N , where TP is the wall-clock time per simulation time step (averaged over 400 time steps); N is the total number of
particles; P is the number of GPUs which is equal to the number of MPI tasks, and nP = N/P is the number of particles per GPU.
It follows that the parallel efficiency ηP = T̂1/T̂P , thus, the closer the plots are to a straight line the better the scaling. (In the weak
scaling runs nP is fixed to n for all P .) Also, ρ is the number of particles per cell. “DSMC-Coll” refers to all the kernels in fig. 2;
“Recombination” refers to C5 in table I; and “MPI” refers to the overall MPI communication costs. In the first row, we report timings for
one DSMC step per PDE solve; in the second row, we report timings for 10 DSMC steps per PDE solve, as it is typically done in subcycled,
multirate time-marching schemes in production runs. For each run the total unnormalized time TP = T̂PnP = T̂PN/P . For example, in
fig. 3a, T8 = 4.1 milliseconds and T16 = 2.8 milliseconds.

grain size to be nP = N/P the number of particles per
GPU. We report the normalized time on P GPUs defined by
T̂P = TP /nP = TPP/N . Notice that for an embarrassingly
parallel algorithm that has complexity TP = O(N/P ), we
have T̂P = O(T̂1) so that all weak and strong scaling runs
should be straight lines; however, our algorithm has overheads
due to the MPI communication and the fact that the grid
cells are replicated at each MPI task. We give details and a
performance analysis further below.

In fig. 3 we report normalized times for the DSMC-Coll
step, the recombination collision, the P2C step, and the MPI
communication step. All other costs are negligible. The first
row results were obtained with runs that use one DSMC-
Coll and recombination step per PDE solve. The second row
results were obtained with runs that used a subcycled multirate
scheme that takes ten DSMC-Coll/recombination steps per
PDE solve [9], [21]. Therefore for the second row runs, we
have one P2C and MPI_AllReduce() every ten DSMC-
Coll/recombination kernel calls. This explains the reduced
costs for those two kernels.

In figs. 3a and 3b we report strong and weak scaling results
for ρ = 1000; and figs. 3c and 3d show results for ρ = 100.
These timings depend on the number of cells (elements of
finite-difference grid points). Similar definitions are used in
figs. 3e to 3h. Recall that in fig. 2, we presented the breakdown
for the stand-alone DSMC-Coll kernel (table II) without the
recombination kernel. The total time in fig. 2 corresponds
to the DSMC-Coll time in fig. 3. For all strong scaling runs
in figs. 3a and 3c, we use N = 16e6 particles; thus M = 160K

for ρ = 100 and M = 1600 for ρ = 1000. For all weak scaling
runs we use n = 4e6.

The parallel speedup on P GPUs is defined as sP =
T1/TP = T̂1P/T̂P . The parallel efficiency is defined as
ηP = sP /P = T̂1/T̂P . For example, in fig. 3e, T̂1 = 1.29
ns, T̂8 = 1.77 ns, and T̂16 = 2.43 ns. Thus, η8 ≈ 73%
and η16 ≈ 53%. In fig. 3c, T̂1 = 1.59 ns, T̂8 = 4.33 ns,
and T̂16 = 7.97 ns. Thus, η8 ≈ 37% and η16 ≈ 20%.
What causes this efficiency drop especially in the small ρ
case? Next we derive performance models of the four different
kernels in fig. 3, which we then use to interpret the observed
efficiencies. As we will see, the main reason for the efficiency
drop is the cell replication across MPI tasks.

A. Performance Analysis

To better interpret the results, we first introduce performance
models for steps reported in fig. 3. We define TDSMC, TMPI, and
TP2C, the wall-clock time for the DSMC-Coll kernel, the MPI
communication, and the particle to cell kernel respectively.
We define the normalize times T̂DSMC = TDSMC/nP , T̂MPI =
TMPI/nP , and T̂P2C = TP2C/nP . The normalized times are the
ones shown in fig. 3. We omit discussion of the recombination
kernel as the analysis is nearly identical to the P2C one.

The MPI communication kernel. Since T̂MPI is the most
prominent one, especially in the first row for ρ = 100, we start
with it. TMPI is the cost of an all-reduce operation, that should
scale as τc log2(P )M , with τc being the inverse of internode
bandwidth and assuming a hypercube topology with negligible
latency costs [20]. It follows that T̂MPI = τc log2(P )P/ρ.
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Therefore, the cost should decrease with increasing ρ as it
should because the main work is done in the per-particle
kernels where the MPI communication scales with the grid
size. Also the normalized per particle time increases with P
as the percentage of communication per particle increases.
Thus, the formula for T̂MPI explains the results we observe.
We benchmarked the MPI_Allreduce() on “Lassen”, and
we show a factor of two difference, which we attribute to the
possibility that the default implementation uses a reduction
and a broadcast for the message size we’re using.

The DSMC-Coll kernel. The DSMC-Coll kernel corre-
sponds to the whole kernel analyzed in fig. 2. Here we ignore
the random generation as it is an external library call. For the
analysis we assume an infinite cache system in which the main
cost is the loads and stores of the necessary data, followed
by floating-point calculations. We ignore all costs related
to atomic operations. To present our analysis we define the
following: τf is the machine time per double precision FLOP,
τm is the RAM access/byte, fD = 405 is the number of
FLOPs/particle, which includes advection as well as collisions
C1–C4 and mD = 18 × 8 is the memory operations per
particle. This includes loads and stores for 3D positions,
velocities, weights, and reads for random number and 3D
electric field, precomputed in the C2P step. The arithmetic
intensity is fD/mD = 2.8 and the machine imbalance is
τm/τf = 70 for double precision calculations on the NVIDIA
V100. Then, the time per particle is TDSMC = fDτf +mDτD,
≈ τmmD. For τm = 1/900 ns, the estimated cost per particle
is 0.16 ns. In fig. 2, we observe roughly 0.42 ns. We attribute
the discrepancy to register pressure; the compiler shows about
96 registers per thread, which leads to reduced occupancy.
Restricting the number of registers helps, but the benefits are
not as dramatic due to register spilling. There is also some
sensitivity on the number of blocks and threads per block.

P2C kernel. Recall that in the P2C kernel we need to do
four segmented reductions on particle properties, where the
number of segments is equal to the number of field cells. In
our implementation, the P2C kernel requires O(1) work per
particle to find its cell and then O(M) concurrent reductions
of approximately M/nP size each. The computation for the
first part is negligible and we ignore it. The main computation
cost is managing the O(M) atomics-based reductions.

The memory bandwidth cost m is loading the per-particle
properties and thus, m = 4 × 8 double precision memory
operations per particle. In all, we obtain T̂P2C = mτm +
O(M/nP ) = mτm + O(P/ρ). The mτm cost is 0.03 ns and
thus negligible compared to the observed T̂P2C. For example,
in fig. 3a, we observe T̂P2C = 0.4 ns for P = 1. Thus the
dominant term is the atomic reductions cost O(P/ρ). This
analysis explains the slight increase of T̂P2C with increasing
P , which is amplified with smaller ρ.

Summary. Within O(1) factors we can explain the scal-
ing and absolute numbers of our code. The degradation in
scalability is due to the field mesh replication. However, our
solution is simple and for many practical problems of interest
the multi-GPU version offers significant speedups especially
for large ρ and subcycled time marching schemes.
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Fig. 4 Atomic Collision Kernel Overhead and Kernel Time.

B. Overheads

In this section, we look at the performance overheads intro-
duced by Numba and PyKokkos and we present PyKokkos
optimizations that enable its efficient use for light-weight
kernel calls. The CuPy overheads are minimal, typically on
the order of 30-40 µs per kernel call; however, some CuPy
kernels are slow due to poor default options for kernel grid
sizes (section VII). CuPy also allows easy wrapping of raw
CUDA kernels; while slightly more convenient than using
pybind11, this is not portable.

We calculate all overheads by subtracting the kernel time
reported by nvprof (the NVIDIA CUDA kernel profiler) from
the wall-clock time of each kernel call measured in Python.
Note that we do not include timing data from the first call to
each kernel, to avoid standard first invocation overheads.

Initially, PyKokkos did not interoperate properly with CuPy
arrays, meaning that we had to pass data on the host and copy
it before every kernel call. This introduced a lot of overhead,
so we added a feature to PyKokkos to wrap existing CuPy
arrays, avoiding the memory copies. Our initial experiments
with custom GPU kernels written in Numba and PyKokkos
showed that while the kernels themselves are quite fast, and are
close to native CUDA kernels in terms of performance, both
frameworks introduced significant overhead. For our smallest
problem size, N = 125K, we observed that the overhead was
at least double than the kernel itself. Since PyKokkos presents
a more portable framework we decided to focus on PyKokkos:
we profiled the framework’s run-time code and identified two
opportunities for optimization.

The first optimization we applied (CachingOpt) was caching
the results of intermediate function calls internal to PyKokkos.
An example of such an optimization would be caching the
module import step. On every call to a kernel, PyKokkos has
to import the module that holds it: this module is a shared
object file stored on the file system. Our optimization fixes
this by importing the module on the first call and maintaining
a handle to it which can be reused on subsequent calls.

The second optimization we applied (HandleOpt) involves
the mechanism by which PyKokkos retrieves the handle to the
kernel and calls it. On every kernel call, PyKokkos will first
lookup the handle to the kernel in the imported module and
then process the user-passed arguments to pass them to the
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TABLE VI PyKokkos vs other Frameworks; N = 125K.

Time per call (ms)
Kernel Implementation Kernel Overhead
Collision PyKokkos 0.08 0.05
Kernel Numba 0.10 0.37
Recombination PyKokkos 0.05 0.07
Kernel Numba 0.04 0.49
Prefix PyKokkos 0.06 0.30
Reduction CUDA 0.03 0.07

kernel. This optimization caches the function handle and the
processed arguments so subsequent calls can reuse them.

Following these optimizations, overhead per particle for our
smallest problem size decreased from 2.48ns to 0.36ns, going
from 84.3% of total time to just 43.8%.

Figure 4 shows the overhead and kernel times per particle of
the atomic collision kernel using both Numba and PyKokkos
(with our optimizations) for different problem sizes. We first
note that the kernel execution times are similar. Looking at
overheads, for all listed problem sizes, the PyKokkos overhead
is lower than the both the corresponding Numba overhead
and even the PyKokkos kernel time. In contrast, the Numba
overhead greatly exceeds the kernel time for smaller problem
sizes. In summary, PyKokkos with our optimizations has far
less overhead than Numba, and this is especially notable for
smaller problem sizes which is significant for strong scaling.

Table VI compares the PyKokkos overhead and kernel times
per call of our GPU kernels to alternative approaches, namely
Numba and CUDA + pybind11. Note that the overheads listed
here are not divided by the number of particles and are
constant for each kernel for different problem sizes.

As stated previously, PyKokkos overhead is much smaller
than that of Numba, while the kernel times are similar.
Comparing PyKokkos to CUDA, we see that PyKokkos has
significantly higher overhead: this is expected, as each kernel
call executes PyKokkos Python run-time code before invoking
the kernel itself. Additionally, we can see that the CUDA
kernel is faster than the PyKokkos implementation. Using
the profiler, we found that the PyKokkos kernel ran with a
much smaller block size, which is set automatically by Kokkos
itself and cannot currently be controlled by the PyKokkos user
(although this will be supported in the future). Meanwhile, we
had to run a search over different block and grid sizes for
our CUDA implementation to find an optimal configuration.
Therefore, PyKokkos achieves better performance than Numba
for the collision and recombination kernels and falls behind a
native CUDA implementation for the prefix reduction kernel,
but has superior usability and portability characteristics.

In summary, PyKokkos has much lower performance over-
head than Numba for custom kernels and mostly similar kernel
execution times. Compared to CUDA + pybind11, PyKokkos
has additional overhead and slower kernel execution time for
one of our kernels, although we expect future releases of
PyKokkos to further improve both of these aspects.

VI. SIMULATION OF A GLOW DISCHARGE APPARATUS

As a demonstration, we present the simulation of a glow
discharge apparatus in which a pulsating voltage is applied

TABLE VII Wall Clock Times for CuPy Sums (µs).

Problem Size 0.125M 1M 8M

1 Variable 58 68 140
4 Variables 405 2,770 21,983

across the discharge tube and drives the formation of a low-
temperature ionized plasma. Data from the simulation is shown
in fig. 5. For the simulation discussed, we used the following
parameters: • Electron, ion density ne(x, 0) = ni(x, 0) = 5×
109 #

cm3 ; • Electron temperature Te(x, 0) = 5eV; • Metastable
density nm(x, 0) = 0 #

cm3 ; • Neutral density nn(x) = 3.22 ×
1016 #

cm3 ; • Driving voltage amplitude V0 = 75V ; • Radio
frequency ω = 13MHz; • Pressure P = 1Torr; • Electrode
gap L = 2.54cm; • Initial number of particles N0 = 2× 106;
• Number of cells M = 256; and • Time step: δ = 1

8000ω ≈
1×10−11s. The simulation, with time horizon 6 ms, took less
than an hour on a single V100 GPU.

This glow discharge scenario generates a quasi-neutral
plasma [22], [23], in which electron and ion density are
approximately equal and thus there is zero net charge almost
everywhere in the plasma. A notable physical phenomenon
present in glow discharge problems can be seen near the edges
of the domain, where electron density is very low; this region
is known as the sheath. Strong electric fields prevent most
electrons from exiting the plasma. At the inner edge of the
sheath, we observe an oscillatory behavior in the electron
density function but not in the ion one. This well-studied
behavior, seen in fig. 5a, is known as plasma oscillation. Data
outputs of particular interest are species density functions and
electron energy distribution functions, as seen in fig. 5.

VII. PERFORMANCE CONSIDERATIONS

In this section, we discuss some lessons we found in Python
for HPC, in particular, CuPy/Numba optimizations, atomic
operations, and random number generation.

CuPy:. As part of the reshuffling step in section IV-B, our
algorithm requires a vector reduction. Using the default im-
plementation of cupy.sum() resulted in poor performance;
upon further investigation, we found that the default setup for
CuPy uses only the fixed values of 512 threads and 1 block
(and these values cannot be configured), regardless of the size
of the input array. As a result, it scales poorly for larger
problem sizes. The CuPy developers suggested we set the
CUPY_ACCELERATORS environment variable to cub, which
switches CuPy to the CUB backend. While this improved
scalability in a test problem, it did not help in our case since
our data is not stored in a contiguous axis, as we setup our
memory layout to store each particle’s data contiguously in
our CUDA reduction kernel. This caused CuPy to fall back to
the default implementation. The discrepancy between single
and multiple variable sums can be seen in table VII.

Numba:. Our initial CUDA kernel implementations using
Numba showed higher overheads than what was reported
in Section V-B. Further investigation showed that the main
cause was that we were passing in CuPy arrays directly as
arguments, which causes Numba to convert these arrays to it’s
own device array type at every kernel call. We fixed this by
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(a) Electron density ne(x, t) ( #
cm3 ) (b) Ion density ni(x, t) ( #

cm3 ). (c) Electron density (zoomed
in at sheath edge).

(d) Electric field-aligned electron
energy distribution.

(e) Electron temperature Te(x, t)
(eV).

(f) Voltage V (x, t) (V). (g) Ion density (zoomed in at
sheath edge).

(h) Total electron energy distribution.

Fig. 5 Glow discharge simulation for time horizon up to = 80 RF Cycles. We observe the sheath near the left and right electrodes, and
plasma oscillations. In the last column, we plot the electron energy density distribution function (EEDF) at two spatial locations: at the
center of the discharge (x = 1.25) and the sheath (x = 0.5) at the end of the simulation. Notice that at the sheath, where the temperature
is higher, the EEDF has longer tails—as expected. Once the EEDF is obtained, quantities of interest like rate coefficients can be computed.

defining a Numba device array from each CuPy array during
the setup phase and then passing the Numba array to the
kernel, eliminating the need for conversion at each time step.
We also found that overhead can be further reduced by adding
the kernel argument types to the function signature.

Atomics:. One kernels with atomic operations, in particular
the prefix reduction, we observed poor scalability for high
numbers of grid points. The workload size of the prefix
reduction is the number of particles, so we expect the runtime
to be solely a function of the number of particles. This is true
for up to approximately 50k cells. However, when the number
of cells grows large (50k and above), the runtime grows almost
linearly with the number of cells.

Random Number Generation. We consider two methods
of drawing these random numbers in two different ways:
with CuPy and with Numba or PyKokkos. With CuPy, the
random numbers are drawn before the collision kernel; with
Numba, they are drawn on the fly. Predetermining the random
number generation with CuPy provides significantly better
performance than on the fly with Numba.

VIII. RELATED WORK

Related work on PIC codes. There is a rich literature on
HPC algorithms and software for PIC methods for collisionless
plasma simulations. Examples include [10], [21], [24]. There
is also work on Vlassov-Fokker-Plank collisional models of
fusion plasmas [24], but LTPs operate in a different regime.
Surprisingly, there is little work on HPC algorithms for LTPs.
We only discuss methods that solve directly for f and not just
upscaled PDE models for Te and ne. The main metric we use
to compare the methods is time in [ns/particle/time step] for all

non-PDE components; that is, the collision kernel, the particle-
to-cell kernel, and any data structure modifications to account
for the creation and destruction of particles. Most codes either
use single precision or do not specify it.

In [25] the authors consider a simulation with M =10K. No
detailed timings are reported. [26] achieves 44 ns/particle per
time step in single precision on one V100 NVIDIA GPU. It
uses 1D-PIC calculations similar to ours, but the effect of the
number of cells is not discussed (ρ = 20K); also, it requires
replication of the whole grid on the GPU-block shared memory
to improve particle-to-cell calculation and thus does not work
for large M . [27] uses sorting to assign particles to cells at
each time step with M ≈ 4K and ρ = 1000. It does not
support multi-GPUs and achieves about 130 ns per particle.

Using the normalized time per particle as a metric, we
consider the calculations in [7] to be the state-of-the-art.
This code uses per-time-step sorting of particles to cells and
the null-step method for collisions. It supports neither multi-
GPUs nor recombination collisions. The largest problem (with
unspecified precision) had 20M particles on a single GTX
Titan X GPU with memory bandwidth 336.5 GB/sec vs V100’s
900 GB/sec. For non-uniform particle distributions [28] it
delivers 8 ns per particle/time step.

Comparing codes is tricky due to differences in low-
level implementation details, e.g., cross-sections, hardware,
unspecified features like single-vs-double precision, the spatial
distribution of particles and possible other details. With these
caveats in mind, we compare [7] to the strong-scaling results
in fig. 3a for one V100 GPU. We deliver 1.4 ns/particle/time
step in double precision, with recombination collisions; this
amounts to 5.17× improvement over [7]. With 16 GPUs the

9



total time is nT16 and after normalizing to the total number
of particles N we obtain 0.2 ns/particle/time step.

Related work on poductivity environments. Kokkos [6]
and RAJA [29] are C++ libraries that provide abstractions
for performance portable shared memory parallelism; we
use PyKokkos, which provides Kokkos-like abstractions in
Python. In addition to PyKokkos and Numba, a number
of HPC Python frameworks have been developed recently.
DaCe [14] and Intrepydd [30] provide Python abstractions
for writing portable high-performance code which is then
compiled to C++, CUDA, or other device specific frameworks
or languages. We chose Numba as it is older and more
well-established, and PyKokkos as it emphasizes performance
portability. PyOMP [31] extends Numba by adding OpenMP
style pragmas for CPU parallelism. As most of our kernels
are more suited for GPUs, we did not attempt to use CPU
specific frameworks in our code. Legate [32] is a drop-in
replacement for NumPy providing accelerated and distributed
computing. Other Python task-based programming systems
include Pygion [33], which provides a Python interface to
Legion, and Dask [34]. We did not need tasking abstractions,
but we were able to scale to multiple nodes using mpi4py.

IX. CONCLUSION

To our knowledge this is the first multi-GPU solver for
LTPs and the first to report details for recombination collisions.
Although we included only three species and five collisions,
our algorithms apply to more species and collision types [22].
We presented a simple but effective MPI algorithm for up to
64M particles and 160K cells. Using Python and PyKokkos
we were able to rapidly perform algorithmic exploration
while ensuring code portability. We also shared a set of
insights that will be helpful to other HPC researchers. We
extended PyKokkos to improve its interoperability with CuPy
and NumPy and reduce overheads for fine-grained kernels.
Future work includes using particle reweighing to adaptively
control the approximation of the velocity distribution function;
extending the MPI implementation to partitioned Ω; and using
multi-resolution methods to accelerate convergence to a steady
state. We also look forward to testing performance-portability
on the upcoming AMD and Intel GPU architectures.
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