
Copyright

by

Ahmet Celik

2019

The Dissertation Committee for Ahmet Celik
certifies that this is the approved version of the following dissertation:

Proof Engineering for Large-Scale Verification Projects

Committee:

Milos Gligoric, Supervisor

Keshav Pingali

Christopher J. Rossbach

Sarfraz Khurshid

Proof Engineering for Large-Scale Verification Projects

by

Ahmet Celik

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2019

To Angel Alya

Acknowledgments

Firstly, I would like to sincerely thank my adviser and friend Milos

Gligoric. I would not be graduating without him so quickly. We spent many

sleepless nights together working on deadlines supported by free cookies and

coffee. We have enjoyed a few conferences together. I cannot pay back for his

endless support.

Next, I would like to thank to many exceptional people: my Ph.D. com-

mittee members, including Keshav Pingali, Christopher Rossbach, and Sar-

fraz Khurshid; my collaborators, including Don Batory, Jongwook Kim, Alex

Knaust, Young Chul Lee, Aleksandar Milicevic, Sreepathi Pai, Karl Palmskog,

Marko Vasic, Kaiyuan Wang, and Chenguang Zhu; and the current and former

officemates Allison Berman, Ahsen Dinc, Nima Dini, Chenguang Liu, Pengyu

Nie, Marinela Parovic, Zhiqiang Zang, and Mengshi Zhang.

I would like to thank Darko Marinov from the University of Illinois

at Urbana-Champaign and his students Alex Gyori, Farah Hariri, Owolabi

Legunsen, and August Shi for valuable feedback on several of my (draft) pa-

pers. Moreover, I am grateful for Darko’s help during the ESEC/FSE 2017

conference in Paderborn, Germany.

I would have not done Ph.D. if Thomas Dillig had not invited me to

The University of Texas at Austin. I am thankful to Işıl Dillig and Thomas

v

Dillig for helping me discover a research area in which I excel and introducing

me to Milos.

Lastly, I owe a lot to my family: mom Ayten, dad Durali, and little

sister Kübra.

Some chapters in this dissertation include our work that has been pub-

lished at top Software Engineering conferences. Chapter 2 is published at

ASE 2017 [28] and ICSE Demo 2018 [29], and Chapter 3 is published at IS-

STA 2018 [120].

vi

Proof Engineering for Large-Scale Verification Projects

Publication No.

Ahmet Celik, Ph.D.

The University of Texas at Austin, 2019

Supervisor: Milos Gligoric

Software controls many aspects of our daily lives, thus, software cor-

rectness is of utmost importance. One way to develop correct-by-construction

software is by using proof assistants, i.e., writing machine-checked proofs of

correctness at the level of executable code. Although the obtained guarantees

via such development are highly desirable, proof assistants are not currently

well adapted to large-scale software development, and are expensive to use in

terms of both time and expertise. In particular, the productivity of proof en-

gineers is lowered by inadequate interfaces, processes, and tool support, which

lone expert users may not be hindered by, but become serious problems in

large-scale projects with many contributors.

This dissertation shows that research in traditional software engineering

can improve productivity considerably in large-scale verification projects that

use proof assistants and facilitate proliferation of formally verified software.

vii

Specifically, this dissertation, inspired by research in the software engineering

area on regression testing, software evolution, and mutation testing, presents

three main bodies of research with the goal to speed up proof checking and

help proof engineers to evaluate the quality of their verification projects.

First, this dissertation introduces regression proof selection, a technique

that tracks fine-grained dependencies between Coq definitions, propositions,

and proofs, and only checks those proofs affected by changes between two revi-

sions. We instantiate the technique in a tool dubbed iCoq. We applied iCoq

to track dependencies across many revisions in several large Coq projects and

measured the time savings compared to proof checking from scratch and when

using Coq’s timestamp-based toolchain for incremental proof checking. Our

results show that proof checking with iCoq is up to 10 times faster than the

former and up to 3 times faster than the latter.

Second, this dissertation describes the design and implementation of

piCoq, a set of techniques that blend the power of parallel proof checking and

proof selection. piCoq can track dependencies between files, definitions, and

lemmas and perform parallel checking of only those files or proofs affected by

changes between two project revisions. We applied piCoq to perform regres-

sion proving over many revisions of several large open source projects. Our

results indicate that proof-level parallelism and proof selection is consistently

much faster than both sequential checking from scratch and sequential check-

ing with proof selection. In particular, 4-way parallelization is up to 28.6 times

faster than the former, and up to 2.8 times faster than the latter.

viii

Third, this dissertation introduces mutation proving, a technique for

analyzing quality of verification projects that use proof assistants. We imple-

mented our technique for the Coq proof assistant in a tool dubbed mCoq.

mCoq applies a set of mutation operators to Coq functions and datatypes,

and then checks proofs of lemmas affected by operator application. We applied

mCoq to several medium and large scale Coq projects, and recorded whether

proofs passed or failed when applying different mutation operators. We then

qualitatively analyzed the failed proofs, and found several examples of weak

and incomplete specifications.

ix

Table of Contents

Acknowledgments v

Abstract vii

List of Tables xiii

List of Figures xiv

Chapter 1. Introduction 1

Chapter 2. iCoq: Regression Proof Selection for
Large-Scale Verification Projects 6

2.1 Overview . 7
2.2 Coq Background . 11
2.3 Technique . 18

2.3.1 Phases . 18
2.3.2 iCoq Components and Workflow 22

2.4 Evaluation . 27
2.4.1 Verification Projects Under Study 27
2.4.2 Variables . 29
2.4.3 Experiment Procedure 30
2.4.4 Results . 31

2.5 Discussion . 36
2.6 Threats to Validity . 38
2.7 Summary . 39

x

Chapter 3. piCoq: Parallel Regression Proving
for Large-Scale Verification Projects 41

3.1 Overview . 42
3.2 Coq Background . 45

3.2.1 Coq Proof Checking Toolchain 46
3.2.2 Asynchronous Proof Checking in Coq 47
3.2.3 iCoq and Regression Proof Selection 49

3.3 Running Example . 50
3.4 Techniques . 53
3.5 Implementation . 61
3.6 Evaluation . 62

3.6.1 Verification Projects Under Study 63
3.6.2 Variables . 65
3.6.3 Experiment Procedure 65
3.6.4 Results . 66

3.7 Discussion . 71
3.8 Threats to Validity . 73
3.9 Summary . 75

Chapter 4. mCoq: Mutation Proving for Analysis of Verifica-
tion Projects 76

4.1 Overview . 77
4.2 Background . 81

4.2.1 The Coq Proof Assistant 81
4.2.2 SerAPI and Serialization to S-expressions 83
4.2.3 Mutation Testing and Proving 84

4.3 Technique . 86
4.3.1 Mutation Approach . 86
4.3.2 Mutation Operators . 87
4.3.3 Mutation Optimizations 90

4.4 Implementation . 91
4.4.1 Toolchain . 92
4.4.2 Mutation Modes and Procedure 94

xi

4.4.3 Impact of Toolchain Development 97
4.5 Evaluation . 98

4.5.1 Verification Projects Under Study 98
4.5.2 Variables . 102
4.5.3 Results . 106

4.5.3.1 The Number of Mutants and Mutation Score . . 106
4.5.3.2 Performance . 109
4.5.3.3 Qualitative Analysis 110

4.6 Threats to Validity . 113
4.7 Discussion . 114
4.8 Summary . 115

Chapter 5. Related Work 116
5.1 Incremental Verification . 116
5.2 Parallel and Asynchronous Proof Checking 117
5.3 Regression Testing . 118
5.4 Build Systems . 119
5.5 Mutation Testing of Functional Programs 119
5.6 Mutation of Specifications . 121
5.7 Analysis and Testing in Proof Assistants 121

Chapter 6. Conclusion 123

Bibliography 125

xii

List of Tables

2.1 Verification Projects Used in the Evaluation. 28
2.2 Total and Average Number of Selected Proofs for Large Verifi-

cation Projects. 33
2.3 Total and Average Proof Checking Time for Large Verification

Projects using coq_makefile (Coq) and iCoq. 35
2.4 Ratio of Total Times from Table 2.3. 36

3.1 Modes for Regression Proving in Coq. 55
3.2 f·none Mode for Coq Project Shown in Figures 3.3, 3.4, and

3.5; Same-Phase Tasks Can Run in Parallel. 56
3.3 p·none Mode for Coq Project Shown in Figures 3.3, 3.4, and

3.5; Same-Phase Tasks Can Run in Parallel and Proof Tasks
(to be Run in a Later Phase) are in Bold. 57

3.4 p·icoq Mode for Change Shown in Figure 3.7 to Project Shown
in Figures 3.3, 3.4, and 3.5; Same-Phase Tasks Can Run in
Parallel, and Proof Tasks (to be Run in a Later Phase) are in
Bold. 60

3.5 Projects Used in the Evaluation. 62
3.6 Total Execution Time in Seconds of Projects Coquelicot, Fin-

map, and Flocq for All Modes and Different Number of Jobs. . 68
3.7 Total Execution Time in Seconds of Projects Fomegac, Surface

Effects, and Verdi for All Modes and Different Number of Jobs. 69

4.1 List of Mutation Operators. 87
4.2 Projects Used in the Evaluation. 100
4.3 Total Number of Mutants for each Mutation Operator per Project.103
4.4 Total Number of Killed Mutants for each Mutation Operator

per Project. 104
4.5 Mutation Score per Project. 105
4.6 Proof Checking and Mutation Time in Seconds for Various Modes.108

xiii

List of Figures

2.1 Coq interactive proof development overview. 12
2.2 Coq Gallina a file example Alternate.v. 14
2.3 Coq Gallina a file example AltLem.v. 15
2.4 Coq Gallina a file example AlternateLem.v. 16
2.5 Coarse- vs. fine-grained dependency graphs for example Coq

development. 17
2.6 Coq term syntax fragment. 17
2.7 Coq workflows for Alternate.v. 18
2.8 Modified Coq function definition in Alternate.v. 21
2.9 AST with string values of nodes for example Coq term. 24
2.10 Toolchain workflow. 26
2.11 Experiment procedure. 31
2.12 Proof selection percentages for two micro-benchmarks. 32

3.1 Coq interactive proof development overview. 46
3.2 Coq asynchronous proof checking workflow. 48
3.3 ListUtil.v from an example Coq project. 51
3.4 Dedup.v from an example Coq project. 52
3.5 RemoveAll.v from an example Coq project. 53
3.6 Dependencies for the example Coq project shown in figures 3.3,

3.4, and 3.5. 54
3.7 Revised version of lemma in_remove in the file ListUtil.v in

Figure 3.3, with changed line highlighted. 54
3.8 Revised version of function dedup in the file Dedup.v in Fig-

ure 3.4, with changed lines highlighted. 55
3.9 p·icoq workflow/phases with 4-way parallelism. 59
3.10 Experiment procedure. 65
3.11 Comparison of proof checking times for different modes across

revisions of Coquelicot (top) and Fomegac (bottom). The plots
show the proof checking time using four parallel jobs. 67

xiv

4.1 Example Coq source file Update.v. 82
4.2 Simplified SerAPI sexp of if-expression in Figure 4.1. 84
4.3 Example Coq source file using lists FilterMap.v. 88
4.4 mCoq implementation architecture. 92
4.5 Pseudocode of parameterized mutation procedure (checkOp). . 95
4.6 Pseudocode of checkOpVFile that is called from Figure 4.5. . 96
4.7 Pseudocode of checkOpSexpFile that is called from Figure 4.6. 97

xv

Chapter 1

Introduction

Software impacts every aspect of our daily lives, thus, software cor-

rectness is of utmost importance. Software testing [2] is the most common

approach in industry to check software correctness. However, software testing

provides very limited correctness guarantees. One way of developing soft-

ware that is correct-by-construction is by using proof assistants, i.e., writing

machine-checked proofs of correctness at the level of executable code.

Software developed using proof assistants is reaching unprecedented

scale. For example, CompCert C compiler [103], developed and proved correct

inside the Coq proof assistant [14, 51], required 8 person-years of effort and

120k lines of code (LOC) to reach its current state, with support for many

modern platforms and certified compilation to performant machine code [101].

Similarly, the initial version of the seL4 operating system kernel, proved correct

inside the Isabelle/HOL proof assistant [111], required more than 22 person-

years of effort and more than 200k LOC [95]. More recent projects based on

proof assistants with ambitions to reach the scale of production-level software

target critical domains such as file systems [1, 31], security [15, 153], and dis-

tributed systems [105, 128, 151]. These projects are now starting to impact

1

the mainstream software ecosystem: CompCert has found applications in em-

bedded systems [93], and the BoringSSL library, used in the widely deployed

Google Chrome Web browser, now includes high-performance cryptographic

code verified in Coq [55].

The workflow for software development in proof assistants fundamen-

tally differs from workflows using mainstream programming languages. On

one hand, software design and development is driven by the requirements for

formal specification and manageable burdens of proof, resulting in unortho-

dox processes and methodologies [3,151] and complex organization of compo-

nents [66,76]. On the other hand, certain kinds of quality assurance measures,

such as unit testing, are simply not applicable [36], while others, such as in-

tegration testing, become even more important [62]. Moreover, despite over

40 years of development, proof assistants are not currently well adapted to

large-scale software development [17], and are expensive to use in terms of

both time and expertise. In particular, the productivity of proof engineers is

lowered by inadequate interfaces, processes, and tool support, which lone ex-

pert users may not be hindered by, but become serious problems in large-scale

projects with many contributors [94, 149]. We briefly describe two challenges

faced by proof engineers. First, large verification projects may suffer from very

long proof checking, which may take days to complete, and this cost is exacer-

bated for projects that frequently evolve, because proofs need to be rechecked

after every change. Second, proof engineers lack a good metric (and a tool)

for evaluating the quality of large verification projects.

2

We believe that research in traditional software engineering can improve

productivity considerably in large-scale verification projects that use proof as-

sistants and facilitate proliferation of formally verified software.

This dissertation describes our research effort that leverages software

engineering techniques, including regression testing [16,127,154], software evo-

lution, and mutation testing [49,83,88,121], to improve productivity in evolv-

ing software verification projects that use proof assistants. More precisely, this

dissertation presents three main bodies of research with the goal to speed up

proof checking, as well as help proof engineers to evaluate the quality of their

verification projects.

This dissertation make the following key contributions:

? We designed and developed the first technique for large-scale regression proof

selection, suitable for use in continuous integration services, e.g., Travis CI.

We instantiated the technique in a tool dubbed iCoq. iCoq tracks fine-

grained dependencies between Coq definitions, propositions, and proofs, and

only checks those proofs affected by changes between two revisions. iCoq

additionally saves time by ignoring changes with no impact on semantics.

We applied iCoq to track dependencies across many revisions in several

large Coq projects and measured the time savings compared to proof check-

ing from scratch and when using Coq’s timestamp-based toolchain for incre-

mental checking. Our results showed that proof checking with iCoq is up

to 10 times faster than the former and up to 3 times faster than the latter.

3

? We present the first set of techniques that blend the power of parallel proof

checking and proof selection to speed up regression proving in verification

projects, suitable for use both on users’ own machines and in workflows in-

volving continuous integration services. We implemented the techniques in a

tool, dubbed piCoq, which supports Coq projects. piCoq can track depen-

dencies between files, definitions, and lemmas and perform parallel checking

of only those files or proofs affected by changes between two project revi-

sions. We applied piCoq to perform regression proving over many revisions

of several large open source projects and measured the proof checking time.

While gains from using proof-level parallelism and file selection can be con-

siderable, our results indicate that blended proof-level parallelism and proof

selection is consistently much faster than both sequential checking from

scratch and sequential checking with proof selection. In particular, 4-way

parallelization is up to 28.6 times faster than the former, and up to 2.8 times

faster than the latter.

? We designed and implemented the first mutation proving technique for eval-

uating and enhancing the quality of verification projects that use proof assis-

tants. We define a set of mutation operators on functions and data, inspired

by mutation operators defined previously for functional and imperative pro-

gramming languages. We implemented mutation proving in a tool, dubbed

mCoq, which supports Coq projects. Our tool brings significant extensions

to Coq and the SerAPI library for serialization and deserialization of Coq

syntax [63]; these extensions pave the way for other transformations of Coq

4

code. To make mutation proving of large projects feasible in practice, we

optimized mCoq in several ways to make it run faster. In particular, we

implemented several novel forms of parallel checking of affected proofs. We

performed an empirical study using mCoq on 12 large and medium-sized

open source Coq projects. For each project, we recorded the number of

generated and killed mutants and the execution time. We qualitatively an-

alyzed a subset of the live mutants and found several instances of weak and

incomplete specifications. Our work resulted in many improvements and

bug fixes to SerAPI and enhanced its robustness when applied to large-

scale Coq projects, showing that complex, extensible proof documents can

be manipulated in a lightweight way. We made several modifications to Coq

itself, and these changes have been accepted by Coq developers.

5

Chapter 2

iCoq: Regression Proof Selection for
Large-Scale Verification Projects1

Proof assistants such as Coq are used to construct and check formal

proofs in many large-scale verification projects. As proofs grow in number

and size, the need for tool support to quickly find failing proofs after revising

a project increases. We present a technique for large-scale regression proof se-

lection, suitable for use in continuous integration services, e.g., Travis CI. We

instantiate the technique in a tool dubbed iCoq. iCoq tracks fine-grained de-

pendencies between Coq definitions, propositions, and proofs, and only checks

those proofs affected by changes between two revisions. iCoq additionally

saves time by ignoring changes with no impact on semantics. We applied iCoq

to track dependencies across many revisions in several large Coq projects and

measured the time savings compared to proof checking from scratch and when

using Coq’s timestamp-based toolchain for incremental checking. Our results

show that proof checking with iCoq is up to 10 times faster than the former

and up to 3 times faster than the latter.

1Parts of this chapter are published at ASE 2017 [28] and ICSE Demo 2018 [29]. My
contributions span all aspects of this work: defining the project, designing a solution, im-
plementing a tool, performing evaluation, and documenting findings.

6

2.1 Overview

Verification projects based on construction and certification of formal

proofs inside proof assistants have reached a hitherto unprecedented scale.

Large projects take two main forms: formalizations of mathematical theo-

ries and programs with accompanying proofs of correctness at the level of

executable code [67]. The former includes the proofs of the four-color theo-

rem [73] and the Feit-Thompson odd order theorem in Coq [74], and a proof of

the Kepler conjecture in HOL Light [82]; the latter includes the certified seL4

operating system kernel in Isabelle/HOL [95], and the CompCert C compiler

in Coq [103].

Using proof assistants has advantages with respect to scalability, mod-

ularity, and reliability compared to using more automated methods based only

on model checking or SMT solving [67]. On the other hand, proof assistants

are more human resource intensive to use than model checkers, and come with

less tool support than what is available to programmers using mainstream

programming languages. Specifically, Wenzel has recently noted the need for

more systematic tool support to maintain repositories of formal proofs [149].

Large verification projects based on proof assistants are similar to regu-

lar software projects in that (a) the end goal is a software artifact with certain

properties, (b) developers use an integrated development environment (IDE)

to write code, which is then checked by a tool and submitted to a version con-

trol system shared with others. Evidence from earlier undertakings indicate

that such projects require engineering effort similar to, or beyond, some of the

7

most complex software projects; for example, the proof of the odd order the-

orem in Coq was a six-year effort of a team of 15 people, resulting in 170,000

lines of code [114].

We believe that proper tool support for large-scale proof engineering

using proof assistants is an important and growing concern [94]. In partic-

ular, it is important to quickly find and report errors in evolving Coq and

Isabelle/HOL projects. However, just as for large projects in, e.g., Java, de-

termining the errors caused by a particular change can be a time-consuming

process. For instance, the Coq correctness proofs of an implementation of the

Raft distributed consensus protocol [115] are around 50k lines in total [151]

and take more than 30 minutes to check from scratch on a computer with an

Intel Core i7 4th generation processor. Potentially, a Coq user has to wait all

this time to find out whether a change in some definition makes a seemingly

unrelated proof fail.

Until recently, all proof assistants in the LCF family, including Is-

abelle/HOL and Coq, relied on user interaction through a read-eval-print loop

inherited from their predecessor. This interaction model effectively prevents

event-based user interaction with proof assistant files inside an IDE, in the

style of Eclipse. Initial work in Isabelle/HOL to address this problem [148]

paved the way for recent architectural changes in Coq towards a document-

oriented interaction model, where the proof assistant backend asynchronously

receives definitions, proof commands, and proof checking tasks from the user,

all of which may concern disparate parts of a project [9].

8

In this chapter, we show that potential gains in productivity from Coq’s

new interaction model go beyond recent application inside IDEs [58]. We

present iCoq, a tool for regression proof selection for large-scale Coq projects,

suitable for use in workflows involving version control and continuous inte-

gration services (CISs), e.g., Travis CI [85, 137]. (CISs run tests/proofs of a

project whenever code of the project changes. These services have become

widely used; Travis CI, one out of more than 20 available CISs, is used by

more than 300k projects [87].) iCoq works by tracking dependencies between

definitions, propositions, and proofs. When presented with a set of changes to

Coq files, iCoq uses this knowledge of dependencies to only check the proofs

affected by the changes, potentially saving significant time in comparison to

checking everything from scratch. In addition, iCoq saves time by ignoring

changes with no impact on the semantics of files, e.g., additions of comments

or whitespaces.

Our approach is based on a fundamental analogy between tests and

proofs. As Beck has noted in context of extreme programming [11], a test

can be viewed as a method that checks a partial functional specification of a

system. Consequently, a proposition about a (pure) function in Coq’s logic,

along with its proof, can be viewed as an amalgamation of many—possibly an

infinite number of—tests. For example, changing the definition of a function

in a Coq file can potentially impact many proofs, analogously to how changes

in Java programs affect tests in a test suite. Using this analogy, iCoq mirrors

previous work in regression testing for mainstream programming languages, in

9

particular techniques for lightweight regression test selection, which have been

shown to significantly lower the cost of running test suites, and hence find

errors more quickly [16,54,69,100,117,118,125,127,136,154]. Such tools have

recently been adopted by many large open-source Java projects. iCoq opens

the door for similar benefits to accrue to developers of large Coq projects.

Nevertheless, proofs and tests are also different in several important

ways. First, the proof of one claim typically depends on other claims; tests

are typically completely independent of other tests. Second, function defini-

tions, claims, and proof scripts are often interspersed in Coq files; test code is

seldom interspersed with program code. Third, Coq proof checking is done in

the same environment as the processing of definitions and even computation;

executing tests is usually done completely separately from code compilation.

We overcome these three challenges by leveraging Coq’s newly-added toolchain

for asynchronous proof processing [9].

To evaluate iCoq, we applied it on revision histories of several Coq

developments, including three large-scale projects, and measured the time

savings compared to proof checking from scratch (typical use in continuous

integration systems) and incremental proof checking using Coq’s timestamp-

based toolchain (typical command-line use). Our results show that processing

proofs with iCoq is up to 10× faster than the former, and up to 3× faster

than the latter.

This chapter describes the following contributions:

10

? Technique: We propose regression proof selection (inspired by regression

test selection), a technique that can substantially reduce proof checking time

for evolving verification projects. To the best of our knowledge, this is the

first application of research in regression testing to the domain of formal

proofs. Our insight is that due to simpler language features in proof assis-

tants than in imperative languages (e.g., Java), regression proof selection

can straightforwardly collect fine-grained dependencies, which are used to

identify proofs to recheck at each project revision.

? Tool: We implemented regression proof selection in a tool, dubbed iCoq,

which supports Coq projects. We provide a version of our tool on the

following URL: http://cozy.ece.utexas.edu/icoq.

? Evaluation: We performed an empirical study to measure the effectiveness

(in terms of both number of executed proofs and proof checking time) of

regression proof selection using iCoq. We used several open-source Coq

projects, including three large-scale projects.

2.2 Coq Background

The Coq proof assistant can be viewed as, on the one hand, a small

and powerful purely functional programming language, and on the other hand,

a system for specifying properties about programs and proving them. Coq is

based on a constructive type theory called the Calculus of Inductive Construc-

tions (CIC) [123]. In CIC, both programs and propositions about programs

11

http://cozy.ece.utexas.edu/icoq

are types inhabited by terms, in effect putting program construction and prov-

ing on the same footing. Via a frontend, e.g., emacs with Proof General [6], a

user interactively constructs tentative proof terms for propositions (assertions)

using operations called tactics, and the final result is only accepted after Coq’s

type checker was run successfully by the backend on the term. Barring use

of inconsistent axioms and frontend issues, the user need only trust that the

comparatively small type checking kernel is correctly implemented and com-

piled to trust the results. The interactive proof development process in Coq

is illustrated in Figure 2.1.

user logic engine type checker

Coq
tactics

subgoals

proof term

Figure 2.1: Coq interactive proof development overview.

Definitions of functions and lemmas processed by Coq are written in

the Gallina language, and reside in files ending in .v. The standard Coq

batch proof processing (“compilation”) tool, coqc, takes a .v file as input

and produces a .vo file as output that contains full binary representations

of processed Gallina constructs, including proofs. If the proofs are large and

complex, .vo files can be tens of megabytes large [107]. Since files may depend

on other files, checking all proofs in a Coq project requires some form of

dependency analysis. The standard coq_makefile tool generates a Makefile

which, by default, calls the coqdep tool for this purpose [44]. coqdep builds

12

a dependency graph for all input files based on simple syntactic analysis of

Require commands (similar to import statements in Java) in files, which

indicate direct dependency at the file level. When proof checking is then

performed via the Makefile, the generated dependency graph is used to compile

.v files in some allowed order, possibly in parallel. The generated Makefile

also enables timestamp-based incremental processing of Coq projects, which

is known to be limited [56,70].

Figure 2.2, Figure 2.3, and Figure 2.4 show the content of three ex-

ample Gallina files, where a simple function on lists of natural numbers is

defined, specified, and proved correct. Alternate.v contains definitions used

in the two other files, and these dependencies are found by coqdep. The de-

pendency data is used to generate a Makefile that calls coqc to produce .vo

files; if Alternate.v is subsequently modified in any way after compilation,

the other files will also be automatically recompiled when running make. On

the other hand, modification of the other files does not trigger recompilation

of Alternate.v.

In effect, the coqdep tool produces a coarse-grained dependency graph

of a Coq development at the level of .v files, as shown in Figure 2.5(a) for the

example Gallina files; dashed arrows indicate dependencies on files from Coq’s

standard library, which are usually disregarded. Internally, Coq maintains a

fine-grained dependency graph at the level of constants, reminiscent of the

graph shown in Figure 2.5(b).

In each Coq file, the commands between Proof. and Qed. are proof

13

Require Export List. Export ListNotations.

Fixpoint alternate l1 l2 : list nat :=
match l1 with
| [] ⇒ l2 | h1 :: t1 ⇒
match l2 with
| [] ⇒ h1 :: t1 | h2 :: t2 ⇒ h1 :: h2 :: alternate t1 t2
end
end.

Inductive alt : list nat → list nat → list nat → Prop :=
| alt_nil : ∀ l, alt [] l l
| alt_step : ∀ a l t1 t2,

alt l t1 t2 → alt (a :: t1) l (a :: t2).

Lemma alt_alternate :
∀ l1 l2 l3, alt l1 l2 l3 → alternate l1 l2 = l3.

Proof.
induction l1; intros.
- inversion H. subst. simpl. reflexivity.
- destruct l2; simpl; inversion H; inversion H4; auto.
apply IHl1 in H9. rewrite H9. reflexivity.

Qed.

Figure 2.2: Coq Gallina a file example Alternate.v.

scripts comprised of tactic calls along with bullets to indicate goal structure.

Proof scripts instruct Coq how to build a proof term. Tactics can be pipelined

and may perform sophisticated and time-consuming search operations, split-

ting of goals, and term rewriting. Ultimately, tactics produce a proof t in

Coq’s term syntax, of which a fragment is shown in Figure 2.6. For example,

the beginning of the proof of alt_alternate can be represented as

Const(Lambda(l1, App(list, nat), App(list_ind, . . .)))

where list and nat are the Ind terms for the algebraic datatypes for polymor-

phic lists and natural numbers, respectively, and list_ind is the Const term

14

Require Import Alternate.

Lemma alt_∃ : ∀ l1 l2, ∃ l3, alt l1 l2 l3.
Proof.
induction l1; intros; destruct l2.
- ∃ []. apply alt_nil.
- ∃ (n :: l2). apply alt_nil.
- ∃ (a :: l1). apply alt_step. apply alt_nil.
- specialize(IHl1 l2). destruct IHl1. ∃ (a :: n :: x).
repeat apply alt_step. auto.

Qed.

Figure 2.3: Coq Gallina a file example AltLem.v.

for a list induction principle.

Coq version 8.5, the first stable release to include architectural changes

to support a document-oriented interaction model [9], introduced the option

to quick-compile .v files to the binary .vio format, a process which avoids

checking (and emitting representations of) proofs that have been indicated

as opaque by ending with Qed. Only the type (assertion) of an opaque iden-

tifier such as alt_alternate, i.e., not the body term, can be referenced in

other parts of a Coq development, whence type checking of all such terms can

normally be performed in complete isolation. Specifically, .vio files contain

proof-checking tasks, which can be performed individually by issuing a coqc

command referencing the task identifier. A Coq user can depend on more

rapidly produced .vio files in lieu of .vo files in most developments, but must

then assume that all proofs are correct.

For example, the lemma alternate_correct (AlternateLem.v) in

the Coq development in Figure 2.4 depends only on the types (assertions)

15

Require Import Alternate.

Lemma alternate_alt :
∀ l1 l2 l3, alternate l1 l2 = l3 → alt l1 l2 l3.

Proof.
induction l1; simpl; intros.
- rewrite H. apply alt_nil.
- destruct l2; subst; apply alt_step; try apply alt_nil.
apply alt_step. apply IHl1. reflexivity.

Qed.

Lemma alternate_correct :
∀ l1 l2 l3, alternate l1 l2 = l3 <→ alt l1 l2 l3.

Proof.
intros; split; [apply alternate_alt | apply alt_alternate].
Qed.

Figure 2.4: Coq Gallina a file example AlternateLem.v.

of alternate_alt and alt_alternate, but not their proofs ; consequently,

the proof of alternate_correct need not be re-checked if only the proof of

alt_alternate is changed. In this case, the sole required action is to re-

check the proof of alt_alternate, which can be accomplished by first quick-

compiling Alternate.v and then running the single proof-checking task in

Alternate.vio. Figure 2.7 illustrates the possible workflows for Alternate.v

made possible by Coq’s document-oriented model.

Coq uses a notion of sections to organize common assumptions made in

a collection of lemmas, say, that equality on type A is decidable (A_eq_dec).

A lemma may reference one or more such assumptions, which then become

quantified variables that must be instantiated when the lemma is referenced

outside of the section. However, by default, Coq only determines the used

section variables of a lemma when the end of the section is reached. This

16

(a) List.v

Alternate.v

AltLem.v AlternateLem.v

(b) alternate alt

alt_alternate alternate_alt

alt_existsalternate_correct

Figure 2.5: Coarse- vs. fine-grained dependency graphs for example Coq de-
velopment.

t ::= Var(x) | Prod(n, t, t′) | Lambda(n, t, c) | App(c, ca) |
Const(c) | Ind(i) | Construct(cs) | Fix(f) | . . .

Figure 2.6: Coq term syntax fragment.

means that the final type (assertion) of the section lemma is not known when

considered in isolation, whence its proof cannot be immediately checked as an

asynchronous task. To get around this problem, Coq allows section lemmas to

be annotated with the assumptions they use (e.g., Proof using A_eq_dec).

The required annotations can be derived from metadata produced by Coq

during compilation of source files to .vo files [133], and then inserted back

into the source files. In the evaluation of our technique, we used this approach

to add annotations to all revisions of the projects under study as a separate

initial step.

17

Alternate.v

coqccoqc -quick

Alternate.voAlternate.vio

coqc -check-vio-tasks

alt_alternate
proof
script

alt_alternate
proof

alt_alternate
proof task

Figure 2.7: Coq workflows for Alternate.v.

2.3 Technique

This section describes our proof selection technique. We first describe

its phases at a high level, then details on the lower-level steps, and finally our

implementation in the iCoq tool. The key idea is to incrementally build and

analyze both coarse-grained and fine-grained dependency graphs to produce

the minimal set of proofs that need to be checked after a change has been made

to a project. The advantage of our technique compared to the timestamp-based

incremental processing of files stems from that, generally, checking a few proofs

in isolation spread out across a development takes much less time and effort

than checking all proofs in all affected source files.

2.3.1 Phases

Roughly, our technique follows the three phases of a typical regression

test selection technique [154]: an initial analysis phase that locates proofs

affected by recent changes, followed by an execution phase that checks the

selected proofs, followed by a final collection phase which produces dependen-

18

cies for the next revision. We assume that both the file-level and lemma-level

dependencies and checksums of the last revision of the project are available at

the start of the initial phase.

Analysis phase: First, for each source file in the project, we check whether

its checksum is still the same since the last revision. Then, we perform file-level

dependency analysis and build an up-to-date coarse-grained dependency graph

that includes checksums, with changed files marked. This graph is then used

to quick-compile the changed source files, allowing us to compute checksums

of the term representations of individual definitions and lemma statements

that may have changed. At the same time, we also determine the proof tasks

available in each changed source file, and compute the checksum of each proof

script associated with a proof task. Using our knowledge of proof tasks and

checksums for fine-grained entities, we obtain a fine-grained dependency graph

where each modified entity is marked, and from which recently removed entities

are purged.

By going through all modified entities in the fine-grained dependency

graph, we then calculate the transitively impacted entities, and mark them

in the graph. The set of proof tasks to execute is then precisely the tasks

associated with the set of modified and impacted entities. Note that this

process of discovering impacted proofs is similar to the process of “invalidating

the upward transitive closure” in some build systems, e.g., Bazel [10].

Execution phase: Given the list of proof tasks and their associated source

files and binary quick-compiled files from the previous phase, we emit the

19

commands for checking those tasks. After each command is executed, we note

the dependencies of the proof on other lemmas and definitions; this information

is only available when the proof term has actually been constructed and stored

in memory.

Collection phase: This phase finds the dependencies of all modified def-

initions and lemmas by extracting them from the quick-compiled files and

combining the results with the proof dependencies obtained in the previous

phase. We use these dependencies to build a complete up-to-date fine-grained

dependency graph that includes checksums. We then store this graph as a file,

to be used in the analysis phase of the next project revision.

Running example: We exemplify our technique for Coq using the code in

figures 2.2, 2.3, and 2.4. Assume that we integrated iCoq in the project at revi-

sion v1. At that revision, we compute the checksums of all .v files, run coqdep

on them, and build the graph shown in Figure 2.5(a); no checksums existed in

revisions prior to v1 and therefore the current values are considered different

by definition. Since all file checksums are different, we quick-compile all files

into .vio files and compute all the checksums for all definitions and lemma

statement terms. Then, we note the proof tasks in each file and compute check-

sums for the associated proof scripts. Again, all checksums are different by

definition, so we check the proofs of all lemmas (alt_alternate, alt_exists,

alternate_alt, and alternate_correct). From the corresponding proof

terms, and the terms for alternate and alt, we construct the graph in Fig-

ure 2.5(b) and add checksums for all nodes. The graphs and checksums are

20

Fixpoint alternate (l1 l2 : list nat) : list nat :=
match l1, l2 with
| [], _ ⇒ l2 | _, [] ⇒ l1
| h1 :: t1, h2 :: t2 ⇒ h1 :: h2 :: alternate t1 t2
end.

Figure 2.8: Modified Coq function definition in Alternate.v.

then stored for future use.

Suppose that the developer of the example Coq project rewrites the

definition of the function alternate to the one in Figure 2.8; this change

leads to a new revision v2 of the project. At the file level, the checksum of

Alternate.v becomes different from before. However, coqdep reveals that the

file dependency graph is still the same as in Figure 2.5(a). Since the other .v

files depend on Alternate.v, we compile all .v files into .vio files in some

order allowed by the graph. After then computing checksums of terms (using

Alternate.vio) and proof scripts (using Alternate.v), we conclude that

only (the body of) alternate has been modified. Using this information and

the graph in Figure 2.5(b), we determine that the proofs of alt_alternate,

alternate_alt, and alternate_correct are impacted and must be checked.

Consequently, we run the commands to check these proofs (while alt_exists

is not checked, because it was not impacted).

After each proof checking task has completed, we note that no depen-

dencies in the proofs have changed. Finally, we extract and analyze dependen-

cies from the only modified non-proof term (alternate), confirming that the

graph in Figure 2.5(b) is up-to-date after the new checksum for alternate

21

has been added.

2.3.2 iCoq Components and Workflow

Our current implementation of the technique is written in OCaml, Java,

and Bash. We developed a number of separate Coq tools and plugins. Since

Coq developments are not upwards or downwards compatible in general, we

target Coq version 8.5 to support the largest range of project revision histories

susceptible to asynchronous proof checking; we expect no fundamental issues

with supporting future Coq versions. Our tools and plugins can also be used

(and be useful) outside the context of iCoq, as demonstrated in later chapters

of this dissertation.

coq-depends plugin: To extract dependencies from compiled Coq files (.vo

and .vio), we adapted and extended previous work on the coq-dpdgraph Coq

plugin [40], which builds dependency graphs for given identifiers or modules

(files). In essence, the derived plugin, called coq-depends, traverses a Coq

term abstract syntax tree (AST), and records the globally unique (“kernel”)

name of all referenced identifiers it encounters, such as those of inductive types,

lemmas, and functions. By performing the dependency extraction at the level

of ASTs in the Coq backend, our tool is isolated from complexities at the

Gallina level, such as custom notations and implicit arguments. In contrast

to coq-dpdgraph, coq-depends does not perform recursive dependency ex-

traction, and supports .vio files, which do not contain the proofs of opaque

identifiers that coq-dpdgraph expects to be present. The plugin makes no

22

distinction between depending on an identifier of a lemma or function that is

inside the scope of a project or outside it. In particular, if there is a depen-

dency on a lemma in the Coq standard library, which is normally assumed to

be stable across revisions, it must be filtered out from the plugin output to

be excluded from analysis. For example, from the proof term for the lemma

alt_alternate described in Section 2.2, coq-depends extracts the set of

kernel names {Alternate.alt, Alternate.alternate, Coq.Init.Datatypes.list,

Coq.Init.Datatypes.list_ind, . . . }. Here, to filter out unnecessary dependen-

cies, it suffices to exclude names with the prefix “Coq.”.

coq-ast plugin: To compare Coq identifiers across project revisions, we de-

veloped a plugin for computing short summaries (digests) of Coq term ASTs

that capture the structure of the trees. We use a technique for computing

summaries based on cryptographic hashes that was shown to be effective at

programming language syntax fingerprinting by Chilowicz et al. [34]. More

specifically, letting C be a hashing function, · the string concatenation opera-

tion, t a term AST with root node r and child trees t1, . . . , tn, and V a function

from AST nodes to strings, Chilowicz et al. define a hash function HC such

that HC(t) = C(V (r) ·HC(t1) · . . . ·HC(tn)). Note that this function, which we

implemented in OCaml with C = MD5, is asymptotically linear in the number

of nodes in the tree.

The function V is defined in an obvious way based on the syntax in

Figure 2.6; as an example, Figure 2.9 shows a fragment of the AST of the proof

of alt_alternate in Alternate.v where V has been applied to each node.

23

Const

Lambda

Name l1 App App

Ind list Ind nat Const list_ind
. . .

Figure 2.9: AST with string values of nodes for example Coq term.

To keep ASTs as shallow as possible, we do not unfold bodies of referenced

inductive types or constants, and simply use their (unique) kernel names.

coqdigest tool: Since we cannot compute digests of ASTs of opaque iden-

tifiers without actually performing all the proof-checking work (that we are

trying to skip), we use digests of the actual proof scripts (“tactic soups”) in the

.v files. From the standard coqdoc tool which translates .v files into docu-

mentation, we derived a tool dubbed coqdigest that extracts the proof scripts

of opaque lemmas while ignoring sequences of characters that do not affect se-

mantics, and returns the MD5 hash of the results. The tool also notes whether

a lemma is admitted, i.e., whether an identifier with an unfinished proof is as-

sumed as complete for the rest of the development; this is a common device

used in early phases of verification projects.

For example, when parsing AlternateLem.v from Figure 2.4, coqdigest

determines that there are two proof tasks in the file, one for the lemma

alternate_alt and one for the lemma alternate_correct. For the latter

specifically, coqdigest computes the MD5 hash of the proof script

intros; split; [apply alternate_alt | apply alt_alternate].

24

coqc dependency extraction extension: A proof term for a proof task in

a .vio file is only available when the proof task completes. Yet, to properly

update the identifier dependency graph for the next revision, all dependencies

must be extracted from such terms. Consequently, we extended the coqc tool

with an additional command that, when given a .vio file, its associated .v

file, and a proof task, checks the task and then outputs all the dependencies

in the proof term using the technique from coq-depends. Due to how the

proof checking interface works in Coq 8.5, accessing the proof term is only

possible when the proof is complete, i.e., has not been admitted. For this

reason, iCoq ignores checking proofs of admitted lemmas, although changes

in their statement (type) can lead to checking of other proofs that depend on

them. Since our coqc extension only uses the existing proof checking facilities,

it does not affect the soundness of Coq.

Dependency graph builder and analyzer: We implemented our own de-

pendency graph builder and dependency analysis in Java. The resulting pro-

gram reads files (mostly in JSON format) output by the Coq tools and plugins,

as well as JSON representations of dependency graphs from previous revisions,

and finally writes the updated dependency graphs to disk.

Toolchain workflow: If all proofs in a .v file need to be checked, compil-

ing a .vo file is usually significantly faster than first producing a .vio file

and then executing all proof tasks. Consequently, we compile all .v files in

the initial revision of a project into .vo files, and via those, extract depen-

dencies directly from both proofs and definitions. For subsequent revisions,

25

file dep
graph

new
revision

identifier
dep
graph

impacted
.v files

.v file
checksums

impacted
proofs

.vio files

identifier
checksums

checking
com-
mands

identifier
deps

new
identifier
dep graph

Figure 2.10: Toolchain workflow.

the toolchain workflow (illustrated in Figure 2.10) follows the general steps

of the technique outlined in Section 2.3.1. First, the Java program reads the

JSON representations of the file-level and identifier-level dependency graphs

from the last revision. Then, it computes checksums of all .v files in the

revision, runs coqdep on changed files, parses the output, and updates the

file-level dependency graph. Using the graph, the program calls coqc to quick-

compile all impacted files into .vio files. Then, it runs coqdigest on all new

and changed .v files, and coq-ast on their .vio counterparts, obtaining (via

parsing of JSON files) checksums for all identifiers and a list of proof tasks.

This is sufficient to enable marking all impacted identifiers in the dependency

graph. From the updated graph, the program obtains and runs all proof tasks

associated with impacted identifiers using the extended coqc command, and

then parses and incorporates the JSON output into the fine-grained depen-

dency graph. Finally, it uses coq-depends to obtain the dependencies of all

impacted non-proof identifiers, writes the up-to-date graph to disk along with

the coarse-grained file-level graph.

26

2.4 Evaluation

To assess the usability of iCoq on large verification projects, we answer

the following research questions:

RQ1: How effective is iCoq (compared to the state-of-the-art techniques),

i.e., what is the reduction in the number of checked proofs?

RQ2: How effective is iCoq in terms of the proof checking time in a continuous

integration environment?

RQ3: How effective is iCoq in terms of the proof checking time outside a

continuous integration environment (i.e., for verification on a user’s machine)?

We ran all experiments on a 4-core Intel Core i7-6700 CPU @ 3.40GHz

with 16GB of RAM, running Ubuntu 14.04 LTS.

2.4.1 Verification Projects Under Study

Table 2.1 shows the list of projects used in our study; all projects are

publicly available, all but one on GitHub [68]. We selected projects based on

(a) public availability of their revision history during principal development,

(b) compatibility of their revision history with Coq 8.5, (c) their size and pop-

ularity, and (d) our familiarity with their codebases; the latter was necessary

for a successful experimental setup. For each project, we list the name, ref-

erence the repository location, and show the last revision/SHA we used for

our experiments, the number of lines of Coq code (LOC) for the last revision

(as reported by cloc [38]), and the number of revisions for the experiments.

27

Table 2.1: Verification Projects Used in the Evaluation.

Project URL SHA LOC #Revs

CTLTCTL [46] ac57a84f 601 10
InfSeqExt [86] 5a52a76f 1756 10
StructTact [131] 8f1bc10a 2496 10
WeakUpTo [145] e570e6dc 1819 10
Flocq [60] 4161c990 24786 24
UniMath [139] 5e525f08 43049 24
Verdi [141] 15be6f61 53939 24∑

N/A N/A 128446 112
Avg. N/A N/A 18349.42 16

Based on projects’ characteristics, we say that the first four projects are micro-

benchmarks , and the other three projects are large-scale proof developments.

Verdi and Verdi Raft: Verdi is a framework for verification of implemen-

tations of distributed systems [150]. While the framework is not currently

tied to any one particular verification project, it was initially bundled with a

verified implementation of the Raft distributed consensus protocol [151]. We

consider revisions from Mar to Jun 2016, before Verdi and the Raft imple-

mentation were separated. Each revision comprises over 50k LOC, making

Verdi one of the largest publicly available software verification projects. Many

Verdi proofs use extensive custom tactic-based automation; the resultant long

proof-checking time was one of the initial motivations for developing iCoq.

UniMath: UniMath is a comprehensive library of formalized mathematics

based on the univalent interpretation, suggested by Voevodsky, of the types

in Coq as so-called homotopy types rather than mathematical sets [142]. The

28

revisions of UniMath under study are from Jan to Mar 2016, and each consist

of more than 43k LOC.

Flocq: Flocq is a Coq library that formalizes floating-point arithmetic in

several representations [21], e.g., as described in the IEEE-754 standard. Flocq

is used in the CompCert verified C compiler to reason about programs which

use floating-point operations [20]. We considered revisions of Flocq from Jan

to Mar 2016, each consisting of more than 22k library LOC.

2.4.2 Variables

In the following subsections, we document the independent and depen-

dent variables used in our study.

Independent variables: We manipulate two independent variables: proof

checking techniques and the development environment. Regarding the proof

checking techniques, we use (a) Coq’s timestamp-based toolchain that we

described in Section 2.2 (we refer to this technique as coq_makefile), and

(b) iCoq that implements regression proof selection. Our development envi-

ronments include CI-Env and LO-Env. CI-Env describes an environment that

uses a Continuous Integration Service (CIS) to check proofs. Note that a CIS

checks proofs in a clean environment for each revision. LO-Env describes an

environment where developers use their local machines to check proofs. Note

that file timestamps are preserved in the latter case, but not in the former.

Dependent variables: Our dependent variables measure the effectiveness of

proof selection techniques at reducing the amount of effort required to reproof

29

modified programs. To do this we compute the proof selection percentage and

measure the proof checking time. The proof selection percentage is derived

from the ratio of selected proofs to the total number of available proofs exe-

cuted by coq_makefile in the CI-Env environment. We use P sel to denote

this variable. Proof checking time is measured as the end-to-end time that

includes all phases (described in detail in Section 2.3) of iCoq.

2.4.3 Experiment Procedure

Figure 2.11 illustrates our experiment procedure that collects the data

necessary to answer our research questions. As input, the procedure accepts

one of the projects under study (Table 2.1), a number of revisions to be used in

the experiment, and a development environment (either CI-Env or LO-Env).

In the initial step (line 2), the procedure clones the project repository from the

URL in Table 2.1. Next, the procedure iterates over the latest κ revisions, from

the oldest to the newest revision. In each iteration of the loop, the procedure

(a) obtains a copy of the project for the current revision (line 4), (b) configures

the project (as the preparation for the proof checking), and (c) selects proofs

that are affected by changes and checks those proofs. Finally, if the procedure

is simulating the CI-Env, the timestamps of all files have to be updated.

It is important to observe that we need to save dependency files for

iCoq between two revisions. Recently, many CISs have started supporting

caching [130,143], which we can utilize to store the dependencies. Considering

that caching is fast and iCoq’s dependency files are small, we do not associate

30

Require: p a project under study
Require: κ the number of revisions
Require: ε a development environment
1: procedure ExperimentProcedure(p, κ, ε)
2: Clone(p.url)
3: for all ρ ∈ LatestRevisions(κ, p) do
4: Checkout(ρ)
5: Configure(p)
6: SelectExecuteAndCollect(p)
7: if ε = CI-Env then
8: TouchFiles(p)
9: end if
10: end for
11: end procedure

Figure 2.11: Experiment procedure.

any overhead with keeping dependencies in the CI environment.

One of the key steps in the experiment procedure is to select and check

proofs (line 6). During this step, our procedure stores the execution logs, which

include the list of selected proofs and the proof checking time. We analyze

these logs in the following subsection to answer our research questions.

2.4.4 Results

We obtained all necessary data by invoking the procedure in Figure 2.11

twenty-eight times: one invocation for each project in Table 2.1, two proof

checking techniques (coq_makefile and iCoq), and two environments (CI-

Env and LO-Env). In total, we selected and checked proofs on 112 revisions.

RQ1: Figure 2.12 shows the proof selection percentage for two (out of four)

micro-benchmarks. We can observe substantial reduction in the number of

executed proofs at many revisions. Overall, across all revisions, we find that

31

0

25

50

75

100

1 2 3 4 5 6 7 8 9 10
Revision

%
 o

f
p
ro

o
fs

(a) InfSeqExt

0

25

50

75

100

1 2 3 4 5 6 7 8 9 10
Revision

%
 o

f
p
ro

o
fs

(b) StructTact

Figure 2.12: Proof selection percentages for two micro-benchmarks.

iCoq executes 226 (on average 22.60) and 398 (on average 39.80) proofs for

InfSeqExt and StructTact, respectively. On the other hand, we find that the

coq_makefile technique executes 1,240 (on average 124.00) and 1,635 (on

average 163.50) proofs for InfSeqExt and StructTact, respectively. In other

words, iCoq reduces the number of checked proofs by 81.78% and 75.66% for

InfSeqExt and StructTact, respectively.

Although we obtained proof selection percentages for the other two

micro-benchmarks (WeakUpTo and CTLTCTL), we do not show these num-

bers because the developers of the projects have not changed any code in the

last 10 revisions. As expected, iCoq has not selected any proofs for execution.

Note that open-source projects have frequent non-code changes that have no

impact on tests/proofs [69]; these changes can include changes in documenta-

tion and metadata files.

Finally, we show the results for the three largest projects used in our

study. We format the results slightly differently for several reasons, including

32

Table 2.2: Total and Average Number of Selected Proofs for Large Verification
Projects.

Project Proofs
iCoq Total P sel

Flocq
∑

2164 22482 N/A
Avg. 90.16 936.75 9.62

UniMath
∑

853 17754 N/A
Avg. 35.54 739.75 4.85

Verdi
∑

4458 65413 N/A
Avg. 185.75 2725.54 6.80

Revision iCoq Total P sel

Verdi
(details)

40d0e96f 2748 2748 100.00
6b8a7d06 0 2748 0.00
56b15cb5 0 2748 0.00
9403f6f5 2 2750 0.07
112b39b0 0 2750 0.00
57cf9bb1 0 2750 0.00
bbf66a54 0 2750 0.00
46b6be65 0 2750 0.00
27537ec2 0 2750 0.00
0f2b8090 0 2750 0.00
0201fc23 0 2750 0.00
cad0e753 0 2750 0.00
2cb92f55 2 2750 0.07
21f660c1 3 2697 0.11
c28a126c 0 2697 0.00
57479554 3 2697 0.11
ade568dc 0 2697 0.00
997ad0a6 0 2697 0.00
cee72d1e 3 2697 0.11
8ee9b856 0 2697 0.00
d4406a1b 0 2697 0.00
687a4eaf 1693 2697 62.77
06a76847 0 2697 0.00
15be6f61 4 2699 0.14

a large number of revisions and a low proof selection percentage that is not

appropriate to be visualized with a bar chart. Table 2.2, and Table 2.3 show

the results; the tables contain two parts, and we discuss each part in turn.

The top part of the tables show result summaries for each project; the

sum and the average values are computed across 24 revisions. In Table 2.2,

33

the third column shows the number of proofs selected by iCoq and the fourth

column shows the total number of proofs at each revision; the fifth column

shows the proof selection percentage. For example, for Verdi, we find that

iCoq executes a total of 4,458 proofs, while the existing technique executes

65,413 proofs across the same set of revisions. In other words, across all re-

visions, the proof selection percentage for iCoq is 7%. Note that the proof

selection percentage is the same regardless of the execution environment.

The bottom part of the table shows detailed results for Verdi. We show

the values for each revision; the revision SHA is shown in Column 2.

RQ2: We used the three large verification projects not only to obtain a

proof selection percentage but also to obtain the proof checking time. First,

we consider the CI-Env development environment. Recall that in CI-Env,

coq_makefile will always execute all proofs and thus be costly. On the other

hand, iCoq saves time by only running a subset of all proofs. Table 2.3 shows

the proof checking time. Columns 3 and 4 show the proof checking time for CI-

Env when using coq_makefile and iCoq, respectively. Table 2.4 shows the

summaries. In summary, iCoq reduces the proof checking time 2.92×, 3.44×,

and 9.62× for Flocq, UniMath, and Verdi, respectively. Note that CI-Env is

of the highest importance due to the proliferation of CISs.

Although we also measured proof checking time for micro-benchmarks,

we find that the time savings are insignificant in those cases due to very fast

proof checking. Similar to regression test selection tools, which inspired our

work, we believe that iCoq will be most beneficial to large verification projects

34

Table 2.3: Total and Average Proof Checking Time for Large Verification
Projects using coq_makefile (Coq) and iCoq .

Project CI-Env Time [s] LO-Env Time [s]
Coq iCoq c/i Coq iCoq c/i

Flocq
∑

888.36 303.71 N/A 297.97 261.62 N/A
Avg. 37.01 12.65 N/A 12.41 10.90 N/A

UniMath
∑

12882.46 3742.88 N/A 3783.52 1692.33 N/A
Avg. 536.76 155.95 N/A 157.64 70.51 N/A

Verdi
∑

32528.57 3379.37 N/A 8157.45 3130.96 N/A
Avg. 1355.35 140.80 N/A 339.89 130.45 N/A

Revision Coq iCoq c/i Coq iCoq c/i

Verdi
(details)

40d0e96f 1350.26 1375.29 0.98 1355.75 1375.88 0.98
6b8a7d06 1351.02 63.38 21.31 1.07 5.58 0.19
56b15cb5 1353.14 3.47 389.84 0.19 4.00 0.04
9403f6f5 1351.62 148.83 9.08 1347.49 146.63 9.18
112b39b0 1353.29 3.78 357.44 0.17 4.26 0.04
57cf9bb1 1352.39 3.72 363.15 0.18 4.47 0.04
bbf66a54 1349.02 3.71 363.03 0.18 4.43 0.04
46b6be65 1352.35 3.88 348.36 0.18 4.83 0.03
27537ec2 1352.00 3.68 366.99 0.19 4.08 0.04
0f2b8090 1353.03 3.59 376.88 0.17 4.24 0.04
0201fc23 1353.01 3.62 373.65 0.20 4.43 0.04
cad0e753 1353.31 3.82 353.43 0.19 4.40 0.04
2cb92f55 1350.86 147.53 9.15 1346.42 147.20 9.14
21f660c1 1349.63 64.93 20.78 1351.98 10.11 133.60
c28a126c 1350.41 3.80 355.09 0.19 6.15 0.03
57479554 1351.44 64.94 20.81 6.19 8.53 0.72
ade568dc 1345.22 3.61 372.22 0.20 4.10 0.05
997ad0a6 1351.46 3.38 399.72 0.21 4.48 0.04
cee72d1e 1346.28 65.00 20.71 6.14 8.57 0.71
8ee9b856 1352.78 3.64 371.54 0.17 4.10 0.04
d4406a1b 1349.74 3.55 379.46 0.20 4.11 0.05
687a4eaf 1359.52 1178.12 1.15 1310.31 1169.79 1.12
06a76847 1383.72 3.51 393.32 0.19 4.06 0.04
15be6f61 1413.07 216.59 6.52 1429.29 192.53 7.42

with many dependencies and elaborate proofs.

RQ3: We were curious what savings could be obtained with iCoq in the LO-

Env development environment. As when obtaining our answer to the previous

question, we measured the proof checking time for large verification projects.

Columns 6 and 7 in Table 2.3 show time for coq_makefile and iCoq, respec-

35

Table 2.4: Ratio of Total Times from Table 2.3.

Project CI-Env LO-Env

Flocq 2.92 1.13

UniMath 3.44 2.23

Verdi 9.62 2.60

tively. We can see that coq_makefile can save some proof checking time in

LO-Env, i.e., whenever changes do not affect code. However, even if a change

has minimal effect on code (e.g., in revision 9403f6f5 for Verdi), coq_makefile

runs (almost) all proofs. We find (Table 2.4) that iCoq reduces the proof

checking time 1.13×, 2×, and 3× on average, for Flocq, UniMath, and Verdi,

respectively.

We believe the greater reduction in proof checking time for Verdi is

primarily due to its many long-running proofs and opaque constants (that end

in Qed.). In contrast, UniMath contains many non-opaque constants whose

processing cannot be deferred during quick compilation, and nearly all proofs

in Flocq have a relatively short running time.

2.5 Discussion

Safety: In a regression testing context, a test selection technique is safe when,

for every possible change to a project, the technique never omits to run a test

affected by the change [127]. Analogously, a proof selection technique is safe

whenever no necessary proof checking task is ever omitted. iCoq currently

36

gives no formal guarantee of safety in this sense; a proof of safety would have to

reason about Coq’s toolchain, which is certainly possible at an abstract level,

but difficult to do at the level of code. Nevertheless, verifying safety for a proof

selection algorithm for Coq and Gallina is arguably more straightforward than

doing so for a test selection algorithm for an object-oriented language with

elaborate semantics (e.g., Java), which may include complicated features such

as dynamic class loading.

Tactic language dependencies: iCoq currently does not perform parsing

and dependency analysis of custom tactics defined in the Ltac language that

occur in source files. This means that an isolated change in the definition of

a tactic never results in lemmas whose (unedited) proof scripts contain calls

to that tactic being marked as “changed”, even though the semantics of such

a proof script may have changed. Analysis of Ltac definitions is a planned

future extension of iCoq. Similar concerns as for Ltac hold for custom Coq

language extensions written in OCaml that are used in some projects.

Universe constraints: Sozeau and Tabareau recently introduced support

for generic Coq definitions that can be used across universes of types [129].

However, Coq’s toolchain for asynchronous proof processing ignores universe

constraints, since such constraints must be checked for consistency at the global

level [133]. Consequently, Coq projects that make heavy use of universe poly-

morphism are not good targets for iCoq.

Parameterized modules: A Coq module encapsulates a collection of defini-

tions and lemmas in a namespace. A parameterized module, or functor, takes

37

modules with a certain signature as input, and can contain lemmas involving

types in its parameters. Consequently, the file that contains the functor has

corresponding proof tasks for those lemmas. However, no identifiers are ex-

posed at the global level until the functor is fully instantiated with argument

modules, eluding coq-ast. This problem can be solved, e.g., by conservatively

compiling the file to a .vo file, checking all proofs. However, functors appear

to be used rarely outside of the standard library; of the projects under study

only Verdi uses them, and in a minimalistic way. Hence, we omitted support

for functors in the initial version of iCoq.

Overhead: iCoq introduces several sources of overhead compared to LCF-

style top-down processing of .v files into .vo files. One source is quick compi-

lation and task-based proof checking itself, which is performed in independent

phases and requires book-keeping for lemmas and proofs. Additionally, iCoq

requires computing a fine-grained dependency graph and checksums to dis-

cover the impact of changes to a development. Consequently, iCoq may not

be suitable to use in small-scale Coq projects, since the overhead can make

regression proof selection as a whole take longer to complete than straightfor-

ward compilation to .vo files; similar conclusions were drawn for regression

test selection [69].

2.6 Threats to Validity

External: Our results may not generalize to all Coq projects. To mitigate this

threat, we used several micro-benchmarks and three large projects. The large

38

projects use different feature sets of Coq and target verification of disparate ap-

plication domains. We used 24 revisions per project (for large projects), from

segments in the revision histories with active development that were straight-

forward to compile with Coq version 8.5, the first version with asynchronous

proof-checking support and the stable version available when we started devel-

opment of iCoq. Our findings could differ for longer sequences of revisions and

different segments in software histories. The number of revisions was deter-

mined by the setup cost and common practices in recent studies of regression

testing techniques [69].

Internal: Our implementation of iCoq, as well as our evaluation infrastruc-

ture, may contain bugs. To mitigate this threat, we did extensive testing of

our code and code reviews. In particular, we tested iCoq on a benchmark set

of pairs of revisions of small Coq developments representing typical changes

to proofs and definitions.

Construct: We implemented proof selection only for a single proof assistant

(Coq). Although our technique should be applicable to other proof assistants

(e.g., Isabelle/HOL), further work is needed to confirm the applicability.

2.7 Summary

We presented a technique for regression proof selection in large-scale

verification projects, and its implementation for the Coq proof assistant in the

tool iCoq. In particular, iCoq is suitable for use in continuous integration

systems to quickly find failing proofs in rapidly evolving projects. By tracking

39

fine-grained dependencies, iCoq avoids checking unaffected proofs as changes

are made to files. Our evaluation shows that using iCoq is up to 10× faster

than checking all proofs from scratch (which is typical in a CI setting). iCoq

can also be used from the command line, as an alternative to the default

Makefile-based toolchain; our evaluation shows that iCoq is up to 3× faster

in this case. While our implementation is Coq-specific, our technique works

in any setting where it is possible to separate the processing of source files

with proofs scripts into a fast pre-processing phase and a mostly independent,

potentially time-consuming proof-checking phase.

40

Chapter 3

piCoq: Parallel Regression Proving
for Large-Scale Verification Projects1

Large-scale verification projects using proof assistants typically con-

tain many proofs that must be checked at each new project revision. While

proof checking can sometimes be parallelized at the coarse-grained file level

to save time, recent changes in some proof assistant in the LCF family, such

as Coq, enable fine-grained parallelism at the level of proofs. However, these

parallel techniques are not currently integrated with regression proof selection

(Chapter 2), a technique that checks only the subset of proofs affected by a

change. In this chapter, we present techniques that blend the power of paral-

lel proof checking and selection to speed up regression proving in verification

projects, suitable for use both on users’ own machines and in workflows in-

volving continuous integration services. We implemented the techniques in a

tool, piCoq, which supports Coq projects. piCoq can track dependencies

between files, definitions, and lemmas and perform parallel checking of only

those files or proofs affected by changes between two project revisions. We ap-

1Parts of this chapter are published at ISSTA 2018 [120]. My contributions span all
aspects of this work: defining the project, designing a solution, implementing a tool, per-
forming evaluation, and documenting findings.

41

plied piCoq to perform regression proving over many revisions of several large

open source projects and measured the proof checking time. While gains from

using proof-level parallelism and file selection can be considerable, our results

indicate that proof-level parallelism and proof selection is consistently much

faster than both sequential checking from scratch and sequential checking with

proof selection. In particular, 4-way parallelization is up to 28.6 times faster

than the former, and up to 2.8 times faster than the latter.

3.1 Overview

Many large-scale verification projects rely on proof assistants to con-

struct and check formal proofs [67]. Representative projects target critical soft-

ware domains, e.g., compilers [103], operating systems [95], file systems [31],

and distributed systems [105,151], or formalize mathematical theories [22,74].

Results certified by proof assistants are highly trustworthy, but estab-

lishing properties demands significant time investment by sophisticated users

to guide the proof effort. When such projects are modified, previously proven

properties must be reestablished, since even small changes can break a critical

step in a proof—this process of regression proving may take anywhere from

seconds to tens of minutes [28], and in extreme cases, several days [82].

Analogously to when building and testing software engineering projects,

productivity suffers in verification projects when regression proving takes an

inordinate amount of time. One important technique for speeding up software

builds and tests on commodity multi-core hardware is parallelization [12, 27,

42

97]. Due to recent changes in popular proof assistants in the LCF family, such

as Coq [9] and Isabelle/HOL [147], parallelization of proof checking is now

possible not only at the coarse-grained level of files (via build systems such

as make) but also at the fine-grained level of individual proofs. As we have

argued in the previous chapter, a formal proof of some program property can

be viewed as representing many (possibly an infinite number of) tests. Based

on this analogy, coarse-grained parallel proof checking intuitively corresponds

to test suite parallelization at the test class level in Java-like languages, while

fine-grained parallel proof checking corresponds to parallelization at the test

method level.

Coarse-grained parallel proof checking is used in many Coq verification

projects, e.g., when building such projects via the OCaml Package Manager

(OPAM) [50,116]. One important reason for widespread use of coarse-grained

parallelism is that proof checking using proof assistants in the LCF family is

deterministic and occurs in a predictable runtime environment. Additionally,

when surveying 260 publicly available Coq projects on GitHub, each with

more than 10k lines of code (LOC), we found that ∼20% of these projects can

also leverage fine-grained parallel proof checking, two years after support was

added to Coq.

Regression proof selection (Chapter 2), a technique that avoids checking

proofs unaffected by changes as a project evolves, is orthogonal to parallel

proof checking. Unfortunately, at present, regression proof selection is not

integrated with parallel proof checking. This means that large-scale projects

43

must generally perform regression proving from scratch, in particular when

using (as they often do) continuous integration services (CISs) such as Travis

CI [137]. Even with parallelism using many cores, the resulting long proof

checking time can be a burden to users.

In this chapter, we describe techniques that blend proof checking paral-

lelization and selection to speed up regression proving in large-scale verification

projects. As we demonstrate in our evaluation, these novel techniques are su-

perior to legacy (state-of-the-art) techniques even on users’ own machines, but

are particularly effective when used in CISs. We believe that our techniques

can alleviate the cost to productivity and trust in evolving large-scale verifi-

cation projects caused by long proof checking times [4], and release untapped

potential in multi-core hardware for regression proving.

This chapter describes the following contributions:

? Techniques: We propose novel techniques that integrate parallel proof

checking and selection to speed up regression proving in evolving verification

projects using proof assistants. Along one axis, we consider coarse-grained

and fine-grained proof checking parallelism. Along the other axis, we con-

sider selection at both the file and proof levels, i.e., we check only those

files or proofs that are affected by changes. The result is a taxonomy of

regression proving techniques that also includes legacy techniques.

? Tool: We implemented our techniques in a tool, dubbed piCoq, which

supports Coq projects. piCoq relies on a collection of extensions to the Coq

44

proof checking toolchain, several of which originate in the iCoq tool [29].

We provide a version of piCoq on the following URL: http://cozy.ece.u

texas.edu/icoq.

? Evaluation: We performed an empirical study to measure the effective-

ness of our regression proving techniques using piCoq. We used many

revisions of several large-scale open source Coq projects, and measured the

proof checking times for our techniques and legacy techniques. Our results

show that speedups can be substantial from adopting proof-level parallelism

and file selection, but that improvements vary significantly across projects,

and may even be absent. However, combined proof-level parallelism and

proof selection is consistently much faster than both sequential checking

from scratch (legacy) and sequential checking with proof selection (iCoq).

Specifically, in a CIS environment, we obtain a speedup of up to 28.6× with

4-way fine-grained parallelism and proof selection compared to the former,

while the speedup compared to the latter is up to 2.8×.

3.2 Coq Background

The Coq proof assistant consists of, on the one hand, an implementa-

tion of a small and powerful purely functional programming language, and on

the other hand, a system for specifying properties about programs and proving

them. Coq is based on a type theory called the Calculus of Inductive Con-

structions [123], where both programs and propositions about programs are

types inhabited by terms. In effect, this property puts program development

45

http://cozy.ece.utexas.edu/icoq
http://cozy.ece.utexas.edu/icoq

and proving on the same footing for Coq users.

In a typical workflow for a Coq-based project, users interactively con-

struct tentative proof terms for propositions using operations called tactics.

Propositions are only accepted as proven after Coq’s type checker has been run

successfully on a proof term. Absent inconsistent axioms and frontend issues,

the user need only trust that the comparatively small type checking kernel is

correctly implemented and compiled to trust that proven propositions really

hold. Figure 3.1 illustrates the interactive proof development process.

user logic engine type checker

Coq
tactics

subgoals

proof term

Figure 3.1: Coq interactive proof development overview.

3.2.1 Coq Proof Checking Toolchain

Definitions of functions and propositions processed by Coq are writ-

ten in the Gallina language, and reside in files ending in .v. The Coq batch

proof checking (compilation) tool, coqc, takes a .v file as input and, by de-

fault, produces a .vo file as output that contains full binary representations

of processed Gallina constructs, including proofs. Since files may depend on

other files, checking all proofs in a Coq project requires some form of depen-

dency analysis. The standard coq_makefile tool generates a Makefile which,

by default, calls the coqdep tool for this purpose [44]. coqdep builds a de-

pendency graph for all input .v files based on simple syntactic analysis of

46

Require commands in files (similar to import statements in Java), which in-

dicate direct dependency at the file level. When proof checking is performed

via the generated Makefile, the dependency graph is used to process .v files

with coqc in some allowed order. The Makefile also enables timestamp-based

incremental regression proving in a Coq project, as well as spawning of parallel

proof-checking processes. Note that such proof-checking parallelism is funda-

mentally restricted by the file dependency graph; for example, if this graph is

a path (has no branches) there will be no parallel checking at all.

3.2.2 Asynchronous Proof Checking in Coq

Coq version 8.5, the first stable release to include architectural changes

to support a document-oriented interaction model [9], introduced the option to

quick-compile .v files to the binary .vio format, a process which avoids check-

ing (and emitting representations of) proofs that are indicated as opaque by

ending with Qed. Figure 3.2 illustrates the new .vio proof checking workflow

made possible by Coq’s document-oriented model. Only the type (proposi-

tion) of an opaque lemma, i.e., not the body proof term, can be referenced in

other parts of a Coq development, whence type checking of all such terms can

normally be performed in complete isolation, and thus in parallel. Specifically,

.vio files contain proof-checking tasks, which can be performed individually by

issuing a coqc command referencing the task identifier. A Coq user can depend

on more rapidly produced .vio files in lieu of .vo files in most developments,

but must then assume that all proofs are correct.

47

Asynchronous proof checking has two important applications in large-

scale Coq projects. First, it enables regression proof selection, i.e., the possi-

bility of checking only affected proofs after each new project revision [28, 58].

Second, it enables fine-grained parallel proof checking that can make better

use of commodity multi-core hardware than file-level parallel checking [9,147].

Specifically, coqc includes the option -schedule-vio-checking, which takes

as arguments (i) an upper bound on the number of parallel processes, and (ii)

a list of .vio files whose proof tasks to check in parallel. However, note that

there is no way to specify subsets of proof tasks in files to check in parallel. In

contrast to purely Makefile-based task parallelism, which often fails to utilize

the requested number of parallel processes throughout proof checking due to

file dependency restrictions, the degree of parallelism for fine-grained check-

ing depends directly on how checking of individual proofs is scheduled on the

parallel operating system processes.

.v file coqc -quick

.vio file coqc -check-vio-tasks

proof scripts

proof tasks

Figure 3.2: Coq asynchronous proof checking workflow.

Coq uses a notion of sections to organize common assumptions made in

a collection of lemmas, say, that equality on a type A is decidable (A_eq_dec).

48

A lemma may reference one or more such assumptions, which then become

quantified variables that must be instantiated when the lemma is referenced

outside of the section. However, by default, Coq only determines the used

section variables of a lemma when the end of the section is reached. This

means that the final type (assertion) of the section lemma is not known when

considered in isolation, whence its proof cannot be immediately checked as an

asynchronous task. To get around this problem, Coq allows section lemmas to

be annotated with the assumptions they use (e.g., Proof using A_eq_dec).

The required annotations can be derived from metadata produced by Coq

during compilation of source files to .vo files [133], and then inserted back

into the source files. In the evaluation of our techniques (Section 3.6), we used

this approach to automatically add annotations to all revisions of the projects

under study.

3.2.3 iCoq and Regression Proof Selection

iCoq is a tool for (sequential) regression proof selection in Coq (Chap-

ter 2). iCoq tracks dependencies among both files and proofs in order to

check only those proofs affected by changes to a project, potentially saving

significant time in comparison to checking everything from scratch. iCoq pro-

cesses Coq projects in three phases (each similar to the corresponding phase in

regression test selection tools [69, 118, 127]): analysis, proof checking, and de-

pendency collection. In the analysis phase, iCoq detects files and proofs that

are affected by changes made since the last run of iCoq. In the proof checking

phase, iCoq uses Coq’s toolchain for asynchronous processing to check only

49

the proofs selected in the analysis phase (but not other proofs). Finally, in the

collection phase, iCoq obtains the new dependencies that will be used in the

next run of the analysis.

3.3 Running Example

We use the small Coq library of list functions and lemmas shown in

figures 3.3, 3.4, and 3.5 to illustrate our techniques; code is extracted from

the StructTact project [131]. The Coq standard library contains a function

remove that, when given a decision procedure for equality for a type A, re-

moves a single element from a list of that type. The file ListUtil.v contains

two lemmas about the remove function. Dedup.v defines a function dedup that

omits any duplicates from the argument list, and a lemma about this func-

tion. RemoveAll.v defines a function remove_all that removes all elements

identical to the given element from a list, and two lemmas about this function.

As indicated by the Require commands and by direct references in-

side proof scripts in Dedup.v and RemoveAll.v, the proofs of lemmas in these

files depend on lemmas in ListUtil.v. For example, the proof of the lemma

remove_all_in in RemoveAll.v depends on the lemma in_remove in the

ListUtil.v file. Figure 3.6 shows both the file-level and proof-level dependen-

cies of the project. File dependencies are illustrated by solid line arrows, and

dependencies among definitions, lemmas, and proofs by dashed arrows. As in-

dicated in the figure, the proofs of lemmas in both Dedup.v and RemoveAll.v

depend on the utility lemmas in ListUtil.v, but not all of the former depend

50

Require Import List. Import ListNotations.

Lemma remove_preserve : ∀ (A : Type) A_eq_dec (x y : A) xs,
x 6= y → In y xs → In y (remove A_eq_dec x xs).

Proof.
induction xs; simpl; intros.
- intuition.
- case A_eq_dec; intros.
* apply IHxs; subst; intuition.
* intuition; subst; left; auto.

Qed.

Lemma in_remove : ∀ (A : Type) A_eq_dec (x y : A) xs,
In y (remove A_eq_dec x xs) → In y xs.

Proof.
induction xs; simpl; intros; auto.
destruct A_eq_dec; simpl in *; intuition.
Qed.

Figure 3.3: ListUtil.v from an example Coq project.

on all of the latter. Nevertheless, the default Coq proof-checking toolchain

checks all proofs and writes .vo files whenever a change is made to some

utility lemma in ListUtil.v.

In contrast, the asynchronous proof-checking toolchain, complemented

by a tool such as iCoq, allows avoiding many instances of proof checking when

making changes to ListUtil.v. For example, suppose the maintainers of the

project change the definition of the lemma in_remove to the one in Figure 3.7

where variables x and y are swapped (highlighted). To ensure that all previ-

ously proven properties in the library hold, the proofs of remove_dedup and

remove_all_in both need to be checked in addition to in_remove. To per-

form these tasks, we first compile the .v files to .vio files (which elides check-

ing of all lemmas ending in Qed). Then, we issue individual proof-checking

51

Require Import List ListUtil. Import ListNotations.

Fixpoint dedup (A : Type) A_eq_dec (xs : list A) : list A :=
match xs with
| [] ⇒ []
| x :: xs ⇒
if in_dec A_eq_dec x xs then dedup A A_eq_dec xs
else x :: dedup A A_eq_dec xs

end.

Lemma remove_dedup : ∀ A A_eq_dec (x : A) xs,
remove A_eq_dec x (dedup A A_eq_dec xs) =
dedup A A_eq_dec (remove A_eq_dec x xs).

Proof.
induction xs; intros; auto; simpl.
repeat (try case in_dec; try case A_eq_dec; simpl; intuition);
auto using f_equal.

- exfalso. apply n0. apply remove_preserve; auto.
- exfalso. apply n. apply in_remove in i; intuition.
Qed.

Figure 3.4: Dedup.v from an example Coq project.

commands separately for the three lemmas, which reveals that their proofs

can be reestablished.

As another example, consider the proposed change (highlighted) to the

dedup function in Figure 3.8. Intuitively, the change only removes some code

duplication by using a let expression to encapsulate the recursive call, i.e., the

meaning of the function is preserved. Since this change only affects Dedup.v,

this is the only file that we need to recompile to a .vo file when relying on the

default toolchain (assuming a recent ListUtil.vo file is available). With the

asynchronous proof-checking toolchain, we need to recompile Dedup.v to a .vio

file, and then issue a proof checking command for the lemma remove_dedup.

52

Require Import List ListUtil. Import ListNotations.

Fixpoint remove_all A A_eq_dec (to_delete l : list A) : list A :=
match to_delete with
| [] ⇒ l
| d :: ds ⇒ remove_all A A_eq_dec ds (remove A_eq_dec d l)
end.

Lemma remove_all_in : ∀ A A_eq_dec ds l x,
In x (remove_all A A_eq_dec ds l) → In x l.

Proof.
induction ds; simpl; intros; intuition.
eauto using in_remove.
Qed.

Lemma remove_all_preserve : ∀ A A_eq_dec ds l x,
~ In x ds → In x l → In x (remove_all A A_eq_dec ds l).

Proof.
induction ds; simpl; intros; intuition auto using remove_preserve.
Qed.

Figure 3.5: RemoveAll.v from an example Coq project.

3.4 Techniques

This section describes our taxonomy of regression proving techniques,

which includes both legacy techniques and our proposed novel techniques. To

concretize the presentation, we describe the techniques as proof checking modes

for Coq, as defined in Table 3.1.

A fundamental choice when checking Coq proofs is whether to use de-

fault compilation or quick-compilation of source files. Opting for default com-

pilation means that all proof-checking must be performed top-down according

to the file-level dependency graph, which also restricts the (file-level) paral-

lelism according to this graph. With default compilation, a user can either

53

ListUtil.v

remove_preserve in_remove

Dedup.v

dedup remove_dedup

RemoveAll.v

remove_all_preserve

remove_all_in
remove_all

Figure 3.6: Dependencies for the example Coq project shown in figures 3.3,
3.4, and 3.5.

Lemma in_remove : ∀ (A : Type) A_eq_dec (x y : A) xs,
In x (remove A_eq_dec y xs) → In x xs.

Proof.
induction ys; simpl; intros; auto.
destruct A_eq_dec; simpl in *; intuition.
Qed.

Figure 3.7: Revised version of lemma in_remove in the file ListUtil.v in
Figure 3.3, with changed line highlighted.

perform no selection (f·none), i.e., check the whole project from scratch, or

coarse-grained file-level selection (f·file), where only proofs in files affected by

actual changes are checked. With quick-compilation, the previous two forms of

selection (p·none and p·file) are complemented by fine-grained proof-level se-

lection, where only individual proofs affected by changes are checked (p·icoq).

We consider two execution environments for each proof checking mode:

CI-Env and LO-Env. CI-Env describes an environment that uses a Continuous

54

Fixpoint dedup (A : Type) A_eq_dec (xs : list A) : list A :=
match xs with
| [] ⇒ []
| x :: xs ⇒
let tail := dedup A A_eq_dec xs in
if in_dec A_eq_dec x xs then tail else x :: tail

end.

Figure 3.8: Revised version of function dedup in the file Dedup.v in Figure 3.4,
with changed lines highlighted.

Table 3.1: Modes for Regression Proving in Coq.

Parallelization Selection

Granularity None Files Proofs

File level f·none f·file N/A
Proof level p·none p·file p·icoq

Integration Service (CIS) [85], e.g., Travis CI, to check proofs. Note that a CIS

checks proofs in a clean environment for each revision. LO-Env describes an

environment where developers use their local machines to check proofs. Note

that file timestamps and generated files, not present in version control, are

preserved in LO-Env, but not in CI-Env.

We next describe the details of each mode and discuss variants of each

mode for CI-Env and LO-Env.

f·none: This legacy mode embodies the approach used in the default Coq

proof-checking toolchain with coq_makefile. Since all files are fully checked

for every revision, there is no difference between running this mode in LO-

Env and CI-Env. Many large-scale projects on GitHub use this mode in their

55

Table 3.2: f·none Mode for Coq Project Shown in Figures 3.3, 3.4, and 3.5;
Same-Phase Tasks Can Run in Parallel.

Phase Task Definitions and Lemmas

1 ListUtil.vo remove_preserve, in_remove

2 Dedup.vo dedup, remove_dedup
2 RemoveAll.vo remove_all, remove_all_in, remove_all_preserve

Travis CI jobs, e.g., Verdi [151]; we therefore used it as the CIS baseline when

investigating the speedup from sequential proof selection using iCoq [28].

On one hand, this mode has no overhead from proof checking task

management and tracking dependencies across revisions. On the other hand,

parallelism is restricted by the file dependency graph, and there is overhead

from writing (possibly large) .vo files to disk. Table 3.2 illustrates how parallel

checking can be performed using the f·none mode for the example project

shown in figures 3.3, 3.4, and 3.5.

p·none: This legacy mode embodies the approach used in the asynchronous

proof-checking toolchain introduced by Barras et al. [9]. As in f·none, which is

the closest comparable alternative, there is no difference between running the

mode in LO-Env and CI-Env. Although coq_makefile generates tasks to use

this mode, we found that ∼20% of 260 projects on GitHub that we analyzed

(with more than 10k LOC each) can use p·none properly without modification.

The reason for this percentage not being higher is the requirement to annotate

proofs inside sections, as explained in Section 3.2.

On one hand, proof checking in p·none is not restricted by the file de-

56

Table 3.3: p·none Mode for Coq Project Shown in Figures 3.3, 3.4, and 3.5;
Same-Phase Tasks Can Run in Parallel and Proof Tasks (to be Run in a Later
Phase) are in Bold.

Phase Task Definitions and Lemmas

1 ListUtil.vio remove_preserve, in_remove

2 Dedup.vio dedup, remove_dedup
2 RemoveAll.vio remove_all, remove_all_in, remove_all_preserve

3 checking remove_preserve
3 checking in_remove
3 checking remove_dedup
3 checking remove_all_in
3 checking remove_all_preserve

pendency graph, and there is no overhead from writing proof terms to disk

or tracking dependencies across revisions. On the other hand, this mode re-

quires .vio file compilation of (annotated) .v files according to the file de-

pendency graph, and has overhead from managing individual proof checking

tasks. Table 3.3 illustrates the maximum possible parallelism of this mode for

the project shown in figures 3.3, 3.4, and 3.5. In the table, lemmas whose

proofs are exempt from checking in a task are marked in bold. Note that

the possible degree of parallelism is greater than for f·none due to isolated

checking of proofs. The degree of parallelism can be adjusted downwards by

moving proofs from one checking task to another.

f·file: This novel mode adds file-level selection to f·none by only compiling

affected .v files to .vo files between revisions, with directly modified files de-

termined by comparing current file checksums to previous checksums. As such,

f·file suffers from the overhead of maintaining a file dependency graph using

57

coqdep, but not from managing proof-checking tasks. In LO-Env, this mode

corresponds to the baseline we compared sequential proof selection against

in the previous chapter using iCoq, which modeled developers incrementally

checking projects on their local machines. In CI-Env, dependency graph and

file checksum metadata must be explicitly persisted. Moreover, additional .vo

files (those on which modified files depend) may have to be compiled in CI-Env

compared to LO-Env for the same change to a project, since previously com-

piled .vo files are not available. Same as for f·none, the degree of parallelism

is restricted by project file dependencies, and all proof terms in selected files

are written to disk.

Suppose we are working with the project shown in figures 3.3, 3.4, and

3.5 and perform the change indicated in Figure 3.7. In f·file for both LO-Env

and CI-Env, regression proving would then entail (re)compiling all .v files to

.vo files, with parallelism as in Table 3.2. If we instead perform the change in

Figure 3.8, f·file in LO-Env only recompiles Dedup.v into Dedup.vo, without

any possibility of parallelism. In CI-Env, both ListUtil.v and Dedup.v are

compiled into .vo files (sequentially).

p·file: This novel mode adds file-level selection to p·none, using the same

analysis of file changes and file dependencies as in f·file. Consequently,

p·file has overhead both from maintaining a file dependency graph and

for management of proof-checking tasks, but is not restricted by file depen-

dency graph for proof-checking parallelization. After determining and quick-

compiling the necessary files (using file checksums), the mode uses the coqc

58

file dep.
graph

.v files

proof dep.
graph

Analysis

compilation
commands

.vio files

affected
proofs

Checking

proof
dependencies

proof-
checking
commands

Collection

new dep.
graphs

storage

Figure 3.9: p·icoq workflow/phases with 4-way parallelism.

command -schedule-vio-checking described in Section 3.2.2. Running this

command will typically check many unaffected proofs needlessly. However,

p·file does not write proof terms to disk.

Suppose we are working with the project shown in figures 3.3, 3.4, and

3.5 and perform the change indicated in Figure 3.7. In p·file for both LO-Env

and CI-Env, regression proving would then entail recompiling all .v files to

.vio files and then reestablishing all lemmas in all .vio files, via the same par-

allelism as in Table 3.3. If we instead perform the change in Figure 3.8, p·file

in LO-Env entails recompiling Dedup.v into Dedup.vio, and then checking all

proof tasks in that file, i.e., checking remove_dedup asynchronously. p·file

in CI-Env needs to compile both ListUtil.v and Dedup.v into .vio files, but

runs the same coqc command to check remove_dedup.

p·icoq: This novel mode, which is the most sophisticated one in our taxon-

omy, combines fine-grained parallelism with proof selection, and corresponds

59

Table 3.4: p·icoq Mode for Change Shown in Figure 3.7 to Project Shown in
Figures 3.3, 3.4, and 3.5; Same-Phase Tasks Can Run in Parallel, and Proof
Tasks (to be Run in a Later Phase) are in Bold.

Phase Task Definitions and Lemmas

1 ListUtil.vio remove_preserve, in_remove

2 Dedup.vio dedup, remove_dedup
2 RemoveAll.vio remove_all, remove_all_in, remove_all_preserve

3 checking in_remove
3 checking remove_dedup
3 checking remove_all_in

to iCoq when used sequentially (i.e., with one proof-checking process). The

mode incurs overhead both from proof task management and from tracking

of proof-level dependencies. However, it features proof checking parallelism

unrestricted by file dependencies and can elide checking unaffected proofs re-

gardless of their location in a file. Moreover, no proof terms are written to

disk. In both LO-Env and CI-Env, p·icoq relies on file checksumming to first

locate changed files, which are then subject to more detailed impact analysis

at the level of proofs. Figure 3.9 illustrates the workflow for p·icoq in the case

of four parallel jobs for quick-compilation and fine-grained proof checking.

Suppose we are working with the project shown in figures 3.3, 3.4, and

3.5 and perform the change indicated in Figure 3.7. In p·icoq for both LO-

Env and CI-Env, regression proving would first entail recompiling all .v files to

.vio files, and then proving asynchronously in_remove, remove_dedup, and

remove_all_in (and skipping remove_preserve and remove_all_preserve,

which are unaffected). Parallelism for this case is illustrated in Table 3.4. If we

60

instead perform the change in Figure 3.8, p·icoq in LO-Env entails recompiling

Dedup.v into Dedup.vio, and then checking remove_dedup asynchronously. In

contrast, CI-Env regression proving requires quick-compiling both ListUtil.v

and Dedup.v, and then checking remove_dedup.

3.5 Implementation

We implemented the modes described in Section 3.4 in a tool dubbed

piCoq, written in OCaml, Java, and Bash. Since Coq developments are not

upwards or downwards compatible in general, we target Coq version 8.5 to sup-

port the largest range of project revision histories susceptible to asynchronous

proof checking and fine-grained parallelism; we expect no fundamental issues

with supporting future Coq versions.

We extended coqc (the official Coq compiler) with the new option

-schedule-vio-task-depends-checking. As first argument, it takes an up-

per bound on the number of parallel processes, and then a list of proof task defi-

nitions (pairs of .vio file names and task identifiers). coqc with the new option

(-schedule-vio-task-depends-check-ing) performs parallel proof checking

of all indicated tasks in the same way as the official -schedule-vio-checking

option (which only takes whole files as arguments), but also outputs the de-

pendencies of each processed proof individually. This dependency data can

then be used by piCoq to select affected proofs in the next revision.

We rely on the same Coq plugins and extensions as iCoq, adapted

for parallel proof checking. We also use the graph-based analysis from iCoq

61

Table 3.5: Projects Used in the Evaluation.

Project URL SHA LOC #Revs #Files #Proof Tasks

Coquelicot [43] 680ca587 38260 24 29 1660
Finmap [59] baec7ba0 5661 23 4 959
Flocq [60] 4161c990 24786 23 40 943
Fomegac [61] 7a654d7c 2637 14 13 156
Surface Effects [132] 3450e4b7 9621 24 15 289
Verdi [141] 15be6f61 56147 24 222 2756∑

N/A N/A 137112 132 323 6763
Avg. N/A N/A 22852.00 22.00 53.83 1127.16

to find affected files and proofs across revisions, which is similar to the ap-

proach used in build systems such as Google’s Bazel [10] and Microsoft’s Cloud-

Make [57]. We use Java’s task executor facilities [72] for parallel compilation

of .vo and .vio files via coqc commands.

3.6 Evaluation

To assess the efficacy of our proposed techniques on large, evolving

verification projects, we answer the following research questions:

RQ1: How effective, in terms of proof checking time, is coarse-grained parallel

regression proving (file-level parallelism) without any selection, i.e., f·none?

RQ2: How effective, in terms of proof checking time, is fine-grained parallel

regression proving (proof-level parallelism) without any selection, i.e., p·none?

RQ3: How effective, in terms of proof checking time, is coarse-grained parallel

regression proving with selection at the level of files using piCoq, in CISs and

62

on developers’ own machines, i.e., f·file in CI-Env and LO-Env?

RQ4: How effective, in terms of proof checking time, is fine-grained parallel

regression proving with selection at the level of files using piCoq, in CISs and

on developers’ own machines, i.e., p·file in CI-Env and LO-Env?

RQ5: How effective, in terms of proof checking time, is fine-grained parallel

regression proving with selection at both the level of files and individual proofs

using piCoq, in CISs and on developers’ own machines, i.e., p·icoq in CI-Env

in LO-Env?

We run all experiments on a 4-core Intel Core i7-6700 CPU @ 3.40GHz

machine with 16GB of RAM, running Ubuntu 17.04. We limit the number of

parallel processes to be at or below the number of physical cores; this avoids

the problem of drawing clear conclusions about speedups when using virtual

cores (hyper-threading).

3.6.1 Verification Projects Under Study

Table 3.5 shows the list of Coq projects used in our study; all projects

are publicly available. We selected projects based on (a) public availability

of their revision history during principal development, (b) compatibility of

their revision history with Coq version 8.5, (c) their size and popularity, and

(d) tractability of their build process; the latter was necessary for a successful

experimental setup. For each project, we show the name, the repository URL,

the last revision/SHA we used for our experiments, the number of lines of

Coq code (LOC) for the last revision, as reported by cloc [38], the number

63

of revisions that we considered, the number of .v files in the project, and the

number of proof tasks in the project.

Note that since Coq projects have different development paces and

added support for Coq 8.5 at different points in time, our revision ranges are

not all from the same time period.

Coquelicot: Coquelicot is a library for real number analysis [22], containing

results about limits, derivatives, integrals, etc.

Finmap: Finmap is a library of definitions and results about finite sets and

finite maps [59], based on the Mathematical Components library [52,75].

Flocq: Flocq is a library that formalizes floating-point arithmetic in several

representations [21], e.g., as described in the IEEE-754 standard. Flocq is

used in the CompCert verified C compiler to reason about programs which

use floating-point operations [20].

Fomegac: This project contains a formalization of a version of the formal

system Fω and the corresponding metatheory, such as type safety results [61].

Surface Effects: This project formalizes a functional programming language

of “surface effects” with operations on mutable state [126], including its opera-

tional semantics and metatheory (typability, effect soundness and correctness).

Verdi and Verdi Raft: Verdi is a framework for verification of implementa-

tions of distributed systems [150]. While the framework is not currently tied to

any one particular verification project, it was initially bundled with a verified

implementation of the Raft distributed consensus protocol [151]. Each revision

64

Require: p a project under study
Require: κ the number of revisions
Require: ε a development environment
Require: η range of number of parallel jobs
1: procedure ExperimentProcedure(p, κ, η, ε)
2: Clone(p.url)
3: for all ι ∈ {1, . . . , η} do
4: for all ρ ∈ LatestRevisions(κ, p) do
5: Checkout(ρ)
6: Configure(p, ε, ι)
7: SelectExecuteAndCollect(p)
8: end for
9: end for
10: end procedure

Figure 3.10: Experiment procedure.

comprises over 50k LOC, making Verdi one of the largest publicly available

software verification projects.

3.6.2 Variables

We manipulate three independent variables in our experiments: proof

checking mode, development environment, and (maximum) number of parallel

jobs. The proof checking modes and environments are as described in Sec-

tion 3.4. The number of parallel jobs ranges from 1 to 4. As a dependent

variable we consider only the proof checking time.

3.6.3 Experiment Procedure

Figure 3.10 shows our experiment procedure for collecting the data nec-

essary to answer our research questions. The inputs to the procedure include

one of the projects used in the study, number of revisions to use in the exper-

iment, a development environment, and a range of number of parallel jobs. In

65

the initial step (line 2), the procedure clones the project repository from the

URL in Table 3.5. Next, the procedure iterates over the range of parallel jobs,

starting from one, until the upper bound η is reached. For a particular number

of parallel jobs, the procedure iterates over κ revisions, from the oldest to the

newest revision. In each iteration of the inner loop, the procedure (a) obtains

a copy of the project for the current revision (line 5), (b) configures the project

(in preparation for proof checking), and (c) selects proofs or files that are af-

fected by changes and checks them. While executing the procedure, we log

the time for each step of the procedure and the number of executed proofs; we

report the former and use the latter to check correctness of our experiments.

It is important to observe that some piCoq modes require persisting

dependency metadata files between each revision. One way to do this in a CIS

is to use built-in caching facilities [130]. Since the dependency data is small,

we do not associate any overhead with persisting these files, even in CI-Env.

3.6.4 Results

We illustrate some of the data collected with our procedure in Fig-

ure 3.11. The plots (for Coquelicot and Fomegac) show, for every revision of

the projects, the proof checking time in all modes when using 4 cores.

Table 3.6, and Table 3.7 list the total proof checking times for all

projects and modes. The first column shows the name of the project, and

the second column shows the name of the mode. Columns three to six show

the results for each number of parallel jobs. Recall that parallel checking does

66

0

20

40
b
e
f
c
2
a
a
5

6
5
1
8
7
c
8
3

a
f
1
9
6
a
6
f

9
6
1
5
3
b
f
0

3
0
8
9
3
b
4
9

7
c
7
4
9
1
1
f

c
c
8
6
9
c
0
d

a
9
4
e
2
a
d
d

a
c
4
7
4
8
5
9

8
f
7
b
7
c
3
f

5
1
c
c
e
c
6
5

a
2
1
1
5
7
a
c

6
7
c
0
5
4
4
f

9
9
d
3
2
4
c
8

0
2
a
a
4
8
3
5

e
f
1
8
b
8
b
5

1
8
3
6
3
0
6
8

a
4
3
e
9
2
0
b

f
2
5
2
3
6
f
f

e
4
9
f
0
2
a
a

f
c
2
b
7
6
6
3

a
2
2
6
1
6
b
b

a
0
3
5
d
3
b
d

6
8
0
c
a
5
8
7

Revision

Ti
m

e
[s

]

f·none
p·none

f·file-LO
p·file-LO

p·icoq-LO
f·file-CI

p·file-CI
p·icoq-CI

(a) Coquelicot

0

10

20

30

0
a
f
6
b
3
7
e

a
c
7
9
0
c
9
3

a
9
b
c
b
7
2
a

7
8
a
2
6
1
b
5

7
9
4
4
2
b
6
5

c
a
7
1
b
9
6
c

4
c
1
f
4
b
3
b

9
9
f
3
3
8
f
0

6
2
d
1
a
9
d
5

5
f
1
5
6
d
7
2

4
b
9
e
d
b
5
1

b
5
0
2
0
6
6
1

8
1
d
7
d
6
8
8

7
a
6
5
4
d
7
c

Revision

Ti
m

e
[s

]

f·none
p·none

f·file-LO
p·file-LO

p·icoq-LO
f·file-CI

p·file-CI
p·icoq-CI

(b) Fomegac

Figure 3.11: Comparison of proof checking times for different modes across re-
visions of Coquelicot (top) and Fomegac (bottom). The plots show the proof
checking time using four parallel jobs.

67

Table 3.6: Total Execution Time in Seconds of Projects Coquelicot, Finmap,
and Flocq for All Modes and Different Number of Jobs.

Project Mode Time
[jobs=1] [jobs=2] [jobs=3] [jobs=4]

Coquelicot

f·none 1807.49 1226.33 1186.49 1187.29
p·none 2319.39 1400.08 1260.69 1150.87

f·file-LO 1043.01 745.41 724.32 725.55
p·file-LO 1221.63 814.89 747.11 708.50
p·icoq-LO 552.05 407.84 396.55 384.43
f·file-CI 1587.52 1086.38 1049.53 1051.73
p·file-CI 1405.10 885.67 802.13 786.88
p·icoq-CI 732.60 528.78 505.49 479.79

Finmap

f·none 646.77 549.91 549.50 549.62
p·none 1377.30 800.71 766.60 758.22

f·file-LO 236.77 232.74 232.64 232.08
p·file-LO 459.30 334.14 225.59 196.15
p·icoq-LO 227.31 179.55 153.42 148.11
f·file-CI 279.04 274.72 274.09 274.29
p·file-CI 473.59 346.19 234.34 205.13
p·icoq-CI 258.72 191.73 164.81 159.54

Flocq

f·none 892.54 525.44 516.65 512.46
p·none 1173.08 702.60 614.19 579.45

f·file-LO 319.22 197.82 190.47 189.68
p·file-LO 390.66 244.64 227.00 216.38
p·icoq-LO 274.63 194.55 183.71 175.62
f·file-CI 370.22 230.27 223.21 221.15
p·file-CI 430.79 260.61 233.30 231.80
p·icoq-CI 320.37 216.64 206.25 196.08

not necessarily use all available parallel processes all the time, since tasks may

depend on other tasks.

RQ1: For Verdi in f·none, going from sequential to 4-way parallel coarse-

grained checking jobs brings a speedup of 3.3×. The same speedups for Co-

quelicot, Finmap, Flocq, Fomegac, and Surface Effects are 1.5×, 1.2×, 1.7×,

68

Table 3.7: Total Execution Time in Seconds of Projects Fomegac, Surface
Effects, and Verdi for All Modes and Different Number of Jobs.

Project Mode Time
[jobs=1] [jobs=2] [jobs=3] [jobs=4]

Fomegac

f·none 278.31 261.13 261.37 261.66
p·none 293.33 222.66 199.18 191.88

f·file-LO 171.80 165.41 165.32 165.44
p·file-LO 176.15 135.29 117.64 109.17
p·icoq-LO 153.69 121.88 109.95 101.33
f·file-CI 228.11 220.48 220.31 220.50
p·file-CI 210.82 168.78 151.20 142.48
p·icoq-CI 188.18 155.84 142.80 134.75

Surface Effects

f·none 8712.55 8633.68 8627.13 8629.28
p·none 8465.24 4863.77 4067.83 3902.42

f·file-LO 7820.60 7796.43 7781.69 7787.54
p·file-LO 7599.11 4408.28 3432.82 3237.19
p·icoq-LO 3669.35 2288.69 2033.12 2014.79
f·file-CI 8714.85 8652.68 8651.51 8656.17
p·file-CI 7695.15 4595.89 4047.15 3769.91
p·icoq-CI 4116.04 2723.55 2404.59 2351.96

Verdi

f·none 35713.55 19157.52 13449.78 10947.00
p·none 33032.34 17675.38 12692.18 10275.42

f·file-LO 7405.04 4009.03 3007.21 2473.82
p·file-LO 6917.62 3633.05 2564.76 2059.44
p·icoq-LO 3339.82 1866.04 1370.73 1160.28
f·file-CI 7577.00 4127.27 3059.70 2536.91
p·file-CI 7040.39 3781.12 2704.12 2203.67
p·icoq-CI 3542.08 1990.56 1478.36 1247.65

1.1×, and 1.0×, respectively. These latter modest improvements may be due

to restrictions in project file dependency graphs; yet, having two parallel jobs

nearly always gives a sizable speedup compared to sequential checking.

RQ2: For Verdi in p·none, going from sequential to 4-way parallel fine-grained

checking brings a speedup of 3.2×. The same speedups for Coquelicot, Fin-

69

map, Flocq, Fomegac, and Surface Effects are 2.0×, 1.8×, 2.0×, 1.5×, and

2.2×, respectively, indicating greater potential for improvements per core than

f·none. Speedups compared to 4-way parallelism via f·none are noteworthy

for some projects, e.g., Fomegac (1.4×) and Surface Effects (2.2×). However,

Finmap and Flocq are consistently slower to check with p·none than f·none;

this may be due to both projects having many short-running proofs.

RQ3: For Verdi in f·file-CI, going from sequential to 4-way parallel coarse-

grained checking brings a speedup of 3.0×. The same speedups for Coquelicot,

Finmap, Flocq, Fomegac, and Surface Effects are 1.5×, 1.0×, 1.7×, 1.0×, and

1.0×, respectively. The corresponding speedups in LO-Env are essentially

the same for most projects. Compared to f·none with 4-way parallelization,

the speedup for Verdi in CI-Env is 4.3×. The same speedups for Coquelicot,

Finmap, Flocq, Fomegac, and Surface Effects are 1.1×, 2.0×, 2.3×, 1.2×, and

1.0×, respectively. This indicates that f·file can be an improvement over

f·none in CISs.

RQ4: For Verdi in p·file-CI, going from sequential to 4-way parallel coarse-

grained checking brings a speedup of 3.2×. The same speedups for Coquelicot,

Finmap, Flocq, Fomegac, and Surface Effects are 1.8×, 2.3×, 1.9×, 1.5×, and

2.0×, respectively. LO-Env gives essentially similar speedups. Compared to

p·none with 4-way parallelization, the speedup for Verdi in CI-Env is 4.7×.

The same speedups for Coquelicot, Finmap, Flocq, Fomegac, and Surface

Effects are 1.5×, 3.7×, 2.5×, 1.3×, and 1.0×, respectively.

RQ5: For Verdi in p·icoq-CI, going from sequential (iCoq) to 4-way paral-

70

lelism gives a speedup of 2.8×. The same speedups for Coquelicot, Finmap,

Flocq, Fomegac, and Surface Effects are 1.5×, 1.6×, 1.6×, 1.4×, and 1.8×,

respectively. Compared to other modes, this mode gives the lowest proof check-

ing times for nearly all projects, both in LO-Env and CI-Env. Compared to

p·file-CI, which is arguably the most reasonable comparison, p·icoq-CI with

4-way parallelization gives speedups for Verdi, Coquelicot, Finmap, Flocq,

Fomegac, and Surface Effects of 1.8×, 1.6×, 1.3×, 1.2×, 1.1×, and 1.6×, re-

spectively. The speedup for Verdi in p·icoq-CI with 4-way parallelization

compared to sequential f·none is notable: 28.6×.

3.7 Discussion

Regression proof mode choices: As shown by our results, different modes

have widely varying effects on the proof-checking time for different projects.

For example, most projects see small or no improvement when switching from

f·none to p·none, while Verdi shows improvement even for only one job. We

believe the efficacy of fine-grained parallel checking is directly related to the

frequency of long-running proofs in a project, which is relatively high in Verdi,

as indicated, e.g., by the number of proof script lines (around 30k). Long-

running proofs may allow for fine-grained parallelism to overcome its inherent

overhead from task management.

Another consideration when adopting piCoq for a Coq project is trust

in the toolchain. Even though a developer may trust the Coq proof checker,

regression proving tools like piCoq add several additional layers on top of this

71

checker to trust. Yet, f·file and p·file, which essentially only rely on file

checksumming and coqdep for extracting information from .v files, require less

trust than p·icoq, which performs complex analysis of Coq files via plugins.

On the other hand, users may opt for quicker feedback using p·icoq while still

running f·file or p·file later for higher assurance.

When choosing between f·file and p·file, a key factor is the file de-

pendency graph of the project. A low number of files itself implies restrictions,

but even with many files, dependencies may force certain restricted orders for

compilation of .vo files; this is particularly apparent for Surface Effects, but

also for Coquelicot. Such projects may opt for p·file despite its higher over-

head. The choice of mode may also depend on the number of available cores in

CI-Env. As shown by the f·none results for Coquelicot, there may be a break-

ing point where no further number of jobs and cores decrease coarse-grained

proof checking time (but two jobs/cores generally give a large improvement

up from just one). In contrast, p·none (and therefore p·file) can continue

to improve with additional cores where f·none cannot, but with diminishing

marginal returns. The unusual organization of Verdi definitions and proofs

into many different files based on type classes and their instances appears to

be highly conducive to parallel compilation of files, in a way similar to how

module abstraction (functorization) facilitates separate compilation in func-

tional languages [5, 102].

Support for generic definitions: Sozeau and Tabareau introduced support

for generic Coq definitions that can be used across universes of types [129].

72

However, Coq’s toolchain for asynchronous proof processing ignores universe

constraints, since such constraints must be checked for consistency at the global

level [133]. This precludes safe use of the modes using fine-grained parallel

proof-checking (Section 3.4) in projects that make heavy use of universe poly-

morphism. One way to address this problem is to leverage the coqc option

-vio2vo, which produces .vo files from argument-passed .vio files, by asyn-

chronously building the proofs for all proof tasks (possibly in parallel). Once

the .vo files are produced, they can be loaded into Coq to evaluate universe

consistency globally [133]. This approach enables fine-grained parallel proof

checking with file selection, but proof selection remains out of reach.

3.8 Threats to Validity

External: Our results may not generalize to all Coq projects. To mitigate

this threat, we selected projects that vary in size, number of files, number of

proofs, and proof checking time.

Our experiments are executed on a single hardware platform and may

not be reproducible. To mitigate this threat, we ran a subset of experiments

on our local machines. Although the absolute numbers are not the same as

those reported in Section 3.6, proof checking time ratios among our developed

techniques remained the same.

We used up to 24 revisions per project. The results may differ for

different windows of revisions or longer histories. We selected the latest re-

73

visions of each project that could be built with Coq version 8.5 (the version

supported by the implementation of iCoq, which piCoq extends). Although

several projects have long histories, we faced issues similar to those frequently

faced when building projects written in other languages [138], e.g., code that

cannot be compiled.

Internal: Our implementation of piCoq, as well as our evaluation infrastruc-

ture, may contain bugs. To mitigate this, we tested it on changes to small

example projects where the expected regression proving outcome was easy to

check manually.

The mode for checking that relies on proof selection (p·icoq) is subject

to the same limitations as iCoq, e.g., with respect to tactic language depen-

dencies and parameterized modules (functors). To trust the results of p·icoq,

a user must trust Coq’s asynchronous proof-checking toolchain as well as the

iCoq technique and its implementation in terms of Coq plugins, extensions to

coqc, and the iCoq proof-level dependency graph analysis.

Construct: We implemented parallel regression proving with selection only

for a single proof assistant. Although our techniques and taxonomy should

be applicable to other proof assistants (e.g., Isabelle/HOL [111]), future work

should confirm the applicability.

74

3.9 Summary

We presented a taxonomy comprising both state-of-the-art and novel

techniques for parallel, incremental regression proving in large-scale verifica-

tion projects, and their implementation for the Coq proof assistant in the tool

piCoq. In particular, piCoq is suitable for use in continuous integration sys-

tems running on multi-core hardware to quickly verify a project or find failing

proofs. By tracking dependencies, piCoq can avoid checking unaffected files

or proofs as changes are made, and check the affected proofs in parallel.

Our evaluation shows that switching from sequential checking in a CIS

environment (commonly using Travis CI) to 4-way proof-level parallelization

and proof selection with piCoq can lead to speedups of up to 28.6×. Com-

pared to previous work on sequential proof checking with proof selection in a

CIS environment with piCoq, 4-way proof-level parallelization using piCoq

yields speedups of up to 2.8×. These results indicate the potential of our

techniques and piCoq to increase the productivity of proof engineers.

75

Chapter 4

mCoq: Mutation Proving for Analysis of
Verification Projects

Mutation analysis, which introduces artificial defects into software sys-

tems, is the basis of mutation testing, a technique widely applied to evaluate

and enhance the quality of test suites. However, despite the deep analogy

between tests and formal proofs, mutation analysis has seldom been consid-

ered in the context of deductive verification. We propose mutation proving, a

technique for analyzing verification projects that use proof assistants. We im-

plemented our technique for the Coq proof assistant in a tool dubbed mCoq.

mCoq applies a set of mutation operators to Coq functions and datatypes, in-

spired by mutation operators previously proposed for functional programming

languages. mCoq then checks proofs of lemmas affected by operator appli-

cation. To make our technique feasible in practice, we implemented several

optimizations in mCoq such as parallel proof checking. We applied mCoq

to several medium and large scale Coq projects, and recorded whether proofs

passed or failed when applying different mutation operators. We then qual-

itatively analyzed the failed proofs, and found several examples of weak and

incomplete specifications. For our evaluation, we made many improvements

to serialization of Coq code and even discovered a notable bug in Coq itself,

76

all acknowledged by developers. We believe mCoq can be useful both to

proof engineers for improving the quality of their verification projects and to

researchers for evaluating proof engineering techniques.

4.1 Overview

Mutation analysis introduces small-scale modifications to a software

system, with each modified system version called a mutant. Mutation analysis

is widely applied to software systems to perform mutation testing [121], where

test suites are evaluated on mutants of a system that represent faults intro-

duced by programmers, or are designed to give rise to fault-like behavior. If a

specific mutant induces test failures, the mutant is said to be killed. However,

if a mutant survives all tests, this may indicate an inadequate test suite or

present avenues to improve tests. Mutants of a system can be produced in

a variety of ways; a common approach implemented for many programming

languages, including functional languages such as Haskell [98], is to apply mu-

tation operators at a level near the source code syntax. An operator may

intuitively represent a particular flaw that programmers are prone to make,

such as getting the sign of an integer wrong.

Formal verification can offer guarantees about program behavior and

other properties beyond those of testing. In particular, deductive verifica-

tion using proof assistants is increasingly used for development of trustworthy

large-scale software systems [95,103,151]. Nevertheless, just as test suites may

be inadequate, formal specifications can be incomplete or fail to account for

77

unwanted behavior [62, 152], and thus have been the target of mutation anal-

ysis [7, 80]. However, mutation analysis has only seldom been considered for

proof assistants [104], and, to the best of our knowledge, never with explicit

formal proofs in place of tests.

We propose mutation proving, a technique for mutation analysis of veri-

fication projects using proof assistants, suitable for evaluating the adequacy of

collections of formally proven properties of programs. Our technique adapts

and extends mutation operators previously used to mutate functional pro-

grams. We implemented our technique for the Coq proof assistant [14] in a

tool dubbed mCoq. Given a mutation operator and a Coq project, mCoq ap-

plies an instance of the operator to a definition in Coq’s Gallina specification

language, and then checks all proofs that could be affected by the change.

A serious obstacle to operator-based mutation analysis in proof assis-

tants is the extensibility and flexibility of the syntax used to express func-

tions, datatypes, and properties. In particular, Coq supports defining power-

ful custom notations over existing specifications [41], and Coq’s parser can be

extended with large grammars at any point in a source file by loading plug-

ins [42]. These facilities are convenient for expressing mathematical concepts,

but pose a great challenge for processing of Coq documents. Moreover, defini-

tions of functions and datatypes, analogous to classes and methods in Java-like

languages, tend to be highly interspersed with proofs, which are analogous to

tests [28]. This precludes a simple mutation technique based on text replace-

ment in source files [81].

78

We overcome these challenges by leveraging the OCaml-based SerAPI

serialization library [63], which is integrated with Coq’s parser and internal

data structures. We extended Coq and SerAPI to support full serialization

of all Coq documents used in large scale projects to S-expressions (sexps) [108].

We apply our mutation operators to the sexps we obtain, and then deserialize

and proof-check the results. To make mutation proving feasible in practice for

large-scale Coq projects, we optimized mCoq in several ways, e.g., to leverage

multi-core hardware for fast parallel checking of proofs affected by changes

after applying a mutation operator.

To evaluate our technique, we applied mCoq to several open source Coq

projects, from medium to large scale. We recorded whether a mutant was live

or killed based on proofs passing or failing, and then, by manual inspection,

qualitatively analyzed why proofs passed or failed for a subset of mutants,

finding several weak and incomplete specifications. For our evaluation, we

enhanced SerAPI and fixed several serialization issues, significantly increasing

its robustness in processing large Coq projects. We also found a notable bug

in Coq related to proof processing when applying mCoq, acknowledged and

subsequently fixed by the developers [134]. Our technique and tool can be

useful both to proof engineers for directly analyzing their verification projects

and to researchers for evaluating proof engineering techniques, analogously

to how mutation testing is currently used to evaluate testing techniques for

functional programs [33].

We believe mutation proving is orthogonal to, and complements, many

79

other analysis techniques for proof assistants, such as bounded testing [26],

dependency analysis [28, 119], counter-example generation [18, 45], property-

based testing [31, 122], and theory exploration [90]. Specifically, these tech-

niques do not consider “alternative worlds”, where definitions are different from

the present ones [80].

This chapter describes the following contributions:

? Technique: We propose mutation proving for verification projects using

proof assistants. We define a set of mutation operators on definitions of

functions and datatypes, inspired by operators defined previously for func-

tional and imperative programming languages.

? Tool: We implemented mutation proving in a tool, dubbed mCoq, which

supports Coq projects. Our tool brings significant extensions to Coq and

the SerAPI library for serialization and deserialization of Coq syntax; these

extensions pave the way for other transformations of Coq code.

? Optimizations: In order to make mutation proving of large projects feasi-

ble in practice, we optimized mCoq in several ways to make it run faster.

In particular, we implemented several novel forms of parallel checking of

affected proofs.

? Evaluation: We performed an empirical study using mCoq on 12 large

and medium-sized open source Coq projects. For each project, we recorded

the number of generated and killed mutants. We qualitatively analyzed a

80

subset of the mutants and found several weak and incomplete specifications

manifested as live mutants.

? Impact: Our work resulted in many improvements and bugfixes to Ser-

API and enhanced its robustness when applied to large-scale Coq projects,

showing that complex, extensible proof documents can be manipulated in

a lightweight way. We made several modifications to Coq itself, and these

changes have been accepted by Coq developers.

4.2 Background

This section provides a brief background on the Coq proof assistant,

the SerAPI library, and mutation testing.

4.2.1 The Coq Proof Assistant

Coq is a proof assistant based on type theory [14], implemented in the

OCaml programming language. The specification language of Coq, Gallina, is

a small and purely functional programming language. Proofs about Gallina

specifications are typically performed using sequences of expressions (tactic

calls) in Coq’s proof tactic language, Ltac [48]. Source files processed by Coq

are sequences of vernacular commands, each of which can contain both Gallina

and Ltac expressions. Figure 4.1 shows an example Coq source file which

defines a function update and two lemmas about the function. The intended

meaning of update is that it returns a new version of a given function st from

natural numbers to some type A, and this returned function maps h to v but

81

Require Import Arith.

Definition update A (st : nat → A) (h : nat) (v : A) :=
fun (n : nat) ⇒ if Nat.eq_dec n h then v else st n.

Lemma update_nop : ∀ A (st : nat → A) y v,
st y = v → update A st y v y = st y.
Proof.
intros; unfold update; case Nat.eq_dec; subst; auto.
Qed.

Lemma update_diff : ∀ A (st : nat → A) x v y,
x 6= y → update A st x v y = st y.
Proof.
intros; unfold update; case Nat.eq_dec; congruence.
Qed.

Figure 4.1: Example Coq source file Update.v.

otherwise behaves as st.

Vernacular syntax is extensible by the user in almost arbitrary ways by

(1) defining notations inside Coq, e.g., [] for the empty list constructor nil,

and (2) loading plugins in Coq that extend syntax. In particular, the Ltac

language and basic decision procedures for proof automation are implemented

as a collection of plugins. Since plugins can generally be loaded at any time

when interacting with Coq, the permitted syntax can grow dynamically as a

vernacular file is processed. Hence, writing a robust stand-alone parser for

vernacular is difficult, and will break easily as Coq evolves.

Even though Coq provides a logic of total, terminating functions, Ltac

allows nontermination, e.g., of proof search. Hence, modifying a Gallina spec-

ification or function may result in infinite loops, in analogy with the frequent

82

infinite loops that arise in tests during mutation testing [121]. The common

mitigating practice in mutation testing is to assign execution time thresholds

for test execution. Similarly, we set thresholds to the proof checking time for

each mutant.

The coqc tool compiles source .v files to binary .vo files and checks

all proofs. Such binary files are then loaded by Coq when processing Require

commands in .v files.

4.2.2 SerAPI and Serialization to S-expressions

SerAPI is an OCaml library and toolchain for machine interaction

with Coq [63]. SerAPI has two principal components: (1) an interface for

serialization and deserialization of Coq syntax and internal data structures to

and from S-expressions (sexps) [108] built on OCaml’s PPX metaprogramming

facilities [113], and (2) a protocol for building and querying Coq documents

that abstracts over vernacular commands. In effect, SerAPI overcomes the

problem of robustly parsing vernacular by directly integrating with Coq’s pars-

ing toolchain and datatypes. Since the serialization routines are automatically

generated from Coq’s own definitions using metaprogramming, SerAPI is ex-

pected to require only modest maintenance as Coq evolves. Before our work,

the principal application of SerAPI was for user interfaces for Coq, e.g., web-

based interfaces [65].

When mutating Coq projects, we use the SerAPI sexp-based serializa-

tion facilities, avoiding heavyweight OCaml library development. Intuitively,

83

CIf

CApp

CRef
CApp

Qualid

Path v

CRef

Qualid

Path

Nat eq_dec

CRef CRef

Qualid

Path n

Qualid

Path h

CRef

Qualid

nPath

CRef

Qualid

Path st

Figure 4.2: Simplified SerAPI sexp of if-expression in Figure 4.1.

a SerAPI sexp is either an atom, representing a constant or variable name,

or a list delimited by parentheses. For example, the sexp for the command on

the first line in Figure 4.1 is:

(VernacExpr()(VernacRequire()(false)(((Qualid(Path)(Arith))))))

A more readable but less compact representation of sexps is graphically as

trees. For example, the tree of the sexp for the following subexpression is

shown in Figure 4.2:

if Nat.eq_dec n h then v else st n

4.2.3 Mutation Testing and Proving

We follow Papadakis et al. [121] in using mutation analysis for the

process of generating code variants, and mutation testing for the application

of this process to support software testing and test suite improvement. In

analogy with the latter, we refer to the application of mutation analysis to

support proof development using proof assistants and improving collections of

formally proven properties as mutation proving.

84

Mutation analysis was proposed by Lipton, then formalized by De-

Millo et al. [49], and first applied in practice in the context of software testing

by Budd et al. [25]. In mutation testing, test suites that distinguish between a

mutant and the original program by reporting an error or violation (i.e., killing

the mutant), are judged to meet objectives. In contrast, test suites that do not

report errors or violations for a mutant (i.e., the mutant is live) may not fully

meet all objectives and require revision. Intuitively, in these cases, mutants

may be viewed as containing buggy code, and the mutation score (percentage

of killed mutants out of all mutants) as a measure of how well the test suite

rules out buggy code.

How to interpret killed and live mutants in mutation proving is less

clear than for mutation testing. While there may be definitions of functions

or data that are nonsensical for most purposes, a failing proof of a lemma

using such definitions does not necessarily indicate an error or mistake (bug)

in the definitions; the property may still be true. Coq proof scripts are often

brittle [35] and fail to produce proofs when associated definitions are changed

in trivial ways. In addition, the goal of a proof assistant verification project

may be to prove some lemma unrelated to any specific program.

Nevertheless, live mutants may still indicate inadequacy of the veri-

fication harness [80] to fully meet reasonable objectives. In particular, live

mutants can go far beyond flagging up completely unused definitions as in

dependency analysis [119]: they can pinpoint that certain fragments of key

definitions vacuously satisfy behavioral specifications [7], e.g., that an ostensi-

85

bly strong and complete lemma about a function can be proven regardless of

what the returned value is for a certain range of inputs to that function. A

low mutation score could indicate the presence of such underspecification in a

Coq project, which may eventually manifest as bugs in executable systems [62]

and lead to lower trust in formally verified code.

4.3 Technique

In this section, we describe our mutation approach, mutation operators,

and optimizations to mutation proving.

4.3.1 Mutation Approach

Our approach to mutation proving follows the classical approach of

defining a set of mutation operators (operator for short) which describe classes

of changes to a project. Intuitively, an operator describes a common mistake

made by a proof engineer. When an operator is applied to a project, it may

either leave the project unchanged or generate a mutant. When the mutant

has been checked, i.e., all relevant proofs have passed, the mutant is declared

live. Otherwise, if some proof fails, the mutant is considered killed.

We define operators for mutation proving as transformations on sexps.

For any given sexp, it must be unambiguous whether the transformation can

be successfully applied or not. For example, if the transformation pertains to

particular constants, it cannot be applied when those constants are absent from

the target. The initial step for applying any operator to a verification project

86

Table 4.1: List of Mutation Operators.

Category Name Description

General

GIB Reorder branches in if-else expression
GIC Reverse the order of the constructors in the definition of an inductive

type
GME Replace expression in the second match case with the expression from

the first match case

Lists

LRH Replace list with head singleton list
LRT Replace list with its tail
LRE Replace list with empty list
LRC Reorder arguments to the list concatenation operator
LCF Replace list concatenation expression with the first argument list
LCS Replace list concatenation expression with the second argument list

Numbers

NPM Replace plus with minus
NZO Replace zero with one
NSZ Replace successor constructor with zero
NSA Replace successor constructor with its argument

Booleans BFT Replace false with true

BTF Replace true with false

is to convert all .v source files to lists of sexps. For a specific operator op, the

steps are then to (1) apply op to all lists of sexps until a mutant is generated,

(2) check the mutated list of sexps, (3) check all source files that transitively

depend on the source file that was (indirectly) mutated. The latter three steps

are then repeated until no additional mutants can be generated using op.

4.3.2 Mutation Operators

Our inspiration for mutation operators for Coq comes from two sources.

Primarily, we were inspired by the operators defined by Le et al. [98] for

Haskell. Secondarily, we took inspiration from the operators in mutation

frameworks for Java such as PIT [39] and the Major framework [92]. We

87

Require Import List. Import ListNotations.

Fixpoint filterMap {A B} (f : A → option B) l : list B :=
match l with
| [] ⇒ [] | x :: xs ⇒
match f x with
| None ⇒ filterMap f xs | Some y ⇒ y :: filterMap f xs
end

end.

Lemma filterMap_conc : ∀ A B (f : A → option B) xs ys,
filterMap f (xs ++ ys) = filterMap f xs ++ filterMap f ys.
Proof.
induction xs; intros; simpl in *; auto.
case (f a) eqn:?; simpl; auto using f_equal.
Qed.

Lemma filterMap_in : ∀ A B (f : A → option B) a b xs,
f a = Some b → In a xs → In b (filterMap f xs).
Proof.
induction xs; simpl; auto.
case (f a0) eqn:?; simpl; intuition (auto; congruence).
Qed.

Figure 4.3: Example Coq source file using lists FilterMap.v.

considered these operators through the lens of our experience from using Coq

for 17 years (cumulative).

Table 4.1 lists our operators; for each operator, we give a category, a

short name which we will use in the rest of text, and a short description. The

General category includes operators which are applicable regardless of whether

a project uses a specific datatype from the Coq standard library. The Lists

category includes operators which pertain to the ubiquitous list datatype in

the standard library. The Numbers category includes operators which apply

to natural numbers in their standard linear-size Peano encoding (e.g., 2 is

88

defined as the successor constructor applied two times to the zero constructor).

Similarly, the Booleans category applies to booleans as defined in the standard

Coq library.

In contrast to imperative languages such as Java, where numeric datatypes

are typically built-in, Gallina has only a few native constructs, which is re-

flected in the limited number of operators in the General category. Other

operators require a project to use the corresponding notations and constants

from the standard library; the associated categories therefore pertain to the

most elementary and widely used parts of the library.

To illustrate how our operators work, we give a few examples using the

Coq code in Figure 4.1 and Figure 4.3. For a more intuitive presentation, we

describe the effect of operators mostly in terms of the source code rather than

via sexps.

General mutation example: Applying the operator GIB to the file Update.v

shown in Figure 4.1 results in one mutant update has the expressions v and

st n swapped:

fun (n : nat) ⇒ if Nat.eq_dec n h then st n else v

The proof of update_nop does not fail for the mutant, indicating that the

lemma does not express any fundamental property of update. However, the

proof of update_diff fails (specifically, congruence fails), killing the mutant.

Note that the mutation can be performed at the sexp level by swapping the

two rightmost subtrees below CIf in Figure 4.2.

89

Lists mutation examples: The source file in Figure 4.3 defines a recursive

function filterMap that applies a given partial function f to a list. The two

accompanying lemmas express some basic properties about the function; in

particular, filterMap_conc establishes that filterMap distributes over list

append. Applying the operator LRH results in a mutant where the singleton

list [y] has replaced y :: filterMap f xs in filterMap. This mutant is

killed by the failure of the proof of filterMap_conc, since this property no

longer holds. Applying the operator LRT results in a mutant where the (tail)

list expression filterMap f xs has replaced y :: filterMap f xs. This

mutant survives filterMap_conc, but is killed by filterMap_in.

4.3.3 Mutation Optimizations

Mutation analysis is generally acknowledged to be a costly process [77],

and this also holds true for mutation proving. In this section, we describe

several optimizations to our basic mutation proving approach and workflow

from above.

In mutation testing, optimizations are generally about generating faster,

smarter, or fewer mutants [78, 144]. We focus on accomplishing faster muta-

tion, and the insight we build on is that proof checking for mutation proving

can be viewed as a particular instance of regression proving (covered in chap-

ters 2 and 3), i.e., to check an existing Coq project after a change has been

made; similar insights are found in regression testing [32].

Proof selection: A proof selection technique uses knowledge of modified files

90

(or proofs) in a project to only check impacted files (or proofs). Since a success-

ful application of a mutation operator means that a sexp file was modified, we

can use change impact analysis to perform selective checking during mutation

proving.

Proof checking parallelization: Unlike test execution in Java-like lan-

guages, proof checking in proof assistants is deterministic, which increases

the potential for parallelization on multi-core hardware. In particular, proof

checking using Coq is routinely parallelized at the file level, where the main

restriction on the degree of parallelism is the file dependency graph.

Mutation operator parallelization: Since we only perform first-order mu-

tation [89], application of one mutation operator to a project can be performed

completely independently of application of another operator. Hence, when the

goal is to apply several operators to the same project, the outcomes can be

computed in parallel, as in mutation testing of software [78].

Mutant parallelization: Application of one mutant can be performed com-

pletely independently of application of another mutant. We thus also introduce

a parallel mode where each mutant is checked as a separate task.

4.4 Implementation

In this section, we describe the components of the toolchain that we

used to implement mCoq, define and discuss our mutation procedure which

uses the components, and outline the impact of our toolchain development on

91

Mutator

sexp parser

transformer

.v file

sexp file

CoqSerAPI

sercomp

compser

4 3

1

5

2

Figure 4.4: mCoq implementation architecture.

other projects.

4.4.1 Toolchain

Our toolchain for mutation proving is implemented in OCaml, Java,

and Bash. Figure 4.4 shows an overview of the architecture of the toolchain,

and highlights how the main components interact. During mutation proving,

Coq source files to be mutated are first given as input to our sercomp program

integrated with SerAPI 1 , which produces corresponding files with lists of

sexps 2 . The sexps are then handed to our Mutator program 3 , which

performs parsing and applies the transformations corresponding to a specified

mutation operator. Ultimately, Mutator outputs mutated sexps 4 which be-

come input to our compser program integrated with SerAPI 5 . We next

describe in more detail each of the main components of the toolchain.

sercomp: We implemented a command-line program called sercomp on top of

92

SerAPI which takes a regular Coq .v source file as input and outputs the

corresponding lists of sexps. sercomp is now included as part of SerAPI [64].

compser: We implemented a command-line program called compser on top of

SerAPI, meant to be the inverse of sercomp. compser takes a file with a list

of sexps as input and produces a .vo file, or simply checks every sexp. The

program is now included as part of SerAPI [64].

Coq fork: We forked the v8.9 branch of the Coq GitHub repository for

Coq version 8.9 and modified it to support proper serialization of all internal

data structures via SerAPI. In particular, we added support for serialization

of Ltac syntax extensions added by the Ssreflect proof language [75] used in

many projects. Our changes have been acknowledged by Coq developers and

will be included in Coq 8.10.

SerAPI: We extended SerAPI to support serialization and deserialization

of all Coq datatypes required to support large verification projects, and in

particular, the Ssreflect proof language. All our changes have been added to

the SerAPI codebase.

Mutator: We implemented a library for transformation of sexps produced by

sercomp, and mutation operators that use this library, in Java. We used an ex-

isting library, jsexp [109], to parse and encode sexps. Based on our experience,

implementing new operators on top of our library is quick and straightforward.

On top of our library, we implemented a program dubbed Mutator that takes

sexps and an operator name as input, and produces mutated sexps.

93

Runner: We implemented a program in Java and Bash that uses the above

components to perform mutation on a given Coq project, and then computes

mutation scores.

4.4.2 Mutation Modes and Procedure

Based on the mutation approach and optimizations in Section 4.3, we

define four basic mutation proving execution modes :

Default: A simple mode which checks every .v file in a project after a mutant

is generated, by compiling the .v files to .vo files in topological order according

to the file dependency graph.

RDeps: An advanced mode which checks only .v files affected by a mutation,

and caches and reverts to unmodified .vo files to avoid generating them twice.

Skip: An advanced mode which checks only .v files affected by a mutation,

and additionally avoids reverting .vo files.

Noleaves: A variant of Default which only checks proofs in, but does not

generate .vo files for, leaf nodes in the file dependency graph. We added this

mode to explore if there were any notable speedups gained by avoiding to write

.vo files with compser.

To realize these modes, we implemented the parameterized mutation

procedure checkOp shown in Figure 4.5 in our Runner program. In the

subprocedures (figures 4.6 and 4.7) called by checkOp, there are several

auxiliary procedures that behave differently depending on the mode:

94

Require: op – Mutation operator
Require: P – Coq Project
1: procedure checkOp(op, P)
2: vFs ← P .vFiles()
3: G ← P .dependencyGraph()
4: rG ← G .reverse()
5: sVFs ← rG .topologicalSort(vFs)
6: v ← ∅
7: for vF ∈ sV Fs do
8: v .add(vF)
9: checkOpVFile(G, rG, op, sV Fs, v, vF)
10: end for
11: end procedure

Figure 4.5: Pseudocode of parameterized mutation procedure (checkOp).

? revertFile : For the Default and Skip modes, the file vF is always reverted.

For RDeps, vF is never reverted. For Noleaves, vF is reverted only if it is

not a leaf node in rG.

? getOtherFiles : For the Default and Noleaves modes, this procedure re-

turns rG .topologicalSort(sV Fs−v), whereas for the RDeps and Skip modes,

the procedure instead returns rG .topologicalSort(rG .closure({vF})− v).

? revertOtherFilesBefore : For all modes except the Skip mode, this proce-

dure does nothing. For the Skip mode, it reverts all files inG .closure(oV Fs)−

oV Fs− {vF}.

? revertOtherFilesAfter : For all modes except RDeps, it does nothing.

For RDeps, it reverts all files in oV Fs+ {vF}.

On top of these basic modes, we define four parallel modes, which we

believed could lead to significant speedups:

95

Require: G – Dependency Graph
Require: rG – Reverse Dependency Graph
Require: op – Mutation operator
Require: sVFs – Topologically sorted .v files
Require: v – Set of visited .v files
Require: vF – .v file
1: procedure checkOpVFile(G , rG , op, sVFs, v , vF)
2: sF ← sercomp(vF)
3: mc← countMutationLocations(sF, op)
4: mi← 0
5: while mi < mc do
6: mSF ← mutate(sF, op,mi)
7: checkOpSexpFile(G, rG, sV Fs, v, vF,mSF)
8: mi← mi+ 1
9: end while
10: revertFile(vF)
11: end procedure

Figure 4.6: Pseudocode of checkOpVFile that is called from Figure 4.5.

ParFile: This mode builds on Skip and parallelizes the for loop in the check-

OpSexpFile procedure (lines 8 to 13 in Figure 4.7). Parallelization is at the

coarse-grained file level.

ParQuick: Like ParFile, this mode builds on Skip and parallelizes the for loop

in the checkOpSexpFile procedure (lines 8 to 13 in Figure 4.7). However,

parallelization is at the fine-grained level of proofs [9, 120].

ParMutant: This mode builds on RDeps, and checks each mutant in parallel,

i.e., we parallelize the while loop in the checkOpVFile procedure (lines 5 to

9 in Figure 4.6).

6-RDeps: In this mode, we organize the operators into groups of six or less,

and run these groups in parallel using the RDeps mode. We limit to six groups

to match the number of cores in our evaluation machine.

96

Require: G – Dependency Graph
Require: rG – Reverse Dependency Graph
Require: sVFs – Topologically sorted .v files
Require: v – Set of visited .v files
Require: vF – .v file
Require: mSF – Mutated sexp file
1: procedure checkOpSexpFile(G , rG , sVFs, v , vF , mSF)
2: if compser(mSF) 6= 0 then
3: Global.killed[op]← Global.killed[op] + 1
4: return
5: end if
6: oVFs ← getOtherFiles(G, rG, sV Fs, v, vF)
7: revertOtherFilesBefore(vF, oV Fs)
8: for oF ∈ oV Fs do
9: if coqc(oF) 6= 0 then
10: Global.killed[op]← Global.killed[op] + 1
11: break
12: end if
13: end for
14: revertOtherFilesAfter(vF, oV Fs)
15: end procedure

Figure 4.7: Pseudocode of checkOpSexpFile that is called from Figure 4.6.

4.4.3 Impact of Toolchain Development

Work on our implementation toolchain resulted in more than 10 merged

code contributions to SerAPI. Specifically, we found over 30 failing test cases

that were all fixed. Our serialization enhancements to Coq have been merged

and are set to be included in Coq version 8.10. When applying mutation prov-

ing to a project (StructTact) during our evaluation, we generated a mutant

which we checked with both coqc and compser; the mutant was killed accord-

ing to the former but not the latter. The discrepancy was due to a serious

bug in Coq related to proof processing, acknowledged and subsequently fixed

by the developers [134]. This shows that mutation proving development has

97

significantly improved general Coq tooling.

4.5 Evaluation

We evaluate mCoq by answering three research questions:

RQ1: What is the number of mutants created for large verification project

and what are their mutation scores?

RQ2: What is the cost of mutation testing in terms of the execution time and

what are the benefits of optimizations?

RQ3: Why are some mutants (not) killed?

We run all experiments on a 6-core Intel Core i7-8700 CPU @ 3.20GHz

machine with 64GB of RAM, running Ubuntu 18.04.1 LTS. We limit the num-

ber of parallel processes to be at or below the number of physical CPU cores.

We next describe the studied projects, our dependent and independent vari-

ables, and our results.

4.5.1 Verification Projects Under Study

Table 4.2 lists the Coq projects used in our evaluation; all are publicly

available. For each project, we show the project name, URL, the latest SHA

at the time of our experiments, number of .v files, total lines of code (LOC),

specification LOC, and proof script LOC. All LOCs are computed using the

coqwc tool, which is bundled with Coq. The last two rows of the table show

the average and total values across all projects, if applicable.

98

We selected the projects based on (1) compatibility with Coq version

8.9, (2) their size and popularity, (3) their extensive use of custom functions

and datatypes. In particular, we included several utility libraries, such as

Coq-std++ and TLC, which contain many basic functions and specifications

needed for program verification and thus have more specification LOC than

proof script LOC. In contrast, large formalizations of mathematical theories,

such as those for the odd order theorem [74], have many times more proof

script LOC than specification LOC, and most of the specifications in these

projects are statements of theorems, which we do not mutate. Hence, we did

not include any of this latter kind of project. We provide a brief description

of each project:

99

Table 4.2: Projects Used in the Evaluation.

Project URL SHA #Files LOC Spec. LOC Proof LOC

ATBR github.com/coq-community/atbr 366ac237 42 9705 4123 5567
FCSL-PCM github.com/imdea-software/fcsl-pcm b34fce32 12 5747 2939 2851
Flocq gitlab.inria.fr/flocq/flocq 7ec13200 29 24000 5955 18044
Huffman github.com/coq-community/huffman 50687911 26 5889 1878 4011
MathComp github.com/math-comp/math-comp 91fa7b57 89 82323 37520 46040
PrettyParsing github.com/wilcoxjay/PrettyParsing 189a2625 14 1907 1221 705
Bin. Rat. Numbers github.com/coq-community/qarith-stern-brocot 7b9cc06d 37 35041 5500 29541
Quicksort Compl. github.com/coq-contribs/quicksort-complexity 0a6eed8b 36 8809 2617 6202
Stalmarck github.com/coq-community/stalmarck 6932ed8a 38 11266 3552 7698
Coq-std++ gitlab.mpi-sws.org/iris/stdpp 005887ee 43 13715 6882 6852
StructTact github.com/uwplse/StructTact 82a85b7e 19 4341 2008 2333
TLC gitlab.inria.fr/charguer/tlc 4babc16c 49 23494 13217 7802

Avg. n/a n/a 36.16 18853.08 7284.33 11470.50
Total n/a n/a 434 226237 87412 137646

100

ATBR: A library that encodes Kleene algebras and their decision procedures

using automata, e.g., for checking equality of regular expressions [23].

FCSL-PCM: A library that formalizes the notion of a partial commuta-

tive monoid, which is a structure often used for reasoning about pointer-

manipulating programs.

Flocq: A library that formalizes floating-point number representations and

their arithmetic [21], e.g., as in the IEEE 754 standard.

Huffman: A verified implementation of the Huffman coding algorithm and

its theory.

PrettyParsing: A library for implementing verified text-based representa-

tions of data. The library is used in the Oeuf verified compiler of Gallina to

machine code [110].

Bin. Rat. Numbers: A library formalizing rational numbers and rational

arithmetic using the so-called Stern-Brocot encoding [112].

Quicksort Compl. A proof of the average-case complexity of the Quicksort

algorithm [140].

Stalmarck: A verified implementation of Stålmarck’s proof procedure for

propositional logic [106].

Coq-std++: A library of utility functions and lemmas, based heavily on

Coq’s type class mechanisms. The library is used in the Iris framework for

separation logic [91].

101

StructTact: A library of tactics, utility functions and lemmas, many related

to lists, originally extracted from the verified implementation of the Raft dis-

tributed consensus algorithm [151].

TLC: A comprehensive library of functions, lemmas, and tactics that aims to

be an alternative to the Coq standard library [30].

4.5.2 Variables

Independent variables: We manipulate two independent variables in our

experiments: mutation operator and execution mode. For the former, we use

the 15 operators defined in Table 4.1. For the latter, we use the 8 execution

modes described in Section 4.4.2.

Dependent variables: We compute three dependent variables: mutation

score, execution cost, and cost reduction. Mutation score provides an estimate

for the strength of specifications. This metric is computed as the number of

killed mutants over total number of mutants; the computation is either per

mutation operator or for all mutants at once. Execution cost shows time

needed to perform mutation proving; this metric can also be reported per

mutation operator or for all mutants at once. Cost reduction is a percentage

of time saved using various execution modes compared to the time needed to

perform mutation proving using the Default mode.

102

Table 4.3: Total Number of Mutants for each Mutation Operator per Project.

Project GIB GIC GME LRH LRT LRE LRC LCF LCS NPM NZO NSZ NSA BFT BTF Total

ATBR 33 21 74 7 7 7 1 1 1 87 43 19 19 17 18 355
FCSL-PCM 0 8 13 8 8 8 0 0 0 2 5 0 0 35 28 115
Flocq 39 14 93 0 0 0 0 0 0 71 54 2 2 45 62 382
Huffman 0 15 45 72 72 72 15 15 15 19 5 5 5 7 7 369
MathComp 0 10 73 58 58 58 12 12 12 114 385 0 0 136 109 1037
PrettyParsing 30 8 68 17 17 17 28 28 28 13 16 3 3 3 3 282
Bin. Rat. Numbers 2 10 52 0 0 0 0 0 0 203 79 4 4 5 6 365
Quicksort Compl. 12 15 77 104 104 104 49 49 49 27 18 30 30 6 7 681
Stalmarck 0 25 129 101 101 101 3 3 3 42 6 1 1 25 24 565
Coq-std++ 12 31 149 68 68 68 13 13 13 23 20 22 22 28 14 564
StructTact 7 3 30 9 9 9 2 2 2 12 5 5 5 2 2 104
TLC 4 36 71 38 38 38 5 5 5 23 38 33 33 20 13 400

Avg. 11.58 16.33 72.83 40.16 40.16 40.16 10.66 10.66 10.66 53.00 56.16 10.33 10.33 27.41 24.41 434.91
Total 139 196 874 482 482 482 128 128 128 636 674 124 124 329 293 5219

103

Table 4.4: Total Number of Killed Mutants for each Mutation Operator per Project.

Project GIB GIC GME LRH LRT LRE LRC LCF LCS NPM NZO NSZ NSA BFT BTF Total

ATBR 32 15 66 7 7 7 1 1 1 84 40 19 19 17 18 334
FCSL-PCM 0 8 11 8 8 8 0 0 0 2 5 0 0 34 28 112
Flocq 37 14 77 0 0 0 0 0 0 68 54 2 2 37 58 349
Huffman 0 13 45 72 72 72 15 15 15 19 4 5 5 7 7 366
MathComp 0 8 73 58 56 58 11 12 12 113 381 0 0 135 108 1025
PrettyParsing 24 2 62 15 15 15 25 28 28 9 6 2 2 1 1 235
Bin. Rat. Numbers 2 10 47 0 0 0 0 0 0 199 75 4 4 5 6 352
Quicksort Compl. 11 11 73 96 84 104 49 49 49 26 14 29 29 6 7 637
Stalmarck 0 20 124 101 82 101 2 3 3 42 2 1 1 23 20 525
Coq-std++ 11 15 139 63 63 64 12 12 12 23 17 22 22 27 13 515
StructTact 7 2 29 9 9 9 2 2 2 12 5 5 5 1 1 100
TLC 4 16 62 38 31 38 5 5 5 12 22 22 17 18 11 306

Avg. 10.66 11.16 67.33 38.91 35.58 39.66 10.16 10.58 10.58 50.75 52.08 9.25 8.83 25.91 23.16 404.66
Total 128 134 808 467 427 476 122 127 127 609 625 111 106 311 278 4856

104

Table 4.5: Mutation Score per Project.

Project GIB GIC GME LRH LRT LRE LRC LCF LCS NPM NZO NSZ NSA BFT BTF Total

ATBR 96.96 71.42 89.18 100.00 100.00 100.00 100.00 100.00 100.00 96.55 93.02 100.00 100.00 100.00 100.00 94.08
FCSL-PCM n/a 100.00 84.61 100.00 100.00 100.00 n/a n/a n/a 100.00 100.00 n/a n/a 97.14 100.00 97.39
Flocq 94.87 100.00 82.79 n/a n/a n/a n/a n/a n/a 95.77 100.00 100.00 100.00 82.22 93.54 91.36
Huffman n/a 86.66 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 80.00 100.00 100.00 100.00 100.00 99.18
MathComp n/a 80.00 100.00 100.00 96.55 100.00 91.66 100.00 100.00 99.12 98.96 n/a n/a 99.26 99.08 98.84
PrettyParsing 80.00 25.00 91.17 88.23 88.23 88.23 89.28 100.00 100.00 69.23 37.50 66.66 66.66 33.33 33.33 83.33
Bin. Rat. Numbers 100.00 100.00 90.38 n/a n/a n/a n/a n/a n/a 98.02 94.93 100.00 100.00 100.00 100.00 96.43
Quicksort Compl. 91.66 73.33 94.80 92.30 80.76 100.00 100.00 100.00 100.00 96.29 77.77 96.66 96.66 100.00 100.00 93.53
Stalmarck n/a 80.00 96.12 100.00 81.18 100.00 66.66 100.00 100.00 100.00 33.33 100.00 100.00 92.00 83.33 92.92
Coq-std++ 91.66 48.38 93.28 92.64 92.64 94.11 92.30 92.30 92.30 100.00 85.00 100.00 100.00 96.42 92.85 91.31
StructTact 100.00 66.66 96.66 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 50.00 50.00 96.15
TLC 100.00 44.44 87.32 100.00 81.57 100.00 100.00 100.00 100.00 52.17 57.89 66.66 51.51 90.00 84.61 76.50

Avg. 94.39 72.99 92.19 97.31 92.09 98.23 93.32 99.14 99.14 92.26 79.86 92.99 91.48 86.69 86.39 92.58

105

4.5.3 Results

In this section, we answer the three research questions and highlight

interesting findings.

4.5.3.1 The Number of Mutants and Mutation Score

Table 4.3 shows the total number of generated mutants for each pair of

project (row) and mutation operator (column). Additionally, the last column

shows the total number of mutants per project, and the last two rows show

the average and total number of mutants per mutation operator. We can

observe that GME generates the most mutants, followed by NZO and NPM.

On the other hand, NSZ generates the smallest number of mutants, followed

by NSA. This indicates that explicit uses of the natural number successor

constructor were few for the projects we used in our evaluation. Following the

same format, Table 4.4 shows the number of killed mutants for each pair of

project and mutation operator. Table 4.5 shows the mutation score for all pairs

of projects and mutation operators; n/a indicates mutation score value that

cannot be computed because the number of generated mutants is zero. The

last column shows the mutation score for all mutants in a given project, which

is the metric traditionally reported in mutation testing research. We can see

that mutation scores vary from 76.50% (for TLC) to 97.39% (for FCSL-PCM).

It is important to note that mutation scores for verification projects are

much higher than traditionally seen in mutation testing research. We expected

such high scores for several reasons. First, as mentioned in Section 4.2.3,

106

many Coq proof scripts are brittle and fail after only trivial changes are made

to specifications. Second, even robust proofs tend to be tightly coupled to

functions and datatypes, in effect exploring them symbolically rather than

relying only on externally observable properties such as outputs. This is what

enables proofs to, e.g., establish properties about an infinite number of specific

datatype instances, which is impossible for traditional unit tests. Two projects

are outliers in terms of mutation score (PrettyParsing and TLC) and we come

back to this below.

107

Table 4.6: Proof Checking and Mutation Time in Seconds for Various Modes.

Project Checking Sercomp Default RDeps Skip Noleaves ParFile ParQuick ParMutant 6-RDeps

ATBR 44.97 132.08 2501.19 1925.39 1924.98 2504.64 1448.52 1631.20 617.03 924.46
FCSL-PCM 11.58 21.93 173.52 151.73 151.53 173.92 151.77 151.22 53.29 109.21
Flocq 16.95 37.02 774.89 580.84 581.64 774.74 576.70 579.23 165.11 235.20
Huffman 7.48 11.39 185.49 184.11 183.80 186.05 179.49 206.66 61.49 71.47
MathComp 339.06 589.89 9892.13 8427.10 8419.06 9891.71 6853.53 6736.41 4016.36 3916.54
PrettyParsing 4.24 5.51 272.57 213.41 213.46 273.23 211.13 262.38 65.35 89.08
Bin. Rat. Numbers 25.97 16.81 1108.64 996.39 994.69 1109.32 951.04 932.36 282.42 575.80
Quicksort Compl. 17.34 34.16 1620.77 1096.26 1098.21 1622.30 940.70 954.85 365.03 549.23
Stalmarck 8.94 16.42 801.06 507.78 508.93 806.31 475.71 576.70 194.74 229.51
Coq-std++ 30.58 56.71 3180.26 2582.84 2582.70 3182.92 2190.74 2396.88 779.02 1127.56
StructTact 3.25 7.18 54.65 40.44 40.73 54.77 39.24 39.47 18.56 18.57
TLC 21.49 44.60 3123.61 1758.27 1758.76 3123.66 1487.46 1559.28 526.30 689.44

Avg. 44.32 81.14 1974.06 1538.71 1538.20 1975.29 1292.16 1335.55 595.39 711.33
Total 531.85 973.70 23688.78 18464.56 18458.49 23703.57 15506.03 16026.64 7144.70 8536.07

108

4.5.3.2 Performance

Table 4.6 shows the proof checking and mutation proving time for var-

ious execution modes. Specifically, the second column shows time to check

the project by running the default build commands (coqc via make) for each

project. The third column shows time to process all files in a project with

sercomp. Recall that we mutate a file by first obtaining the corresponding

sexps via sercomp, produce a mutant, and then use compser to write a .vo

file back to disk. Clearly, it would be costly to use both sercomp and compser

to proof check all the files in any given project, so we use this combination only

on the file being mutated. The fourth column shows time to perform mutation

proving using the Default mode. The remaining columns show execution time

for mutation proving for various optimization modes.

Due to performing unnecessary proof processing, the Default and Noleaves

modes are consistently the slowest, typically by a wide margin. Reasonably,

RDeps and Skip give consistent speedups, sometimes substantial, over the ba-

sic modes (on average 23% over Default). Nevertheless, some projects such as

Huffman show only marginal improvement.

We expected parallel modes to perform better than the advanced se-

quential modes. However, ParFile and ParQuick were only substantially faster

than Skip for some large projects, such as MathComp. This may be due to

many mutants being killed quickly before realizing the benefits of parallel

checking. For nearly all projects, ParMutant is a clear winner over 6-RDeps

and others, its average speedup over Default is 70%.

109

4.5.3.3 Qualitative Analysis

To qualitatively analyze why mutants are killed or live, we sampled at

least two killed mutants and two live mutants from each project and manually

inspected them. In particular, we inspected and labeled 35 live mutants with

precisely one of the following labels:

? UnderspecifiedDef : The live mutant pinpoints a definition which lacks

lemmas for certain cases (18 mutants).

? DanglingDef : The live mutant pinpoints a definition that has no associ-

ated lemma (13 mutants).

? SemanticallyEq: The live mutant is semantically equivalent to the original

project (4 mutants).

We highlight some interesting representative live mutants labeled with

UnderspecifiedDef, and then discuss our experience from the analysis.

GIB mutant in Flocq: This mutant changed a function for arithmetic

on binary IEEE 754 floating-point numbers by swapping the branches of the

if-else expression:

Definition Bplus op_nan m x y := match x, y with (* .. omitted .. *)
| B754_infinity sx, B754_infinity sy ⇒
if Bool.eqb sx sy then x
else build_nan (plus_nan x y)

The mutant reveals that a particular case of binary addition, namely for num-

bers representing infinities, is not specified by any lemma. Another live GIB

110

mutant showed the same problem for the analogous definition for subtraction,

Bminus.

BFT mutant in StructTact: A mutant which changed false to true in a

function named before_func on lists highlighted that the function was weakly

specified in the library:

Fixpoint before_func {A} (f : A → bool) g l :=
match l with | [] ⇒ False | a :: l’ ⇒
f a = true ∨ (g a = false ∧ before_func f g l’)
end.

Further investigation revealed five standalone lemmas about before_func in

Verdi Raft [151] which had not been factored out to StructTact. Four of these

lemmas kill the mutant.

LRT mutant in MathComp: In this mutant, the last empty list [::] is

removed from an auxiliary function used by an implementation of the merge

sort algorithm:

Fixpoint merge_sort_push s1 ss := match ss with
| [::] :: ss’ | [::] as ss’ ⇒ s1 :: ss’
| s2 :: ss’ ⇒
[::] :: merge_sort_push (merge s1 s2) ss’

end.

In essence, mutation preserves the functional correctness of sorting. How-

ever, the complexity of the sort function changes from O(n log n) to O(n2).

According to the author of the function, Georges Gonthier, “the key but un-

stated invariant of ss is that its ith item has size 2i if it is not empty, so

that merge_sort_push only performs perfectly balanced merges.” He con-

cluded that “without the [::] placeholder the MathComp sort becomes two

111

element-wise insertion sort.”

BFT in Flocq: In this mutant, false is changed to true in the following

function:
Definition shr_1 mrs :=
let ’(Build_shr_record m r s) := mrs in
let s := orb r s in
match m with (* ... *) | Zneg (xO p) ⇒
Build_shr_record (Zneg p) false s

Although there are several lemmas about shr_1 below the definition,

none of them touch this particular match case. In fact, there are no lemmas

at all about Zneg (negative integer) cases of shr_1. This indicates that Zneg

cases in shr_1 are unused elsewhere, and we found that they are actually

assumed away implicitly by guards in lemmas.

Discussion: All killed mutants we sampled were killed by a nearby proof

(same file). PrettyParsing and TLC have the lowest mutation scores of all

projects; 83.33% and 76.50%, respectively. We expected the utility libraries

(Coq-std++, TLC, and StructTact) to have relatively low scores, due to the

greater number of functions and datatypes than in more focused verification

projects. The relatively high score of Coq-std++, despite its size in terms of

LOC, may indicate that most definitions are extensively specified. To corrob-

orate this, the main author of Coq-std++ emphasized in personal communi-

cation that he consistently proves several lemmas about each new definition

added to the library. The relatively low score of PrettyParsing is likely partly

due to including functions and datatypes for pretty-printing of trees adapted

from other work with no correctness theorems. The relatively low score of

112

TLC is not surprising given the library’s size in terms of LOC, high number

of definitions, and ambition to replace the standard library.

4.6 Threats to Validity

External: Our results may not generalize to all Coq projects. To mitigate this

threat, we chose popular projects that differ in domain, size, number of proofs,

and proof checking time. As our infrastructure builds on Coq 8.9, we could

only use projects that work with this Coq version. We report results for a single

hardware platform, and results may differ if experiments are run elsewhere.

We ran all our experiments on two platforms, but we reported results only

for one of them (more modern) due to space limitations. Although absolute

numbers differ across platforms, our conclusions remain unchanged. We only

analyzed a subset of killed and live mutants in our qualitative study. Our

findings could differ if we had inspected a different set or more mutants. We

mitigate this threat by systematically sampling mutants for inspection.

Internal: Our implementation of the tool and/or scripts may have bugs. To

mitigate this threat, we performed extensive unit testing of our code. We

also checked that results were the same across modes and that execution time

differences were negligible across several runs. Finally, during our qualitative

analysis, we validated the outcome of each mutant we studied.

Construct: Our work targets only Coq. Nevertheless, many mutation op-

erators described in Section 4.3.2, e.g., all operators in the Lists category,

are applicable to projects using other proof assistants, e.g., Lean [47] and Is-

113

abelle/HOL [111]. However, more research is needed to develop full sets of

operators and evaluate mutation proving for other proof assistants.

4.7 Discussion

Mutation operator design: We implemented and experimented with a mu-

tation operator for changing the order of cases in a pattern matching expres-

sion, inspired by Le et al. [98]. However, mutants generated by this operator

were nearly always killed immediately (stillborn), since Coq pattern match-

ing branches tend to be completely unambiguous, and the strong type system

does not permit leaving out matching cases. This illustrates the problem of

defining general operators in Gallina, as opposed to operators that depend on

the standard library, e.g., addition and subtraction for Peano arithmetic.

Scope of mutation: We do not consider mutation of lemma statements or of

Ltac proof scripts. The main reason is that we then largely lose the analogy

between mutation proving and mutation testing, since mutation of test code

is not performed in the latter. Inductive predicates, which are a special form

of inductive datatypes, is arguably a borderline case, but we included them

for mutation based on their established interpretation as cut-free higher-order

Prolog programs [14].

114

4.8 Summary

We proposed mutation proving, a technique for analyzing verification

projects that use proof assistants. We implemented our technique for the

Coq proof assistant in a tool dubbed mCoq. mCoq applies a set of mutation

operators to Coq definitions of functions and datatypes, inspired by our experi-

ence and operators previously defined for functional programming languages.

mCoq then checks proofs of lemmas affected by operator application. To

make our technique feasible in practice, we implemented several optimizations

in mCoq such as parallel proof checking. We applied mCoq to 12 medium

and large scale Coq projects, and recorded whether proofs passed or failed

when applying different mutation operators. We then qualitatively analyzed

the failed proofs, finding several examples of weak specifications. Moreover,

our work has already had significant impact on Coq tooling, and our tool

helped to uncover a bug in Coq itself. We believe mCoq can be useful both

to proof engineers for improving the quality of their verification projects and

to researchers for evaluating proof engineering techniques.

115

Chapter 5

Related Work

This chapter presents an overview of the work related to the contribu-

tions of this dissertation.

5.1 Incremental Verification

Kurshan et al. [96] consider the problem of incremental verification of

models of systems, assuming full verification is expensive. They suggest tech-

niques based on hashes of reduced models to avoid performing re-verification

when the required properties still hold in a changed model. This is similar

to smart hashing in regression testing [69]. Henzinger et al. [84] consider in-

cremental verification of safety properties of programs using model checking.

In contrast to regression proving, whose aim is to find failing proofs quickly,

their approach uses previous results to attempt to automatically overcome in-

stances where a program change makes verification fail. Bohme et al. [19] in-

troduced partition-based regression verification that partitions the input space

and gradually performs verification. Godlin and Strichman [71] define regres-

sion verification as establishing the equivalence of successive, related versions

of programs. In effect, regression verification is a strengthening of regression

116

testing, which can only provide limited evidence of preserved functionality.

5.2 Parallel and Asynchronous Proof Checking

Coq’s 1970s precursor LCF was based on synchronous, sequential in-

teraction between a human prover and the proof tool [148]. This legacy is

reflected in Coq’s read-eval-print loop, and by extension, in the top-down in-

teraction with Coq files in classic interfaces such as Emacs with Proof General.

Over time, both the assumption on synchrony and on sequential interaction

have been reconsidered, which enabled us to develop iCoq.

Support for parallelism in construction and checking of proofs to exploit

multi-core hardware has been addressed previously in several proof assistants,

notably Isabelle [147] and ACL2 [67, 124]. Isabelle leverages the support for

threads in its “host” compiler, Poly/ML, to spawn proof checking tasks pro-

cessed by parallel workers. Using a notion of proof promises, proofs that require

some previous unfinished result can proceed normally and become finalized

when extant tasks terminate. Isabelle also includes a build system with in-

tegrated support for checking of proofs and management of parallel workers.

ACL2 uses the thread-based parallelism in LISP systems to, e.g., perform par-

allel proof discovery and fine-grained proof case checking. The lack of native

threads in Coq’s host language, OCaml, prevents similar low-cost fine-grained

parallelism [147]. However, more coarse-grained parallelism is possible at the

level of processes.

Parallelism at the task level usually necessitates support for some form

117

of asynchrony, which can then also be exploited at the user interface level

to provide greater interactivity. Architectural changes in Isabelle towards a

document-oriented asynchronous interaction model were pioneered by Wen-

zel [148], resulting in the Prover IDE (PIDE) framework. PIDE defines an

XML-based protocol between a proof assistant backend and clients such as

IDEs. Efforts to bring asynchronous interaction to Coq were initiated by Wen-

zel [146] and Barras et al. [8], resulting in a new Isabelle-inspired document-

oriented interaction model and support for asynchronous proof processing in

Coq 8.5 [9]. The potential of Coq’s new document model to improve user pro-

ductivity was highlighted in an extension to the Eclipse IDE called Coqoon

by Faithfull et al. [58], which performs fine-grained monitoring of changes to

Coq files and reactively processes modified definitions and proofs.

5.3 Regression Testing

There has been more than three decades of work on regression testing

techniques [117, 154]. These techniques were the key inspiration for the work

presented in this dissertation. Specifically, our work is closely related to re-

gression test selection (RTS) [16, 54, 69, 100, 117, 118, 125, 127, 136, 154]. Most

of the pioneering work on RTS has studied techniques that collect, for each

test, fine-grained dependencies, e.g,. statements and methods. These tech-

niques are frequently unsafe (i.e., they may miss to select some affected tests)

for modern programming languages. Recently, Gligoric et al. [69] introduced

Ekstazi, an RTS technique that collects dynamic file dependencies; Ekstazi is

118

more inclusive than prior techniques. Interestingly, we have decided to use

fine-grained dependencies for proof selection in iCoq. Our insight is that Gal-

lina does not include the language features that make many RTS techniques

unsafe for imperative languages, e.g., dependency injection, class inheritance,

and macros. To the best of our knowledge, iCoq is the first proof selection

tool.

5.4 Build Systems

Our dependency graph in iCoq is similar to dependency graphs seen

in build systems like Google’s Bazel [10] and Microsoft’s CloudMake [37, 57].

Bazel keeps track of dependencies on a level of targets. Similarly to how iCoq

discovers changed proofs and definitions, these modern build systems discover

affected targets by computing checksums of the files used by the target and

then marking all nodes/targets that depend on the modified node/target.

5.5 Mutation Testing of Functional Programs

Le et al. [98, 99] implemented a mutation testing framework, called

MuCheck, for the Haskell language. MuCheck applies mutation operators

nondeterministically at the level of abstract syntax trees. The framework is

applied in a case study involving sorting of lists via the Quicksort algorithm

and random tests using the QuickCheck framework. Cheng et al. [33] used

MuCheck to evaluate test coverage for Haskell programs. Taylor and Der-

rick [135] presented a traditional mutation testing framework for Erlang called

119

mu2.

Duregård [53] proposed a black-box approach to mutation testing of

Haskell code, on top of the QuickCheck framework. He defines a mutation

score as the probability that a random mutant survives a random test case,

and a user can obtain an estimate of this probability by sampling. The func-

tion under test must be an instance of a specific type class that allows it to

be mutated (without modifying it in-place). Braquehais and Runciman [24]

presented a Haskell framework, FitSpec, that uses mutation testing to mea-

sure adequacy of sets of properties specified in property-testing frameworks

such as QuickCheck and SmallCheck. The aim is to assist in determining

both the completeness and minimality of a proposed property set. If either is

lacking, output from FitSpec can help refining the property set. FitSpec takes

a black-box view of mutations, and uses enumeration to produce mutants.

On one hand, black-box mutation can be applied in a wider context

than operator-based mutation, e.g., to functions associated with native code

(with inaccessible definitions). On the other hand, black-box mutation some-

times requires defining explicit functions that return mutants. While black-box

mutation can be implemented in Coq, we believe the purity and simplicity of

Coq’s Gallina language make the advantages of black-box mutation modest

compared to operator-based mutation. Moreover, we intuitively aim to cap-

ture common errors by proof engineers, which is more difficult to do in a

black-box setting.

120

5.6 Mutation of Specifications

In mCoq, we took inspiration from Groce et al. [80], who use a muta-

tion analysis approach to improve the process of verification based on model

checking. The goal of mutating a model is to facilitate better understand-

ing of whether successful verification actually implies a desired property. In

addition to mutating the model, verification is also guided to cover mutated

code. Gopinath and Walkingshaw [79] use mutation analysis to evaluate the

effectiveness of type annotations in Python programs.

5.7 Analysis and Testing in Proof Assistants

Berghofer and Nipkow first considered random testing to assist users of

the proof assistant Isabelle to specify and verify programs [13]. Bulwahn subse-

quently improved the Isabelle testing facilities [26]. A Coq testing framework

was proposed by Paraskevopoulou et al. [122]. Blanchette and Nipkow [18]

presented a counterexample generator called Nitpick for Isabelle/HOL. Given

a parameterized property (proposed lemma), Nitpick attempts to find concrete

instances of the parameters for which the property does not hold. Cruanes and

Blanchette later presented a general tool [45] for counterexample generation

and showed how to adapt it to dependent type theory, which is the foundation

of Coq. Generators can use several backends, e.g., relational model finders

and SAT solvers. Johansson [90] proposed a tool for theory exploration in

Isabelle/HOL called Hipster, which attempts to prove interesting facts from a

given set of definitions.

121

Focused testing, generation, and exploration can lead to similar con-

clusions as mutation proving, e.g., that a definition needs to be changed due

to being inadequate in some way. However, these techniques do not consider

alternative “worlds”, where definitions under consideration are different from

the present ones, and are thus largely orthogonal to mutation proving. For ex-

ample, Hipster can be applied to mutants to reveal consequences of alternative

definitions, similarly to applying abduction on logical theories.

122

Chapter 6

Conclusion

One way to develop correct-by-construction software is by using proof

assistants, i.e., writing machine-checked proofs of correctness at the level of

executable code. Although the obtained guarantees via such development are

highly desirable, proof assistants are not currently well adapted to large-scale

software development, and are expensive to use in terms of both time and

expertise. The contributions of this dissertation address some of the problems.

First, this dissertation introduced regression proof selection, a tech-

nique that tracks fine-grained dependencies between Coq definitions, proposi-

tions, and proofs, and only checks those proofs affected by changes between

two revisions. We instantiated the technique in a tool dubbed iCoq. We

applied iCoq to track dependencies across many revisions in several large

Coq projects and showed that iCoq substantially outperforms, in terms of

proof checking time, both proof checking from scratch and Coq’s timestamp-

based toolchain for incremental checking. Second, this dissertation described

the design and implementation of piCoq, a set of techniques that blend the

power of parallel proof checking and proof selection. Our results indicate that

proof-level parallelism and proof selection is consistently much faster than both

123

sequential checking from scratch and sequential checking with proof selection.

Third, this dissertation introduced mutation proving, a technique for analyz-

ing quality of verification projects that use proof assistants. We implemented

our technique for the Coq proof assistant in a tool dubbed mCoq. mCoq

applies a set of mutation operators to Coq functions and datatypes, and then

checks proofs of lemmas affected by operator application. We applied mCoq

to several medium and large scale Coq projects, and recorded whether proofs

passed or failed when applying different mutation operators. We then qual-

itatively analyzed the failed proofs, and found several examples of weak and

incomplete specifications.

Although our work has already had impact on Coq and the Coq commu-

nity, we believe that we are at the beginning of a new era for proof development

where proof engineers benefit from software engineering techniques. We hope

to see many new and exciting techniques that improve lives of proof engineers.

124

Bibliography

[1] Sidney Amani, Alex Hixon, Zilin Chen, Christine Rizkallah, Peter Chubb,

Liam O’Connor, Joel Beeren, Yutaka Nagashima, Japheth Lim, Thomas

Sewell, et al. Cogent: Verifying high-assurance file system implementa-

tions. Operating Systems Review, 50(2):175–188, 2016.

[2] Paul Ammann and Jeff Offutt. Introduction to Software Testing. Cam-

bridge University Press, 2008.

[3] June Andronick, Ross Jeffery, Gerwin Klein, Rafal Kolanski, Mark Sta-

ples, He (Jason) Zhang, and Liming Zhu. Large-scale formal verification

in practice: A process perspective. In International Conference on Soft-

ware Engineering, pages 1002–1011, 2012.

[4] Andrew W. Appel. Verification of a cryptographic primitive: SHA-256.

Trans. Program. Lang. Syst., 37(2):7:1–7:31, 2015.

[5] Andrew W. Appel and David B. MacQueen. Separate compilation for

Standard ML. In Conference on Programming Language Design and

Implementation, pages 13–23, 1994.

[6] David Aspinall. Proof General: A generic tool for proof development.

In International Conference on Tools and Algorithms for the Construc-

tion and Analysis of Systems, pages 38–43, 2000.

125

[7] Thomas Ball and Orna Kupferman. Vacuity in testing. In Tests and

Proofs, pages 4–17, 2008.

[8] Bruno Barras, Lourdes del Carmen González Huesca, Hugo Herbelin,

Yann Régis-Gianas, Enrico Tassi, Makarius Wenzel, and Burkhart Wolff.

Pervasive parallelism in highly-trustable interactive theorem proving sys-

tems. In Intelligent Computer Mathematics: MKM, Calculemus, DML,

and Systems and Projects, pages 359–363, 2013.

[9] Bruno Barras, Carst Tankink, and Enrico Tassi. Asynchronous process-

ing of Coq documents: From the kernel up to the user interface. In

International Conference on Interactive Theorem Proving, pages 51–66,

2015.

[10] Bazel - Blog. https://bazel.io/blog/.

[11] Kent Beck. Extreme Programming Explained: Embrace Change. 2000.

[12] Jonathan Bell, Gail E. Kaiser, Eric Melski, and Mohan Dattatreya. Ef-

ficient dependency detection for safe Java test acceleration. In Interna-

tional Symposium on Foundations of Software Engineering, pages 770–

781, 2015.

[13] Stefan Berghofer and Tobias Nipkow. Random testing in Isabelle/HOL.

In International Conference on Software Engineering and Formal Meth-

ods, pages 230–239, 2004.

126

https://bazel.io/blog/

[14] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Pro-

gram Development: Coq’Art: The Calculus of Inductive Constructions.

Springer, 2004.

[15] Karthikeyan Bhargavan, Barry Bond, Antoine Delignat-Lavaud, Cé-

dric Fournet, Chris Hawblitzel, Catalin Hritcu, Samin Ishtiaq, Markulf

Kohlweiss, Rustan Leino, Jay Lorch, et al. Everest: Towards a verified,

drop-in replacement of HTTPS. In Summit on Advances in Program-

ming Languages, pages 1:1–1:12, 2017.

[16] Swarnendu Biswas, Rajib Mall, Manoranjan Satpathy, and Srihari Suku-

maran. Regression test selection techniques: A survey. Informatica

(Slovenia), 35(3):289–321, 2011.

[17] Dines Bjørner and Klaus Havelund. 40 years of formal methods. In

International Symposium on Formal Methods, pages 42–61, 2014.

[18] Jasmin Christian Blanchette and Tobias Nipkow. Nitpick: A coun-

terexample generator for higher-order logic based on a relational model

finder. In International Conference on Interactive Theorem Proving,

pages 131–146, 2010.

[19] Marcel Böhme, Bruno C. d. S. Oliveira, and Abhik Roychoudhury. Partition-

based regression verification. In International Conference on Software

Engineering, pages 302–311, 2013.

127

[20] S. Boldo, J. H. Jourdan, X. Leroy, and G. Melquiond. A formally-

verified C compiler supporting floating-point arithmetic. In Symposium

on Computer Arithmetic, pages 107–115, 2013.

[21] S. Boldo and G. Melquiond. Flocq: A unified library for proving

floating-point algorithms in Coq. In Symposium on Computer Arith-

metic, pages 243–252, 2011.

[22] Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. Coquelicot:

A user-friendly library of real analysis for Coq. Mathematics in Com-

puter Science, 9(1):41–62, 2015.

[23] Thomas Braibant and Damien Pous. Deciding Kleene Algebras in Coq.

Logical Methods in Computer Science, 8, 2012.

[24] Rudy Braquehais and Colin Runciman. FitSpec: Refining property sets

for functional testing. In International Symposium on Haskell, pages

1–12, 2016.

[25] Timothy A. Budd, Richard A. DeMillo, Richard J. Lipton, and Fred-

erick G. Sayward. Theoretical and empirical studies on using program

mutation to test the functional correctness of programs. In Symposium

on Principles of Programming Languages, pages 220–233, 1980.

[26] Lukas Bulwahn. The new Quickcheck for Isabelle: Random, exhaus-

tive and symbolic testing under one roof. In Conference on Certified

Programs and Proofs, pages 92–108, 2012.

128

[27] Jeanderson Candido, Luis Melo, and Marcelo d’Amorim. Test suite

parallelization in open-source projects: A study on its usage and impact.

In Automated Software Engineering, pages 838–848, 2017.

[28] Ahmet Celik, Karl Palmskog, and Milos Gligoric. iCoq: Regression

proof selection for large-scale verification projects. In Automated Soft-

ware Engineering, pages 171–182, 2017.

[29] Ahmet Celik, Karl Palmskog, and Milos Gligoric. A regression proof

selection tool for Coq. In International Conference on Software Engi-

neering, Demo, pages 117–120, 2018.

[30] Arthur Charguéraud. The optimal fixed point combinator. In Interna-

tional Conference on Interactive Theorem Proving, pages 195–210, 2010.

[31] Haogang Chen, Tej Chajed, Alex Konradi, Stephanie Wang, Atalay İleri,

Adam Chlipala, M. Frans Kaashoek, and Nickolai Zeldovich. Verifying

a high-performance crash-safe file system using a tree specification. In

Symposium on Operating Systems Principles, pages 270–286, 2017.

[32] Linchao Chen and Lingming Zhang. Speeding up mutation testing via

regression test selection: An extensive study. In International Con-

ference on Software Testing, Verification, and Validation, pages 58–69,

2018.

[33] Yufeng Cheng, Meng Wang, Yingfei Xiong, Dan Hao, and Lu Zhang.

Empirical evaluation of test coverage for functional programs. In Inter-

129

national Conference on Software Testing, Verification, and Validation,

pages 255–265, 2016.

[34] M. Chilowicz, E. Duris, and G. Roussel. Syntax tree fingerprinting

for source code similarity detection. In International Conference on

Program Comprehension, pages 243–247, 2009.

[35] Adam Chlipala. Ltac anti-patterns, 2019. http://adam.chlipala.ne

t/cpdt/html/Large.html.

[36] Interview with professor Adam Chlipala at MIT. https://www.functi

onalgeekery.com/episode-101-adam-chlipala.

[37] Maria Christakis, K. Rustan M. Leino, and Wolfram Schulte. Formaliz-

ing and verifying a modern build language. In International Symposium

on Formal Methods, pages 643–657, 2014.

[38] cloc - counts blank lines, comment lines, and physical lines of source

code in many programming languages. https://github.com/AlDania

l/cloc.

[39] Henry Coles. PIT mutation testing, 2010. http://pitest.org.

[40] coq-dpdgraph. https://github.com/Karmaki/coq-dpdgraph.

[41] Coq Team. Coq manual: Syntax extensions and interpretation scopes,

2019. https://coq.inria.fr/doc/user-extensions/syntax-exten

sions.html.

130

http://adam.chlipala.net/cpdt/html/Large.html
http://adam.chlipala.net/cpdt/html/Large.html
https://www.functionalgeekery.com/episode-101-adam-chlipala
https://www.functionalgeekery.com/episode-101-adam-chlipala
https://github.com/AlDanial/cloc
https://github.com/AlDanial/cloc
http://pitest.org
https://github.com/Karmaki/coq-dpdgraph
https://coq.inria.fr/doc/user-extensions/syntax-extensions.html
https://coq.inria.fr/doc/user-extensions/syntax-extensions.html

[42] Coq Team. Coq manual: Utilities, 2019. https://coq.inria.fr/doc

/practical-tools/utilities.html.

[43] Coquelicot Git repository. https://scm.gforge.inria.fr/anonscm/

git/coquelicot/coquelicot.git.

[44] Coq manual: Utilities. https://coq.inria.fr/refman/Reference-M

anual017.html.

[45] Simon Cruanes and Jasmin Christian Blanchette. Extending Nunchaku

to dependent type theory. In HaTT@IJCAR, pages 3–12, 2016.

[46] CTLTCTL Git repository. https://github.com/coq-contribs/ctlt

ctl.git.

[47] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn,

and Jakob von Raumer. The Lean theorem prover (system description).

In International Conference on Automated Deduction, pages 378–388,

2015.

[48] David Delahaye. A tactic language for the system Coq. In Logic for

Programming and Automated Reasoning, pages 85–95, 2000.

[49] Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward. Hints

on test data selection: Help for the practicing programmer. Computer,

11(4):34–41, 1978.

131

https://coq.inria.fr/doc/practical-tools/utilities.html
https://coq.inria.fr/doc/practical-tools/utilities.html
https://scm.gforge.inria.fr/anonscm/git/coquelicot/coquelicot.git
https://scm.gforge.inria.fr/anonscm/git/coquelicot/coquelicot.git
https://coq.inria.fr/refman/Reference-Manual017.html
https://coq.inria.fr/refman/Reference-Manual017.html
https://github.com/coq-contribs/ctltctl.git
https://github.com/coq-contribs/ctltctl.git

[50] Coq development team. Coq Package Index, 2018. https://coq.inri

a.fr/opam/www/.

[51] Coq development team. Coq proof assistant home page, 2018. https:

//coq.inria.fr/.

[52] MathComp development team. Mathematical components project, 2018.

https://math-comp.github.io/math-comp.

[53] Jonas Duregård. Automating Black-Box Property Based Testing. PhD

thesis, Chalmers University of Technology, 2016.

[54] Emelie Engström, Per Runeson, and Mats Skoglund. A systematic

review on regression test selection techniques. Journal of Information

and Software Technology, 52(1):14–30, 2010.

[55] Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam

Chlipala. Simple high-level code for cryptographic arithmetic-with

proofs, without compromises. In Simple High-Level Code for Cryp-

tographic Arithmetic-With Proofs, Without Compromises, pages 73–90,

2019.

[56] Sebastian Erdweg, Moritz Lichter, and Weiel Manuel. A sound and

optimal incremental build system with dynamic dependencies. In Con-

ference on Object-Oriented Programming, Systems, Languages, and Ap-

plications, pages 89–106, 2015.

132

https://coq.inria.fr/opam/www/
https://coq.inria.fr/opam/www/
https://coq.inria.fr/
https://coq.inria.fr/
https://math-comp.github.io/math-comp

[57] Hamed Esfahani, Jonas Fietz, Qi Ke, Alexei Kolomiets, Erica Lan, Erik

Mavrinac, Wolfram Schulte, Newton Sanches, and Srikanth Kandula.

CloudBuild: Microsoft’s distributed and caching build service. In Inter-

national Conference on Software Engineering, Software Engineering in

Practice, pages 11–20, 2016.

[58] Alexander Faithfull, Jesper Bengtson, Enrico Tassi, and Carst Tankink.

Coqoon: An IDE for interactive proof development in Coq. In Inter-

national Conference on Tools and Algorithms for the Construction and

Analysis of Systems, pages 316–331, 2016.

[59] Finmap Git repository. https://github.com/math-comp/finmap.git.

[60] Flocq Git repository. https://scm.gforge.inria.fr/anonscm/git/

flocq/flocq.git.

[61] Fomegac Git repository, 2016. https://github.com/skeuchel/fome

gac.git.

[62] Pedro Fonseca, Kaiyuan Zhang, Xi Wang, and Arvind Krishnamurthy.

An empirical study on the correctness of formally verified distributed

systems. In European Conference on Computer Systems, pages 328–

343, 2017.

[63] Emilio Jesús Gallego Arias. SerAPI: Machine-Friendly, Data-Centric

Serialization for Coq. Technical report, MINES ParisTech, 2016. http

s://hal-mines-paristech.archives-ouvertes.fr/hal-01384408.

133

https://github.com/math-comp/finmap.git
https://scm.gforge.inria.fr/anonscm/git/flocq/flocq.git
https://scm.gforge.inria.fr/anonscm/git/flocq/flocq.git
https://github.com/skeuchel/fomegac.git
https://github.com/skeuchel/fomegac.git
https://hal-mines-paristech.archives-ouvertes.fr/hal-01384408
https://hal-mines-paristech.archives-ouvertes.fr/hal-01384408

[64] Emilio Jesús Gallego Arias. SerAPI: The Coq Se(xp)rialized Protocol,

2019. https://github.com/ejgallego/coq-serapi.

[65] Emilio Jesús Gallego Arias, Benoît Pin, and Pierre Jouvelot. jsCoq:

Towards hybrid theorem proving interfaces. In Workshop on User In-

terfaces for Theorem Provers, pages 15–27, 2017.

[66] François Garillot, Georges Gonthier, Assia Mahboubi, and Laurence

Rideau. Packaging mathematical structures. In International Confer-

ence on Theorem Proving in Higher Order Logics, pages 327–342, 2009.

[67] H. Geuvers. Proof assistants: History, ideas and future. Sadhana,

34(1):3–25, 2009.

[68] GitHub. https://github.com.

[69] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. Practical regres-

sion test selection with dynamic file dependencies. In International

Symposium on Software Testing and Analysis, pages 211–222, 2015.

[70] Milos Gligoric, Wolfram Schulte, Chandra Prasad, Danny van Velzen,

Iman Narasamdya, and Benjamin Livshits. Automated migration of

build scripts using dynamic analysis and search-based refactoring. In

Conference on Object-Oriented Programming, Systems, Languages, and

Applications, pages 599–616, 2014.

134

https://github.com/ejgallego/coq-serapi
https://github.com

[71] Benny Godlin and Ofer Strichman. Regression verification: Proving the

equivalence of similar programs. Journal of Software Testing, Verifica-

tion and Reliability, 23(3):241–258, 2013.

[72] Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David Holmes,

and Doug Lea. Java Concurrency in Practice. Addison-Wesley, 2006.

[73] Georges Gonthier. Formal proof—the four-color theorem. Notices of

the American Mathematical Society, 55(11):1382–1393, 2008.

[74] Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril

Cohen, François Garillot, Stéphane Le Roux, Assia Mahboubi, Rus-

sell O’Connor, Sidi Ould Biha, Ioana Pasca, Laurence Rideau, Alexey

Solovyev, Enrico Tassi, and Laurent Théry. A machine-checked proof

of the odd order theorem. In International Conference on Interactive

Theorem Proving, pages 163–179, 2013.

[75] Georges Gonthier and Assia Mahboubi. An introduction to small scale

reflection in Coq. Journal of Formalized Reasoning, 3(2):95–152, 2010.

[76] Georges Gonthier, Beta Ziliani, Aleksandar Nanevski, and Derek Dreyer.

How to make ad hoc proof automation less ad hoc. In International

Conference on Functional Programming, pages 163–175, 2011.

[77] Rahul Gopinath, Iftekhar Ahmed, Mohammad Amin Alipour, Carlos

Jensen, and Alex Groce. Mutation reduction strategies considered

harmful. Transactions on Reliability, 66(3):854–874, 2017.

135

[78] Rahul Gopinath, Carlos Jensen, and Alex Groce. Topsy-Turvy: A

smarter and faster parallelization of mutation analysis. In International

Conference on Software Engineering, Demo, pages 740–743, 2016.

[79] Rahul Gopinath and Eric Walkingshaw. How good are your types? Us-

ing mutation analysis to evaluate the effectiveness of type annotations.

In International Conference on Software Testing, Verification, and Val-

idation, pages 122–127, 2017.

[80] Alex Groce, Iftekhar Ahmed, Carlos Jensen, Paul E. McKenney, and

Josie Holmes. How verified (or tested) is my code? Falsification-driven

verification and testing. Automated Software Engineering, 25(4):917–

960, 2018.

[81] Alex Groce, Josie Holmes, Darko Marinov, August Shi, and Lingming

Zhang. An extensible, regular-expression-based tool for multi-language

mutant generation. In International Conference on Software Engineer-

ing, Demo, pages 25–28, 2018.

[82] Thomas Hales, Mark Adams, Gertrud Bauer, Tat Dat Dang, John Harri-

son, Le Truong Hoang, Cezary Kaliszyk, Victor Magron, Sean McLaugh-

lin, Tat Thang Nguyen, Quang Truong Nguyen, Tobias Nipkow, Steven

Obua, Joseph Pleso, Jason Rute, Alexey Solovyev, Thi Hoai An Ta,

Nam Trung Tran, Thi Diep Trieu, Josef Urban, Ky Vu, and Roland

Zumkeller. A formal proof of the Kepler conjecture. Forum of Mathe-

matics, Pi, 5, 2017.

136

[83] R. G. Hamlet. Testing programs with the aid of a compiler. Transac-

tions on Software Engineering, 3:279–290, 1977.

[84] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Marco A. A.

Sanvido. Extreme model checking. In Verification: Theory and Prac-

tice, pages 332–358, 2003.

[85] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny

Dig. Usage, costs, and benefits of continuous integration in open-source

projects. In Automated Software Engineering, pages 426–437, 2016.

[86] InfSeqExt Git repository. https://github.com/DistributedCompon

ents/InfSeqExt.git.

[87] It’s Travis CI’s 5th birthday, let’s celebrate with numbers! https://bl

og.travis-ci.com/2016-02-05-happy-fifth-birthday-travis-ci.

[88] Yue Jia and Mark Harman. An analysis and survey of the development

of mutation testing. Transactions on Software Engineering, 37(5):649–

678, 2011.

[89] Yun Jia and Mark Harman. Constructing subtle faults using higher

order mutation testing. In International Working Conference on Source

Code Analysis and Manipulation, pages 249–258, 2008.

[90] Moa Johansson. Automated theory exploration for interactive theorem

proving. In International Conference on Interactive Theorem Proving,

pages 1–11, 2017.

137

https://github.com/DistributedComponents/InfSeqExt.git
https://github.com/DistributedComponents/InfSeqExt.git
https://blog.travis-ci.com/2016-02-05-happy-fifth-birthday-travis-ci
https://blog.travis-ci.com/2016-02-05-happy-fifth-birthday-travis-ci

[91] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars

Birkedal, and Derek Dreyer. Iris from the ground up: A modular foun-

dation for higher-order concurrent separation logic. Journal of Func-

tional Programming, 28, 2018.

[92] René Just. The Major mutation framework: Efficient and scalable

mutation analysis for Java. In International Symposium on Software

Testing and Analysis, pages 433–436, 2014.

[93] Daniel Kästner, Ulrich Wünsche, Jörg Barrho, Marc Schlickling, Bern-

hard Schommer, Michael Schmidt, Christian Ferdinand, Xavier Leroy,

and Sandrine Blazy. CompCert: Practical experience on integrating

and qualifying a formally verified optimizing compiler. In Embedded

Real Time Software and Systems, pages 1–9, 2018.

[94] Gerwin Klein. Proof engineering considered essential. In International

Symposium on Formal Methods, pages 16–21. 2014.

[95] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David

Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolan-

ski, Michael Norrish, Thomas Sewell, Harvey Tuch, and SimonWinwood.

seL4: Formal verification of an OS kernel. In Symposium on Operating

Systems Principles, pages 207–220, 2009.

[96] Hardin Kurshan, R. H. Hardin, R. P. Kurshan, K. L. Mcmillan, J. A.

Reeds, and N. J. A. Sloane. Efficient regression verification. In Inter-

national Workshop on Discrete Event Systems, pages 147–150, 1996.

138

[97] Colin J. W. Kushneryk and Paul D. Barnett. Parallel test execution,

2010. https://patents.google.com/patent/US20120102462A1/en.

[98] Duc Le, Mohammad Amin Alipour, Rahul Gopinath, and Alex Groce.

MuCheck: An extensible tool for mutation testing of Haskell programs.

In International Symposium on Software Testing and Analysis, pages

429–432, 2014.

[99] Duc Le, Mohammad Amin Alipour, Rahul Gopinath, and Alex Groce.

Mutation testing of functional programming languages. Technical re-

port, Oregon State University, 2014.

[100] Owolabi Legunsen, Farah Hariri, August Shi, Yafeng Lu, Lingming Zhang,

and Darko Marinov. An extensive study of static regression test se-

lection in modern software evolution. In International Symposium on

Foundations of Software Engineering, pages 583–594, 2016.

[101] Xavier Leroy. The formal verification of compilers. https://deepspec

.org/event/dsss17/leroy-dsss17.pdf.

[102] Xavier Leroy. Manifest types, modules, and separate compilation. In

Symposium on Principles of Programming Languages, pages 109–122,

1994.

[103] Xavier Leroy. Formal verification of a realistic compiler. Commun.

ACM, 52(7):107–115, 2009.

139

https://patents.google.com/patent/US20120102462A1/en
https://deepspec.org/event/dsss17/leroy-dsss17.pdf
https://deepspec.org/event/dsss17/leroy-dsss17.pdf

[104] Xavier Leroy. QuickChick Interface, 2018. https://softwarefounda

tions.cis.upenn.edu/qc-current/QuickChickInterface.html.

[105] Mohsen Lesani, Christian J. Bell, and Adam Chlipala. Chapar: Certi-

fied causally consistent distributed key-value stores. In Symposium on

Principles of Programming Languages, pages 357–370, 2016.

[106] Pierre Letouzey and Laurent Théry. Formalizing Stålmarck’s algorithm

in Coq. In Theorem Proving in Higher Order Logics, pages 388–405,

2000.

[107] Gregory Malecha, Greg Morrisett, Avraham Shinnar, and Ryan Wis-

nesky. Toward a verified relational database management system. In

Symposium on Principles of Programming Languages, pages 237–248,

2010.

[108] John McCarthy. Recursive functions of symbolic expressions and their

computation by machine, part i. Commun. ACM, 3(4):184–195, 1960.

[109] Julian Mendez. jsexp, 2019. https://github.com/julianmendez/js

exp.

[110] Eric Mullen, Stuart Pernsteiner, James R. Wilcox, Zachary Tatlock, and

Dan Grossman. Oeuf: Minimizing the Coq extraction TCB. In Confer-

ence on Certified Programs and Proofs, pages 172–185, 2018.

[111] Tobias Nipkow, Lawrence C. Paulson, and MarkusWenzel. Isabelle/HOL

— A Proof Assistant for Higher-Order Logic. Springer, 2002.

140

https://softwarefoundations.cis.upenn.edu/qc-current/QuickChickInterface.html
https://softwarefoundations.cis.upenn.edu/qc-current/QuickChickInterface.html
https://github.com/julianmendez/jsexp
https://github.com/julianmendez/jsexp

[112] Milad Niqui and Yves Bertot. QArith: Coq formalisation of lazy rational

arithmetic. In Types for Proofs and Programs, pages 309–323, 2004.

[113] OCaml Labs. PPX, 2017. http://ocamllabs.io/doc/ppx.html.

[114] The formalization of the odd order theorem has been completed Septem-

ber 20th 2012. https://web.archive.org/web/20161113010414/ht

tp://www.msr-inria.fr:80/news/the-formalization-of-the-odd-o

rder-theorem-has-been-completed-the-20-septembre-2012.

[115] Diego Ongaro and John Ousterhout. In search of an understandable

consensus algorithm. In USENIX Annual Technical Conference, pages

305–319, 2014.

[116] OCaml Package Manager, 2018. https://opam.ocaml.org.

[117] Alessandro Orso and Gregg Rothermel. Software testing: A research

travelogue (2000–2014). In Future of Software Engineering, pages 117–

132, 2014.

[118] Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. Scaling regres-

sion testing to large software systems. In International Symposium on

Foundations of Software Engineering, pages 241–251, 2004.

[119] Anne Pacelet and Yves Bertot. coq-dpdgraph, 2019. https://github

.com/Karmaki/coq-dpdgraph.

141

http://ocamllabs.io/doc/ppx.html
https://web.archive.org/web/20161113010414/http://www.msr-inria.fr:80/news/the-formalization-of-the-odd-order-theorem-has-been-completed-the-20-septembre-2012
https://web.archive.org/web/20161113010414/http://www.msr-inria.fr:80/news/the-formalization-of-the-odd-order-theorem-has-been-completed-the-20-septembre-2012
https://web.archive.org/web/20161113010414/http://www.msr-inria.fr:80/news/the-formalization-of-the-odd-order-theorem-has-been-completed-the-20-septembre-2012
https://opam.ocaml.org
https://github.com/Karmaki/coq-dpdgraph
https://github.com/Karmaki/coq-dpdgraph

[120] Karl Palmskog, Ahmet Celik, and Milos Gligoric. piCoq: Parallel re-

gression proving for large-scale verification projects. In International

Symposium on Software Testing and Analysis, pages 344–355, 2018.

[121] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon,

and Mark Harman. Mutation testing advances: An analysis and survey.

Advances in Computers, 2018.

[122] Zoe Paraskevopoulou, Cătălin Hritçu, Maxime Dénès, Leonidas Lam-

propoulos, and Benjamin C. Pierce. Foundational property-based test-

ing. In International Conference on Interactive Theorem Proving, pages

325–343, 2015.

[123] Frank Pfenning and Christine Paulin-Mohring. Inductively defined

types in the Calculus of Constructions. In International Conference on

Mathematical Foundations of Programming Semantics, pages 209–228,

1990.

[124] David L. Rager, Warren A. Hunt, and Matt Kaufmann. A parallelized

theorem prover for a logic with parallel execution. In International

Conference on Interactive Theorem Proving, pages 435–450, 2013.

[125] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G. Ryder, and Ophelia

Chesley. Chianti: A tool for change impact analysis of Java programs.

In Conference on Object-Oriented Programming, Systems, Languages,

and Applications, pages 432–448, 2004.

142

[126] Vitor Rodrigues and Matthew Fluet. Surface effects for determinis-

tic parallelism. In Symposium on Trends in Functional Programming,

2015. ftp://ftp-sop.inria.fr/indes/TFP15/TFP2015_submission

_5.pdf.

[127] Gregg Rothermel and Mary Jean Harrold. Analyzing regression test

selection techniques. Transactions on Software Engineering, 22(8):529–

551, 1996.

[128] Ilya Sergey, James R Wilcox, and Zachary Tatlock. Programming and

proving with distributed protocols. Symposium on Principles of Pro-

gramming Languages, 2:28:1–28:30, 2017.

[129] Matthieu Sozeau and Nicolas Tabareau. Universe polymorphism in Coq.

In International Conference on Interactive Theorem Proving, pages 499–

514, 2014.

[130] Speeding up the build. http://docs.travis-ci.com/user/speedin

g-up-the-build.

[131] StructTact Git repository. https://github.com/uwplse/StructTact

.git.

[132] Surfaceeffects Git repository. https://github.com/esmifro/Surface

Effects.git.

[133] Enrico Tassi. Coq manual: Asynchronous and parallel proof processing.

https://coq.inria.fr/refman/Reference-Manual031.html.

143

ftp://ftp-sop.inria.fr/indes/TFP15/TFP2015_submission_5.pdf
ftp://ftp-sop.inria.fr/indes/TFP15/TFP2015_submission_5.pdf
http://docs.travis-ci.com/user/speeding-up-the-build
http://docs.travis-ci.com/user/speeding-up-the-build
https://github.com/uwplse/StructTact.git
https://github.com/uwplse/StructTact.git
https://github.com/esmifro/SurfaceEffects.git
https://github.com/esmifro/SurfaceEffects.git
https://coq.inria.fr/refman/Reference-Manual031.html

[134] Enrico Tassi. Coq pull request #9206, 2018. https://github.com/c

oq/coq/pull/9206.

[135] Ramsay Taylor and John Derrick. mu2: A refactoring-based mutation

testing framework for Erlang. In Testing Software and Systems, pages

178–193, 2015.

[136] Testing at the speed and scale of Google. http://google-engtools.bl

ogspot.com/2011/06/testing-at-speed-and-scale-of-google.html.

[137] Travis CI. https://travis-ci.org.

[138] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta,

Rocco Oliveto, Andrea De Lucia, and Denys Poshyvanyk. There and

back again: Can you compile that snapshot? Journal of Software: Evo-

lution and Process, 29(4), 2017.

[139] UniMath Git repository. https://github.com/UniMath/UniMath.git.

[140] Eelis Van der Weegen and James McKinna. A machine-checked proof

of the average-case complexity of Quicksort in Coq. In Types for Proofs

and Programs, pages 256–271, 2009.

[141] Verdi Git repository. https://github.com/uwplse/verdi.git.

[142] Vladimir Voevodsky. An experimental library of formalized mathemat-

ics based on the univalent foundations. Mathematical Structures in

Computer Science, 25(5):1278–1294, 2015.

144

https://github.com/coq/coq/pull/9206
https://github.com/coq/coq/pull/9206
http://google-engtools.blogspot.com/2011/06/testing-at-speed-and-scale-of-google.html
http://google-engtools.blogspot.com/2011/06/testing-at-speed-and-scale-of-google.html
https://travis-ci.org
https://github.com/UniMath/UniMath.git
https://github.com/uwplse/verdi.git

[143] WAD home page. https://github.com/Fingertips/WAD.

[144] Bo Wang, Yingfei Xiong, Yangqingwei Shi, Lu Zhang, and Dan Hao.

Faster mutation analysis via equivalence modulo states. In International

Symposium on Software Testing and Analysis, pages 295–306, 2017.

[145] WeakUpTo Git repository. https://github.com/coq-contribs/weak

-up-to.git.

[146] Makarius Wenzel. PIDE as front-end technology for Coq. CoRR,

abs/1304.6626, 2013.

[147] Makarius Wenzel. Shared-memory multiprocessing for interactive theo-

rem proving. In International Conference on Interactive Theorem Prov-

ing, pages 418–434, 2013.

[148] Makarius Wenzel. Asynchronous user interaction and tool integration

in Isabelle/PIDE. In International Conference on Interactive Theorem

Proving, pages 515–530, 2014.

[149] Makarius Wenzel. Interactive theorem proving from the perspective of

Isabelle/Isar. In All about Proofs, Proofs for All, volume 55. 2015.

[150] James R. Wilcox, DougWoos, Pavel Panchekha, Zachary Tatlock, Xi Wang,

Michael D. Ernst, and Thomas Anderson. Verdi: A framework for im-

plementing and formally verifying distributed systems. In Conference

on Programming Language Design and Implementation, pages 357–368,

2015.

145

https://github.com/Fingertips/WAD
https://github.com/coq-contribs/weak-up-to.git
https://github.com/coq-contribs/weak-up-to.git

[151] Doug Woos, James R. Wilcox, Steve Anton, Zachary Tatlock, Michael D.

Ernst, and Thomas Anderson. Planning for change in a formal verifica-

tion of the Raft consensus protocol. In Conference on Certified Programs

and Proofs, pages 154–165, 2016.

[152] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and

understanding bugs in C compilers. In Conference on Programming

Language Design and Implementation, pages 283–294, 2011.

[153] Katherine Q Ye, Matthew Green, Naphat Sanguansin, Lennart Beringer,

Adam Petcher, and Andrew W Appel. Verified correctness and security

of mbedTLS HMAC-DRBG. In Conference on Computer and Commu-

nications Security, pages 2007–2020, 2017.

[154] Shin Yoo and Mark Harman. Regression testing minimization, selection

and prioritization: A survey. Journal of Software Testing, Verification

and Reliability, 22(2):67–120, 2012.

146

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter 1. Introduction
	Chapter 2. iCoq: Regression Proof Selection for Large-Scale Verification Projects
	Overview
	Coq Background
	Technique
	Phases
	iCoq Components and Workflow

	Evaluation
	Verification Projects Under Study
	Variables
	Experiment Procedure
	Results

	Discussion
	Threats to Validity
	Summary

	Chapter 3. piCoq: Parallel Regression Proving for Large-Scale Verification Projects
	Overview
	Coq Background
	Coq Proof Checking Toolchain
	Asynchronous Proof Checking in Coq
	iCoq and Regression Proof Selection

	Running Example
	Techniques
	Implementation
	Evaluation
	Verification Projects Under Study
	Variables
	Experiment Procedure
	Results

	Discussion
	Threats to Validity
	Summary

	Chapter 4. mCoq: Mutation Proving for Analysis of Verification Projects
	Overview
	Background
	The Coq Proof Assistant
	SerAPI and Serialization to S-expressions
	Mutation Testing and Proving

	Technique
	Mutation Approach
	Mutation Operators
	Mutation Optimizations

	Implementation
	Toolchain
	Mutation Modes and Procedure
	Impact of Toolchain Development

	Evaluation
	Verification Projects Under Study
	Variables
	Results

	Threats to Validity
	Discussion
	Summary

	Chapter 5. Related Work
	Incremental Verification
	Parallel and Asynchronous Proof Checking
	Regression Testing
	Build Systems
	Mutation Testing of Functional Programs
	Mutation of Specifications
	Analysis and Testing in Proof Assistants

	Chapter 6. Conclusion
	Bibliography

