Bounded Exhaustive Test-Input Generation on GPUs

AHMET CELIK, The University of Texas at Austin, USA
SREEPATHI PAI, The University of Texas at Austin, USA
SARFRAZ KHURSHID, The University of Texas at Austin, USA
MILOS GLIGORIC, The University of Texas at Austin, USA

Bounded exhaustive testing is an effective methodology for detecting bugs in a wide range of applications. A
well-known approach for bounded exhaustive testing is Korat which generates all test inputs up to a given
small size based on a formal specification that characterizes properties of desired test inputs. This specification
is written as an executable predicate and Korat executes the predicate on candidate inputs to implement a
backtracking search based on pruning to systematically explore the space of all possible inputs and generate
only those that satisfy the specification.

This paper presents a novel approach for speeding up test generation for bounded exhaustive testing using
Korat. The novelty of our approach is two-fold. One, we introduce a new approach for writing the specification
predicate based on an abstract representation of candidate inputs, so that the predicate executes directly
on these abstract structures and each execution has a lower cost. Two, we use the abstract representation
as the basis to define the first technique for utilizing GPUs for systematic test generation using executable
predicates. Moreover, we present a suite of optimizations that are necessary to enable effective utilization of
the computational resources offered by modern GPUs. We use our prototype tool to experimentally evaluate
our approach using a suite of 7 data structures that were used in prior studies on bounded exhaustive testing.
Our results show that our abstract representation can speed up test generation by 5.68 x on a standard CPU,
while execution on a GPU speeds up the generation, on average, by 17.46 x.

CCS Concepts: « Software and its engineering — Software testing and debugging;
Additional Key Words and Phrases: Bounded exhaustive testing, graphics processing units, INTKORAT

ACM Reference Format:

Ahmet Celik, Sreepathi Pai, Sarfraz Khurshid, and Milos Gligoric. 2017. Bounded Exhaustive Test-Input
Generation on GPUs. Proc. ACM Program. Lang. 1, OOPSLA, Article 94 (October 2017), 25 pages. https:
//doi.org/l().l145/3133918

1 INTRODUCTION

Software testing is the most common approach in industry to check correctness of software.
However, writing tests manually is tiresome and time consuming.

Researchers (and practitioners) have developed a number of automated test generation tech-
niques [Bertolino 2007; Boyapati et al. 2002; Duncan and Hutchison 1981; Pacheco et al. 2007; Tai
and Lei 2002; Tonella 2004] to remove the burden from developers. These automated techniques

Author’s Addresses: Ahmet Celik, The University of Texas at Austin, Austin, TX 78712; email: ahmetcelik@utexas.edu;
Sreepathi Pai, (Current Address) University of Rochester, Rochester, NY 14627; email: sree@cs.rochester.edu, Sarfraz
Khurshid, The University of Texas at Austin, Austin, TX 78712; email: khurshid@utexas.edu; Milos Gligoric, The University
of Texas at Austin, Austin, TX 78712; email: gligoric@utexas.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 Association for Computing Machinery.

2475-1421/2017/10-ART94

https://doi.org/10.1145/3133918

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 94. Publication date: October 2017.



https://doi.org/10.1145/3133918
https://doi.org/10.1145/3133918
https://doi.org/10.1145/3133918

94:2 Ahmet Celik, Sreepathi Pai, Sarfraz Khurshid, and Milos Gligoric

have been shown effective for finding bugs in a wide range of applications [Daniel et al. 2007; Glig-
oric et al. 2010; Yang et al. 2011]. One approach to automated test generation is bounded exhaustive
testing [Marinov and Khurshid 2001] (BET), which generates all test cases up to the given bound.
Many BET techniques have been proposed over the last decade [Boyapati et al. 2002; Gligoric et al.
2010; Korat Home Page 2017; Kuraj et al. 2015; Misailovic et al. 2007; Ponzio et al. 2016; Rosner
et al. 2014; Siddiqui and Khurshid 2009; Sullivan et al. 2004].

One of the most popular BET techniques is Korat [Boyapati et al. 2002]. It generates all test cases
(up to a given size) based on a formal specification that characterizes properties of desired inputs.
Korat allows users to write the specification as an executable predicate in the same language as the
program under test. Specifically, the user provides: (1) the bounds that define the space of candidate
inputs Korat should explore, e.g., maximum size of an object graph, and (2) the predicate, traditionally
termed repOK [Liskov and Guttag 2000], which returns true if and only if its input satisfies the
desired properties. Korat explores the bounded space by creating candidate inputs within the
bounds and executing the repOK predicate on each candidate. Korat uses the predicate’s executions
on candidate inputs to perform a backtracking search based on pruning and systematically explores
the space of all possible inputs to generate only those that satisfy the specification. The generated
inputs are then used for test execution.

Despite Korat’s pruning, unfortunately, the search space quickly becomes intractable even for
small bounds which results in slow test generation and test execution [Boyapati et al. 2002; Misailovic
et al. 2007; Siddiqui and Khurshid 2009]. To improve the performance of Korat, researchers and
practitioners previously considered parallel algorithms. Misailovic et al. [2007] developed Parallel
Korat, a set of algorithms for generation and execution on map-reduce model. More recently,
Siddiqui and Khurshid [2009] proposed PKorat, a scalable algorithm that significantly improves the
scalability and scope of parallel test generation.

Although PKorat sped up test generation process by 7.05x, on average, it has two key limitations.
First, it requires access to a large cluster of machines, which may not be readily accessible to
practitioners and researchers worldwide. Second, as the original Korat, it is not suitable for execution
on Graphics Processing Units (GPUs), because it uses dynamic memory allocation, libraries, and
operators that are inefficient on GPUs. Our initial effort to migrate the Korat technique to GPUs
led to (insignificant) 1.19x speedup on a GeForce GTX 1080 and 0.43 x speedup (i.e., slowdown)
on a Tesla K80. Furthermore, Korat and PKorat assume that virtual memory is available during
test generation, which is not the case for most GPUs. Therefore, we could not even run the test
generation for larger sizes on GPUs.

This paper presents INTKORAT, a novel approach for speeding up test generation for bounded
exhaustive testing. The novelty of our approach is two-fold. One, we introduce a new approach for
writing the specification predicate based on an abstract representation of candidate inputs, so that
the predicate executes directly on these abstract structures and each execution has a lower cost.
Predicates for INTKORAT use candidates that are encoded as arrays of integers (rather than as object
graphs in memory, which was the traditional approach). Since during test generation the predicate
is typically executed a large number of times, the abstract representation significantly speeds up the
overall exploration. A minor contribution of this paper is an automated migration procedure from
the existing specifications with object graphs to the new specifications with int arrays. Two, we use
the abstract representation as the basis to define the first technique for utilizing GPUs for systematic
test generation using executable predicates. Our abstract representation naturally lends an effective
input encoding for GPUs since any code that extensively accesses objects is unlikely to scale when
run on a GPU. Furthermore, to overcome the lack of virtual memory on GPUs, our implementation
uses a worklist-based algorithm, and to overcome inefficient computations, we introduce a suite of

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 94. Publication date: October 2017.



Bounded Exhaustive Test-Input Generation on GPUs 94:3

GPU-specific optimizations that enable effective utilization of the computational resources offered
by modern GPUs.

We implemented INTKoRAT for three platforms: Java (novel specification only), C (novel specifi-
cation only), and NVIDIA’s CUDA for GPUs. We evaluated our implementation for each platform
and compared with the original Korat implementation that invokes repOK on object graphs. We
find that our technique for writing predicates that operate on abstract structures can frequently
speed up test generation process. Further, we find that our implementation for CUDA speeds up
test generation process by 17.46 x (on average). Thus, our contributions enable test generation of
larger test inputs in the given time, and prior research has shown that larger sizes can find unique
bugs that cannot be exposed otherwise [Gligoric et al. 2010; Nokhbeh Zaeem and Khurshid 2012].

The key contributions of this paper include:

* Novel approach, dubbed INTKORAT, for writing imperative predicates that operate on abstract
structures based on arrays of integers rather than on in-memory object graphs. INTKORAT speeds
up test generation on CPUs and is a natural and effective input encoding for GPUs.

* The first worklist algorithm, to the best of our knowledge, that works around the lack of virtual
memory on GPUs and allows them to be used for systematic test generation of larger test inputs.

* A set of GPU-specific optimizations that enables efficient test generation by utilizing the compu-
tational resources offered by modern GPUs.

* Implementation of INTKORAT for three platforms: Java (includes novel encoding only), C (includes
novel encoding only), and NVIDIA’s CUDA (includes novel encoding, the worklist algorithm,
and GPU-specific optimizations).

* Evaluation of our implementations on 7 data structures, which were commonly used in prior
work on test generation. Our results show that our technique based on abstract structures can
lead to speedup of test generation. More importantly, our results show that the implementation
for CUDA speeds up the generation, on average, by 17.46x.

2 OVERVIEW
This section describes Korat through an example and provides a brief overview of GPGPU pro-
gramming model.

2.1 Korat and PKorat

We illustrate the original Korat algorithm using Binary Tree data structure as an example. Figure 1a
shows a code snippet in Java that defines two classes: BT and Node. BT describes an instance of a
binary tree; each instance keeps the size of the tree (size) and a pointer to the root of the tree
(root). Each node in the tree, described with the class Node, contains an element (which has the
integer type in our example) and pointers to left and right children.

Valid instances of BT should be acyclic and have the value in the size field that matches the
number of nodes that are reachable from the root. Figure 2a shows an imperative predicate (repOK)
that returns true if a given instance of BT is valid and false otherwise. Predicates for Korat are
written in Java.

Additionally, a user of Korat has to specify the bounds, i.e., possible values for each field of each
class. This method is frequently called finitization, and we show an example in Figure 3.

Korat’s generation engine takes as input: (1) classes that define the structure, (2) the finitization,
and (3) the predicate. Korat outputs all instances that are valid, i.e., instances for which repOK
returns true. Internally, Korat represents each instance with an array of integers, called a candidate
vector. Figures 1d and 1e show two candidate vectors and Figures 1b and 1c show the corresponding

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 94. Publication date: October 2017.



94:4 Ahmet Celik, Sreepathi Pai, Sarfraz Khurshid, and Milos Gligoric

class BT {
Node root;
int size;

}

int element;
Node left;
Node right;

(b) An example object graph for  (c) An example object graph for

1
2
3
4
5
6 class Node {
7
8
9
0} an invalid binary tree instance a valid binary tree instance

(a) Class definition for our run-
ning example - Binary Tree

BT N1 N2 N3

——
root size | r e 1 ro e 1 r e

1 oj2fofo|3]3[0]J0fO0]|0O

BT N1 N2 N3

———
root size 1 ro e l ro e 1 ro e

1 0 2 0 0 3 0 0 0 0 0

(e) An example candidate vector that encodes the valid instance from Figure 1c

Fig. 1. Binary Tree example

in-memory object graphs. Prior to invoking the predicate, Korat converts each candidate vector to
an object graph.

Naive Korat exploration enumerates all candidate vectors up to the bounds specified in the
finitization. Even for small sizes this quickly becomes intractable. For example, naive exploration
enumerates 16,384 candidates to generate 30 valid instances of BT of size 3. Interestingly, naive
exploration is embarrassingly parallel.

To reduce the search space, Korat keeps an ordered list of accessed fields during the execution
of the predicate [Boyapati et al. 2002]. We refer to the exploration with the accessed fields as
accessed-field optimized exploration. Korat records each field only once and only the first access
to the field. If a predicate evaluates to false, Korat skips all candidate vectors that would differ
only in the values of fields that are never accessed; fields that are not accessed cannot change
the outcome of the predicate. In our example in Figure 1d, predicate evaluates to false and the
accessed fields include 0, 2, 3, 5, 6 (which corresponds to BT.root, N1.1left, N1.right, N2.1left,
and N2.right). Therefore, changing the value of the 8th element (i.e., N3.lef't) would have no
impact on the evaluation of the predicate.

Although accessed-field optimized exploration substantially reduces the number of candidates to
explore, e.g., only 63 candidates for BT of size 3, it makes the algorithm mostly sequential [Misailovic
et al. 2007; Siddiqui and Khurshid 2009].

Recent work [Siddiqui and Khurshid 2009] introduced PKorat that uses accessed fields to identify
candidates that eventually need to be explored and can be explored in parallel. However, PKorat

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 94. Publication date: October 2017.



Bounded Exhaustive Test-Input Generation on GPUs 94:5

1 boolean repOK() { 1 boolean repOK() {
2 if (root == null) 2 if ((getValue("Node",
3 return size == 0; 3 getindex("BT", "root", 1))) == 0)
4 // checks that tree has no cycle 4 return (getValue("Size",
5  Set visited = new HashSet(); 5 getindex("BT", "size", 1))) == 0;
6 visited.add(root); 6 Set visited = new HashSet();
7 LinkedList workList = new LinkedList(); 7 visited.add(getValue("Node",
8  workList.add(root); 8 getindex("BT", "root", 1)));
9 while ('workList.isEmpty()) { 9  LinkedList worklist = new LinkedList();
10 Node current = (Node) workList.rmFirst(); 10 worklist.add(getValue("Node",
11 if (current.left != null) { 11 getIndex("BT", "root", 1)));
12 if (Ivisited.add(current.left)) 12 while (I(worklist.isEmpty())) {
13 return false; 13 Integer current = (Integer) worklist.rmFirst();
14 workList.add(current.left); 14 if ((getValue("Node",
15 } 15 getindex("Node", "left", current))) != 0) {
16 if (current.right != null) { 16 if ((visited.add(getValue("Node",
17 if (visited.add(current.right)) 17 getIndex("Node", "left", current)))))
18 return false; 18 return false;
19 workList.add(current.right); 19 worklist.add(getValue("Node",
20 } 20 getIndex("Node", "left", current)));
21} 21 }
22 // checks that size is consistent 22 if ((getValue("Node",
23 return (visited.size() == size); 23 getindex("Node", "right", current))) != 0) {
24 } 24 if (I(visited.add(getValue("Node",
25 getIndex("Node", "right", current)))))
(a) Predicate for original Korat 2% return false;
27 worklist.add(getValue("Node",
28 getindex("Node", "right”, current)));
29 }
30}
31  return (getValue("Size",
32 getindex("BT", "size", 1))) == (visited.size());
33 }

(b) Predicate for INTKORAT

Fig. 2. (left) The predicate for the original Korat checks a candidate encoded as an object graph, and (right)
the predicate for INTKORAT checks a candidate encoded as an array of integer values. We defined a procedure
for automated migration to the new encoding

evaluates predicates on in-memory object graphs, same as the original Korat, which introduces
substantial overhead if executed on a GPU. Additionally, PKorat assumes that unlimited/virtual
memory is available, which is not the case for most GPUs.

2.2 GPGPU Programming Model

Graphics Processing Units (GPUs) were originally designed to accelerate graphics computations, for
example in 3D games. Compared to a CPU, GPUs support higher levels of parallelism (thousands
of concurrent threads) and much higher memory bandwidth (hundreds of GB/s). Since most GPUs
today are architected as a large number of general-purpose cores with only a few graphics-specific
hardware blocks, they can also run a wide variety of general-purpose code. In particular, they
perform very well on regular, data-parallel computations (e.g. dense matrix multiplication) where

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 94. Publication date: October 2017.



94:6 Ahmet Celik, Sreepathi Pai, Sarfraz Khurshid, and Milos Gligoric

IFinitization finBinaryTree(int numOfNodes, int size) {
IFinitization f = FinitizationFactory.create(BinaryTree.class);
10bjSet nodes = f.createObjSet(Node.class, numOfNodes);
nodes.setNullAllowed(true);
lIntSet sizes = f.createlntSet(size, size);
f.set("root", nodes);
f.set("size", sizes);
f.set("Node.left", nodes);
f.set("Node.right", nodes);
return f;

O 0 NN G R W N =

—
o

—
—_
—_

Fig. 3. Finitization to specify the bounds on instances to be generated

GPU
PCle
sMo|| sm1] - | smn CPU
f !
GPU RAM CPU RAM

Fig. 4. Organization of an abstract GPU-equipped system

they are often an order of magnitude faster than CPUs [Lee et al. 2010]. As a result, GPUs are now
a mainstay of the high-performance computing (HPC) community, contributing over 10% of the
performance of the Top 500 supercomputers [Strohmaier et al. 2016].

Figure 4 presents an abstract view of a system equipped with a GPU. A GPU contains a number
of cores called streaming multiprocessors (SMs). Each SM can execute thousands of threads. A GPU
also contains its own memory which is directly addressable from the SMs. This GPU RAM uses a
wider datapath, a different memory technology than CPUs (GDDR5X on the primary GPU we use)
and operates at a high clock allowing the SMs to access data at hundreds of gigabytes per second.
The CPU and GPU are connected via a PCle link in the systems used in this paper.

To benefit from GPUs, programmers must rewrite their code to target the GPU. Originally, the
only options were shader languages (used by graphics programs), but NVIDIA’s CUDA pioneered
the use of a general-purpose language for GPGPU. GPUs may also be programmed through the
use of OpenCL, however OpenCL is poorly supported (e.g., lack of C++ constructs) on NVIDIA
GPUs that we use in this work. Although our approach is conceptually language-agnostic, our
implementation targets NVIDIA CUDA; we discuss limitations of OpenCL in detail in Section 6.

The CUDA programming language is a dialect of C++. CUDA source code consists of host code
(executed by the CPU) and device code (executed by the GPU). Device code consists of kernel
functions which are delineated by the __global__ function qualifier. Each kernel is written in the
single-program multiple data (SPMD) model similar to MPI programs. The CUDA compiler, nvcc,
extracts these kernels from the source code and compiles them, leaving behind only the CPU code
and stubs for calling GPU kernels. This CPU code is then compiled by the system C++ compiler.

Programmers execute GPU kernels by launching them from the CPU code. This is similar to a
function call, except that the kernel will execute on the GPU and that programmers must specify
a launch configuration for the kernel. The launch configuration, known as a grid, specifies the

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 94. Publication date: October 2017.



Bounded Exhaustive Test-Input Generation on GPUs 94:7

number of threads that will be created for the kernel. It is a hierarchical structure consisting of
equally-sized thread blocks which contain the threads. CUDA uses a hierarchical grid instead of a
flat space of threads for portability across multiple GPUs. Additionally, only threads within the
same thread block can reliably communicate and synchronize with each other.

Kernels are always launched asynchronously — the CPU does not wait for the kernel to finish.
This allows the CPU and GPU to work concurrently. The CPU can use CUDA synchronization
primitives to wait for a kernel when required.

Modern GPU kernels can directly access data on other GPUs and the CPU through load/store
instructions, however this is slower than accessing GPU RAM. To obtain the best performance,
the programmer must transfer to GPU memory all data accessed by the kernel using explicit
memory copies. Results must be copied back to the CPU after a kernel finishes. Most GPUs
have limited memory (12-24GB) and only the latest NVIDIA Pascal-based GPUs support virtual
memory [NVIDIA 2016]. As we will show later, using this GPU virtual memory functionality results
in slower execution, so it is still necessary to limit memory usage to the size of GPU memory.

INTKORAT benefits substantially from the large degree of parallelism and the large memory
bandwidth offered by GPUs. There are two main complications in implementing INTKORAT for
GPUs. First, when using accessed-field optimized exploration, the optimization causes each thread
to process a different number of candidate vectors leading to work imbalance among the threads.
The effect of this load imbalance can be reduced by dynamically reassigning work to other threads.
Thus, test generation can be viewed as irregular producer/consumer parallelism, where a thread
works on a candidate vector and places all new candidate vectors in a queue so they will be
processed by other threads. Second, since the number of new candidate vectors is not known in
advance and GPU memory size is limited, we must use sophisticated queue management techniques
during execution to prevent queue overflows, especially when the number of test candidates is
very large. Alternatively, we could use newly-available GPU virtual memory mechanisms, but our
experiments show that these significantly slow down execution.

3 TECHNIQUE

We describe our technique in two parts. First, we describe the technical contributions necessary to
enable the bounded exhaustive testing on GPUs: GPU-friendly encoding of predicates (Section 3.1)
and the worklist algorithm (Section 3.2). Second, we describe several code transformations to
optimize the test generation process and make the algorithm efficient (sections 3.3 and 3.4).

3.1 Encoding

Our GPU-friendly encoding is the first step necessary to enable the bounded exhaustive testing on
GPUs. The goal is to remove code manipulations of object graphs and instead use manipulations
of integer arrays that is an ideal fit for GPUs. Figures 10a and 10b (in the Appendix) illustrate the
encoding step.

The objective of our encoding is to transform an object graph into a ragged candidate matrix
which contains only integers. Then, we must rewrite the repOK function to operate on this ragged
candidate matrix instead of the original object graph. Similarly, all functions (recursively) reachable
from repOK must be rewritten to use the ragged candidate matrix. Before we describe our rewrite
procedure, we show how object graphs can be encoded as integers.

3.1.1  Preliminaries. We define a Type as a structure similar to a class in Java. We use © to denote
a set of all types used in a finitization. Further, we write o (s.t., Oc 0) and 5] (s.t., ec 0) to
denote a set of composite and primitive types, respectively. The domain of a type 0 (s.t., 0 € ©),
written as A(0), is a finite set of values.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 94. Publication date: October 2017.



94:8 Ahmet Celik, Sreepathi Pai, Sarfraz Khurshid, and Milos Gligoric

Table 1. Types and Their Domains for Our Running Example

Kind Type  Domain Function

Composite BT [1,1] N/A

Composite ~ Node [0,3] N/A

Primitive Size [3,3] f:{3} - 3L f(x) =
[0,0]

Primitive  Element g:{0} - {0},g9(x) =

]

BT {| 1| 0

Node {| 2 | 0 0|3|3|0|0|0|0|

~v ~ v

N1 N2 N3
Fig. 5. Ragged candidate matrix for our running example

I'xeA(0),0e0O

RDomainValue

R(x) — x
I'x:0,(x,0)€ 0
RImplFieldRef
R(x) — getValue(0, getIndex(@ “x”,1))
I''-xy:0,x: 0
RFieldRef

R(x.y) — getValue(0, getIndex(0, “y”, R(x)))

Fig. 6. Rewrite rules for migrating variable and field accesses in repOK and other functions

A composite type 0 € © is an ordered collection of fields < fi> fas --.s fn >. Each field is a pair of
aname and a type, ie., fi = (fieldNamey,0,), f> = (fieldName,, 0;), ..., fn = (fieldName,, 0,)
where 0y, 6,, ..., 0, € ©. A name of a field is a sequence of characters unique within the declaring
type. Function getType(é, fieldName) returns the type of the field declared in 0. The domain of a
composite type A(é) is a sequence of integers starting either from 0 or 1. Each value in the domain,
which we call instanceld, corresponds to a unique object instance created in the original finitization.
The value 0 belongs to the domain only if the null value is permitted.

A primitive type 0 € © defines a set of values. The domain of a primitive type A(@) is an interval
[min .. max]. Additionally, we associate a bijective mapping function to each domain.

Running example: Table 1 shows © for our running example. There are two composite (5 =
{BT,Node}) and two primitive 0 = {Size,Element}) types. A(BT) = [1..1], as we only have a
single BT instance and the null value is not permitted. A(Node) = [0..3], as we created three
unique instances of Node and the null value is permitted. In addition, we have two primitive types
for two fields: size (defined in BT) and elements (defined in Node); each of these fields has a single
value. Finally, we need to associate a mapping function to each primitive type; we use the identity
function as the mapping function. (In case of discrete values, e.g., Red and Black, we would define
the mapping as g : {0, 1} — {Black,Red} and g = {(0, Black), (1,Red)}.)

We define a target type v € Oasa composite type for which to generate instances. 7 is BT for
our running example. We represent an instance of the r with a ragged candidate matrix (matrix

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 94. Publication date: October 2017.



Bounded Exhaustive Test-Input Generation on GPUs 94:9

for short). Each row of a matrix corresponds to a single composite type fe®.To simplify our
encoding, we always allocate the first row for 7. We compute the number of cells for the row of
type 0 as: “number of fields” x “max number of instances”, such that the “max number of instances”
is the max value in A(é/) Each cell of the matrix contains an index to be used to get the value from
the domain A(9). For example, cell with value 1 “points to” the second value in the A(9). Figure 5
shows the matrix for our running example.

We define a function getlndex(@v, fieldName, instanceld), which uses the matrix to return the index
of the value in the domain for the given composite type, field name, and instance id. We then use
this index to find the value in the Domain associated to the type of the field (getType(é, fieldName)).
We define a function getValue(Type, index), which returns the value from the Domain. These
functions are defined to use look-up tables. The look-up tables are generated dynamically from the
original finitization method of the target type.

3.1.2  Migration Procedure. To migrate a set of classes written for Korat to our format, we have
to transform Java classes to our Types. For each Java class we have one Composite Type, and for
each field that has a primitive type we have one Primitive Type. For simplicity of exposition, we
use names of fields to name Primitive Types. In the next step, we use newly introduced Types to
write finitization, i.e., specify the Domain for each Type.

In the final step of our migration, we convert field accesses (inside the repOK method) to use
the matrix. First, we replace all uses of null for types in 0 € © with 0. Then, we rewrite all local
variable declarations that use a type 8 € © to use the type int. Next, we use the rewrite rules
shown in Figure 6 to translate field accesses on objects to accesses to the matrix using the getValue
and getlndex functions described earlier. Recall that repOK does not write to fields of the object.
Therefore, our rules include only R, i.e., reads from fields. When applying these rewrite rules, the
environment I' contains the types of all expressions.

In the first rule (RDomainValue), accesses to variables that are now of type int, i.e., contain
domain values, are left unchanged. Previously, they were a type 6 € ©. If these variables originally
referenced objects of a composite type, they will now contain the instanceld of those objects. The
second rule (RImplFieldRef) rewrites implicit accesses to fields of the target type; the instanceld of
type 7 is always 1. The third rule (RFieldRef) rewrites field accesses to objects not of the target
type; the rule must look up the instanceld of the object at runtime.

Since repOK can call other methods that operate on the object graph, we must also translate
these methods to use the matrix. Let g be a function transitively reachable from repOK. We create a
function ¢’ from g that is initially identical in every way except the name. Next, we translate the
return type and the types of arguments of ¢/, replacing 0 € © with int. Rewrite all field accesses in
g’ as it was done in repOK. Finally, change all references to g in repOK (and transitively reachable
functions) to ¢'.

In our implementation, the getindex function also tracks accesses to fields, which we need to
implement the accessed-field optimized exploration (see Section 2.1). Each invocation of getIndex
function records, into an internal list, the composite type, field name, and instance id that are given
as the arguments.

3.2 Worklist Algorithm

Our worklist algorithm is the second necessary step to enable the bounded exhaustive testing on
GPUs. The algorithm is used to overcome memory limitations of GPUs, because the existing GPUs
either do not have virtual memory or the use of virtual memory is highly inefficient. This step is
illustrated in Figure 10c (in the Appendix). Our algorithm automatically manages memory transfers
between GPU and CPU without requiring any assistance by the users.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 94. Publication date: October 2017.



94:10 Ahmet Celik, Sreepathi Pai, Sarfraz Khurshid, and Milos Gligoric

Require: ds data structure
Require: size desired data structures size
1: function Cru(ds, size)
2: over flow «— ALLOCATEMAINMEMORY (+00)

3 in’ « ALLocAaTEONGPU(IN_SIZE)
4 out’ «— ALLocATEONGPU(OUT_SIZE)
5: ApD(ZEROCANDIDATE(dS, size), in')
6:  while not IsEmprY(in’) do
7: numO fThreads < Size(in’)
8: Gru<<numO fThreads>>(in’, out’, ds, size)
9: outSize < Size(out’)
10: gpuToGpu — MinN(outSize, IN_SIZE)
11 Move<<gpuToGpu>>(out’, in’, gpuToGpu)
12: gpuToCpu < outSize — gpuToGpu
13: Move(out’, over flow, gpuToCpu)
14: if gpuToGpu < IN_SIZE then
15: missing < IN_SIZE — gpuToGpu
16: bufSize « Size(over flow)
17: cpuToGpu «— MiIN(missing, bu fSize)
18: Move(over flow, in’, cpuToGpu)
19: end if
20: end while

21: end function

Fig. 7. Algorithm for the process executed on CPU, which starts GPU kernels and manages memory usage

Figures 7 and 8 show the CPU and GPU parts of our worklist algorithm respectively. The CPU
part is primarily concerned with launching the GPU kernel and managing the worklist so that
large instances can be tested in the limited memory available on a GPU. The GPU part extracts
work (i.e. candidate vectors) from the worklist, applies repOK to each candidate vector in parallel
and generates additional candidate vectors based on the PKorat algorithm. The while loop from
the PKorat algorithm on Line 4 (Figure 8) highlights one of the main challenges - it is an irregular
loop with an unknown number of iterations so the number of candidate vectors it produces is not
known in advance or even at runtime and consequently it is executed serially by each thread.

The input to the CPU algorithm (Figure 7) are the name of the data structure to generate and
size of the desired instances. First, the algorithm allocates an “overflow” buffer in main memory
to store candidate vectors that do not fit in the GPU memory (line 2). The size of this buffer is
dynamic. Second, we allocate two worklists, in’ and out’ in GPU memory (lines 3 and 4). The in’
worklist stores candidates to be processed in the next invocation of a GPU kernel. New candidate
vectors are generated by the GPU kernel processing these input candidates and stored in the out’
worklist. The size of these worklists is computed dynamically (at the startup) based on the amount
of memory available on the GPU. Finally, we generate the initial candidate vector and store it in
the input list (line 5) before entering the main loop of the algorithm.

The main loop of the algorithm iterates until the input worklist is empty. In each loop iteration,
we launch a GPU kernel choosing the number of threads so that each thread will handle one
candidate (line 7). The GPU kernel will generate the next set of candidates and store them into
the output worklist (line 8); we wait for this invocation to finish. The maximum size of the input
worklist (IN_SIZE) is chosen so that we will never run out of memory when storing the candidate
vectors in the output worklist. Therefore, if the output worklist contains more candidates than
IN_SIZE, we only move the first IN_SIZE candidates to the input worklist (line 11). Any excess

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 94. Publication date: October 2017.



Bounded Exhaustive Test-Input Generation on GPUs 94:11

Require: in’ input worklist
Require: out’ output worklist
Require: ds data structure
Require: size desired data structures size
1: function Gru(in’, out’, ds, size)
2: cv < Get(threadld, in’)
3: isValid, accFields < RepOK(ds, cv)
> Get next candidates with PKorat algorithm
4 while Size(accFields) > 0 A PEek(accFields) == 0 do
5: field < Pop(accFields)
> See [Siddiqui and Khurshid 2009] for NonIsoMax

6 for i — 1,NonIsoMax(cv, accFields, field) do
7 co[field] =i

8: atomic

9 App(cv, out’)

10: end atomic

11: end for
12: co[field] =0

13: end while

14: end function
Fig. 8. Algorithm for threads that run on a GPU. Each thread evaluates one candidate vector, finds next set

of candidates based on PKorat algorithm [Siddiqui and Khurshid 2009], and includes next set of candidates
to the output worklist

candidates are moved from the GPU to the CPU overflow buffer (line 13). When the input worklist
contains fewer than IN_SIZE items, we move items from the CPU overflow buffer back to the input
worklist (lines 14-19).

Figure 8 shows the GPU kernel, which was invoked on line 8 from CPU. This code is executed
in an single-program multiple data (SPMD) style, so all threads execute the same code in parallel.
Each thread takes as input the two worklists (which are always in GPU memory), data structure to
generate, and size of desired instances. Using CUDA-provided variables, each thread establishes its
identity (threadId) and uses it to retrieve a candidate from the input list. Each thread therefore
works on a different candidate in parallel.

Each thread now evaluates the predicate (i.e., repOK) on its candidate, which returns a boolean
value to indicate if the candidate is valid, as well as the list of accessed fields (iff we used accessed-
field optimized exploration). In case of accessed-field optimized exploration, we use PKorat algo-
rithm [Siddiqui and Khurshid 2009] to find all candidate vectors, based on the accessed fields, which
need to be explored. As a thread discovers new candidates, it adds them to the output worklist. Since
many threads are executing in parallel, candidates are added atomically to the output worklist.

3.3 GPU-specific Optimizations

This section describes several steps to optimize the exploration by transforming the predicates
and the exploration engine. We leverage the knowledge of predicates’ structure to choose the
appropriate data structures and memory structure to exploit the full potential of GPUs.

We will use our running example (Binary Tree) to illustrate the benefits of each optimization
step as shown in Table 2; level 0 is the initial implementation enabled for GPUs (i.e., includes
the encoding and the worklist algorithm), Size column shows the size of generated instances,
Time shows the exploration time, and Speedup shows the speedup (over level 0) obtained with
various optimizations; each optimization level includes a unique transformation (as described in
the following sections) and includes all the optimizations from all previous optimization levels.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 94. Publication date: October 2017.



94:12 Ahmet Celik, Sreepathi Pai, Sarfraz Khurshid, and Milos Gligoric

3.3.1 Removing Memory Allocations from the Exploration 1,1. 2 Test Generation Times and
Engine (level 1). CUDA features like managed memory, gpeedups for Binary Tree with Different
C++11 compatibility, and support for dynamic memory al- Qptimization Levels
location (malloc, new) [NVIDIA 2016] make it easy to take

the existing C code and run it on the GPU with only mi- Level Size Time[s] Speedup
nor modifications. Unfortunately, the resulting code can be 0 12 16,65 100
very slow, often slower than single-threaded CPU. To ob- 0 13 65.82 1.00
tain good performance, we removed function calls related 0 14 256.03 1.00

to memory management from the exploration engine. These
. . ) . 1 12 7.75 2.14
function calls included allocations of candidate vectors and . 13 3075 514
domains. Rather than managing memory on the device, we 1 14 122.29 2.0

preallocate the memory for each thread prior to invoking
a kernel. This approach is feasible because the size of each 2 12 055 30.27
. : . 2 13 2.34 28.12

candidate vector is constant, as well as the size of each type
2 14 10.32 24.80

domain. Running example: Figure 11a (in the Appendix) il-
lustrates this optimization step. This optimization step leads 3 12 0.27 61.66

to 2.10x speedup (computed on average across all sizes) for 3 13 110 >9.83
our running example (Table 2). 3 b 453 5651

3.3.2  Removing Memory Allocation from Predicates (level i g g'zz Ziz
2). Similar to the previous step, we transform predicates to » 3'73 68'64

remove functions that manage memory. These functions
allocate space for data structures used to keep track of the visited nodes, various queues, etc. As
in the previous step, the size of each of the data structures is bounded, so we preallocate memory
for each thread prior to the kernel invocation. Running example: This transformation step is
illustrated in Figure 11b (in the Appendix) and the optimization leads to 25.62 x speedup for our
running example (on average across all sizes in the Table 2).

3.3.3  Utilizing GPU Memory Structure for Fast Accesses (level 3). GPUs also support special
memory structures such as constant memory that is designed to store read-only data shared by all
the threads. It can be used to store coefficients for image filters, for example. Constant memory
can only store up to 64KB of data. We use constant memory to store the values for type domains.
Additionally, we transform code to use local memory for data structures in predicates, e.g., a set
of visited nodes. Running example: These transformations are illustrated in Figure 11c (in the
Appendix) and the optimized code is now 57.37 x faster (on average across all sizes in the Table 2).

3.3.4  Using Well-known Operator Transformations for Fast Computation. Inspired by prior re-
search findings, we use bitsets wherever applicable. GPUs do not support integer modulo operator
and integer division in hardware. We therefore transformed expressions with these math operators
to semantically equivalent expressions that are more efficient on GPUs (e.g., modulo operator was
changed to several expressions that use + and - operators). Furthermore, if the size of generated
instances permits, which we can find from the finitization prior to kernel invocation, our trans-
formation uses bit sets and bit operations instead of int arrays for some data structures, e.g., set
of visited nodes. Running example: Figure 11d (in the Appendix) illustrates this transformation
step and Table 2 shows that some additional speedup can be obtained.

3.4 INTKORAT Variants

We have implemented INTKORAT for three different platforms: Java, C, and CUDA. For Java and
C we implement only the proposed encoding, and for CUDA we implemented the encoding, the
worklist algorithm, and the GPU-specific optimizations.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 94. Publication date: October 2017.



Bounded Exhaustive Test-Input Generation on GPUs 94:13

Korat/ and Naive’. We implemented INTKORAT in Java by closely following the existing imple-
mentation of Korat [Boyapati et al. 2002; Milicevic et al. 2007]. As we already described, unlike for
Korat, users of Korat/ would specify properties directly on the candidate vectors rather than on
object graphs. However, the users can still write the predicates for the original Korat and then use
our automated migration procedure (Section 3.1) to obtain predicates that run on Korat’. Korat/
was a natural transition step towards our tool for the C language. We also obtain an implementa-
tion, named Naive/, which performs the naive exploration, by simply disabling the accessed-field
optimization in Korat’.

Korat® and Naive®. We implemented INTKORAT in C by closely following Korat/. Most of the
challenges were related to mapping from Java constructs to C constructs. For example, we do not use
any library in our implementation, but we implement everything that is necessary for predicates,
e.g., a set that keeps visited nodes. Korat® was a natural step towards our implementation for CUDA.
We also obtained an implementation, named Naive®, which performs the naive exploration, by
simply disabling the accessed-field optimization in Korat®.

Koraty and Naive?. We implemented INTKORAT using CUDA 8. Our implementation includes the
novel encoding presented in Section 3.1, the worklist algorithm presented in Section 3.2, as well as
the GPU-specific optimizations described in Section 3.3.

4 EVALUATION

To evaluate the benefits of INTKORAT (all three variants) we answer the following research questions:

RQ1: What is the speedup obtained with INTKORAT on GPUs when we explore all candidate
vectors (i.e., Naived) over the original Korat?

RQ2: What is the speedup obtained by test generation with INTKorRAT on GPUs when we use
the accessed-field optimized exploration (i.e., Korat?) over the original Korat?

RQ3: Can Koraty be easily run on different GPUs and how does the configuration of a GPU
impact the benefits of Korat??

RQ4: How does the encoding of predicates impact the test generation time (in various program-
ming languages)?

RQ5: How does the number of GPU threads impact the speedup of Korat9?

RQ6: What is the complexity of predicates for different encoding approaches and various pro-
gramming languages?

We have run all the experiments on a machine with Intel Core i7-6700 3.40GHz CPU and 16 GB
RAM. We used NVIDIA GTX 1080 GPU running at 1.73GHz with 8GB RAM. We used Java 1.8.0,
GCC 4.8.4 (with -O3), and CUDA/NVCC 8.0. We used three other GPUs to answer RQ3; we describe
these three additional GPUs in Section 4.4.

We briefly describe the data structures used in our experiments and then answer each research
question in turn.

4.1 Data Structures

We evaluated various implementations of INTKORAT using 7 data structures, which were commonly
used in prior studies on test input generation [Boyapati et al. 2002; Kuraj et al. 2015; Sharma
et al. 2011; Siddiqui and Khurshid 2009]. Table 3 (the first column) shows the list of the used data
structures: bt - binary tree, bst - binary search tree, sll - singly linked list, ha - heap array, dll -
doubly linked list, ds - disjoint set, and rbt - red black tree.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 94. Publication date: October 2017.



94:14 Ahmet Celik, Sreepathi Pai, Sarfraz Khurshid, and Milos Gligoric

Table 3. Number of Total and Valid Candidate Vectors, Total Execution Time, and Speedup Over Naive® when
Generating Tests for Different Structures and Sizes using Naive Exploration

Size #Candidates Naive® Naive/ Naive® Naived

Total Valid Time [ms] Time [ms] Speedup Time [ms] Speedup Time [ms] Speedup
bt 3 16384 30 89 6 14.83 200 0.44 1464 0.06
bt 4 1953125 336 365 84 4.34 155 2.35 812 0.44
bt 5 362797056 5040 37671 12312 3.05 29412 1.28 1805 20.87
bt 6 96889010407 95040 10658168 4201802 2.53 8331927 1.27 140970 75.60
bst 3 442368 30 193 31 6.22 350 0.55 787 0.24
bst 4 500000000 336 52327 18743 2.79 39104 1.33 1852 28.25
bst 5 1133740800000 5040 126157143 48368003 2.60 93387280 1.35 750203 168.16
sl 5 279936 21576 135 15 9.00 150 0.90 818 0.16
sl 6 5764801 355081 575 130 4.42 313 1.83 805 0.71
sl 7 134217728 6805296 10824 2619 4.13 7199 1.50 954 11.34
ha 7 306110016 15221802 19963 2979 6.70 12750 1.56 923 21.62
ha 8 8100000000 317773557 493815 78293 6.30 314230 1.57 3701 133.42
ha 9 235794769100 7477128472 14725547 2310804 6.37 8995270 1.63 534347 27.55
dll 4 1953125 24 300 51 5.88 940 0.31 816 0.36
dll 5 362797056 120 27282 6418 4.25 15500 1.76 1674 16.29
di 6 96889010407 720 7549669 1671807 4.51 4133601 1.82 118349 63.79
ds 3 314928 22866 153 21 7.28 170 0.90 810 0.18
ds 4 419430400 18288344 30270 7443 4.06 11164 2.71 1831 16.53
ds 5 1098632812500 32224753570 79923953 16452094 4.85 27898707 2.86 968504 82.52
rbt 2 78732 4 125 11 11.36 400 0.31 817 0.15
bt 3 536870912 18 40593 10621 3.82 20938 1.93 1972 20.58
> N/A N/A N/A 239729160 73144287 N/A 143199760 N/A 2534214 N/A

Source code distribution of Korat already includes all these data structures [Korat Home Page
2017]. However, we had to implement these data structures and all their predicates for Korat/,
Korat®, and Korat9. As discussed earlier, we can obtain the predicates for Korat/ via our automated
migration procedure. (Semi-)automated procedure can also be developed to migrate from Korat® to
Korat?, but we leave this for future work.

4.2 Naive Exploration on GPUs

RQ2: What is the speedup obtained with INTKORAT on GPUs when we explore all candidate vectors
(i.e., Naived ) over the original Korat?

We measured the time to naively explore all candidate vectors on GPUs (Naive?), and we compared
the results with the naive exploration using Naive® (i.e., the original Korat implementation that
does the naive exploration), Naive’/, and Naive®. Specifically, in each run of our experiments, we set
the bounds for one of the data structures and explore all candidate vectors to detect those that are
valid. This was interesting, because the naive exploration is embarrassingly parallel, and we used it
to discover necessary changes to our code to make it optimal for the execution on GPUs.

Table 3 shows, for each data structure and various sizes (the second column) the total number of
candidate vectors (the third column) and the number of valid candidate vectors (the fourth column).
Additionally, the Table 3 shows time (in milliseconds) to explore all candidate vectors for Naive?,
Naive/, Naive®, and Naive?. Differences in the exploration time across several runs were negligible.
We measured the execution time from the start of each process until its completion; this means that
time for Naived includes, not only the time to execute GPU kernels but also time spent on CPU

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 94. Publication date: October 2017.



Bounded Exhaustive Test-Input Generation on GPUs 94:15

computation and memory transfer. We also show speedup of our implementations over Naive®
(i.e., Naive®/Naive/, Naive®/Naive®, and Naive®/Naive?).

Our results show that, for larger sizes, Naived is always faster than Naive’/, Naive/ is always
faster than Naive®, and Naive® is always faster than Naive®. In other words, all our implementations
outperform the naive exploration implemented in Java that evaluates predicates on in-memory
object graphs. We can observe that Naive’ and Naive® are the slowest for small data structures; this
was not surprising due to the startup cost. However, Naive® becomes more efficient than Naive®,
and Naive? outperforms all other implementations for larger sizes (across all used data structures).

In sum, our NaiveY implementation (Section 3.4) speeds up naive test generation, on average, by
32.80x over Naive® (20.80x over Naive® and 8.92x over Naive/).

4.3 Optimized Exploration on GPUs

RQ2: What is the speedup obtained by test generation with INTKORAT on GPUs when we use the
accessed-field optimized exploration (i.e., Korat? ) over the original Korat?

We measured the time to explore candidate vectors using the optimized algorithm with worklist
(Section 3) on GPUs, and we compared the results with Korat®, Korat/, and Korat€. Similar to the
setup described in the previous section, we explore one data structure and one size at a time.

Table 4 shows, for various sizes of each data structure, the total number of predicates explored and
the number of valid candidates. Note that sizes of target instances in Table 4 are substantially larger
than target sizes in Table 3. Unlike for the naive exploration, there is no easy way to analytically
compute the total and valid numbers of explored candidates, and we check the correctness of our
exploration by comparing it to the original Korat; all implementations should give the same results.

Table 4 shows time (in milliseconds) to generate tests. Differences in the exploration time across
several runs were negligible. As in the previous section, the first two columns show the name of a
data structure and size, respectively. The times reported for Korat®, Korat/, Korat®, and Korat? are
the total time for each process, as noted earlier. We also note speedups over Korat®.

Our results show that Korat? is more efficient than any other implementation for all data
structures except sll and dll. The time to generate tests for sll and dll is negligible and the setup
cost in these cases for KoratY is higher than the generation time; this is not surprising. We included
these results for completeness and comparison with the naive exploration.

Across all data structures Koraty speeds up test generation, on average, 17.46 x over Korat®
(10.47 x over Korat’ and 22.35 x over Korat®). It is interesting to observe that the ratio of Naive®/Naive9
is higher than Korat®/Korat?. This result was expected because Naived is embarrassingly parallel
and code executed on GPU for Naive? is simpler than code for Korat9 (i.e., accessed fields are
not tracked for Naived, which results in much simpler code). At the same time, Korat9 is able to
generate substantially larger instances than Naive?Y.

4.4 Results on Various GPUs

RQ3: Can Korat? be easily run on different GPUs and how does the configuration of a GPU impact the
benefits of Korat? ?

To demonstrate that our algorithm and implementation is not fine-tuned to a specific GPU, we
evaluated Korat? on total of four different GPUs. Table 5 shows the basic characteristics of these
GPUs. For each GPU, we show the number of streaming multiprocessors (SM), the memory size, the
raw memory bandwidth, and the CUDA capability (CC) which denotes the hardware GPU version.
Each SM contains 2048 threads, so the number of hardware threads ranges from 26,624 (Quadro
M4000) to 40,960 (GTX 1080).

We have used the same data structures and same sizes as in Section 4.3, i.e., we only evaluated
optimized version of the exploration (i.e., Korat9). We run Korat? on all GPUs without any change.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 94. Publication date: October 2017.



94:16 Ahmet Celik, Sreepathi Pai, Sarfraz Khurshid, and Milos Gligoric

Table 4. Number of Total and Valid Candidate Vectors, Total Execution Time, and Speedup Over Korat® when
Generating Tests for Different Structures and Sizes using Accessed-field Optimized Exploration

Size #Candidates Korat® Korat/ Korat® Korat?

Total Valid Time [ms] Time [ms] Speedup Time [ms] Speedup Time [ms] Speedup
sll 32 1617 33 122 7 17.42 0 0.00 17 7.17
sll 63 6112 64 145 11 13.18 400 0.36 89 1.62
sll 126 24130 127 187 32 5.84 280 0.66 532 0.35
dll 16 453 1 117 5 23.40 0 0.00 7 16.71
dll 32 1677 1 129 8 16.12 100 1.29 25 5.16
dll 63 6234 1 153 21 7.28 140 1.09 133 1.15
bt 13 47795450 742900 25802 17955 1.43 31990 0.80 880 29.32
bt 14 186197720 2674440 100630 75461 1.33 135250 0.74 3613 27.85
bt 15 726257615 9694845 442634 314354 1.40 573598 0.77 15328 28.87
bst 9 20086300 4862 8581 5824 1.47 12985 0.66 487 17.62
bst 10 155455872 16796 71618 48763 1.46 110809 0.64 4062 17.63
bst 11 1206511438 58786 598225 413516 1.44 937606 0.63 35338 16.92
ha 9 51460480 10391382 6086 5396 1.12 11979 0.50 476 12.78
ha 10 583317405 111511015 72500 64327 1.12 150340 0.48 5348 13.55
ha 11 6913561920 1533143860 900796 810760 1.11 1956450 0.46 67831 13.28
ds 5 413855 41546 462 140 3.30 188 2.45 9 51.33
ds 6 33436639 2967087 14451 8171 1.76 18428 0.78 448 32.25
ds 7 3819937166 304142120 1726556 1100161 1.56 2673944 0.64 56107 30.77
rbt 9 1510006 122 1817 1037 1.75 2820 0.64 96 18.92
rbt 10 7530712 260 6180 5471 1.12 11501 0.53 482 12.82
rbt 11 39089158 586 30740 28686 1.07 65243 0.47 2878 10.68
2 N/A N/A N/A 4007931 2900106 N/A 6694051 N/A 194186 N/A

Table 5. Basic Characteristics of Various GPUs Used in Our Experiments. All GPUs Support 2048 Threads/SM.
Legend: CC=Compute Capability, B/W=Bandwidth in Gigabyte/s

GPU #SM RAM (B/W) CC Introduced
GeForce GTX 1080 20 8GB (305) 6.1 2016
Tesla K80 13 12GB (240) 3.7 2014
Quadro M4000 13 8GB (192) 5.3 2015
Tesla K40c 15 12GB(288) 3.5 2013

Table 6 shows absolute time (Korat?) and speedups (Korat®/Korat9) for each GPU (two columns
per GPU). Absolute time and speedups for GTX 1080 are replicated from the Korat? column in
Table 4 to simplify the comparison.

Our results show that Korat9 is efficient regardless of GPU characteristics. Additionally, we can
order GPUs based on the average speedup (from higher to lower): GeForce GTX 1080, Tesla K80,
Tesla K40c, and Quadro M4000. This ordering corresponds to ordering these GPUs by their memory
bandwidth, except that the K80 outperforms the K40 for a large number of structures despite having
20% less memory bandwidth. The K80 has 2x the number of physical registers as the K40 which
reduces register spills and consequently local memory traffic in complex repOK implementations

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 94. Publication date: October 2017.



Bounded Exhaustive Test-Input Generation on GPUs 94:17

Table 6. Koratd Speedup Over Korat® on Different GPUs

Structure Size  GeForce GTX 1080 Tesla K80 Quadro M4000 Tesla K40c
Time [ms] Speedup Time [ms] Speedup Time [ms] Speedup Time [ms] Speedup

sl 32 17 7.17 25 4.88 33 3.69 19 6.42
sl 63 89 1.62 117 1.23 181 0.80 93 1.55
sll 126 532 0.35 595 0.31 1235 0.15 596 0.31
dil 16 7 16.71 10 11.70 14 8.35 11 10.63
dll 32 25 5.16 31 4.16 54 2.38 35 3.68
dll 63 133 1.15 144 1.06 275 0.55 167 0.91
bt 13 880 29.32 1503 17.16 2233 11.55 1958 13.17
bt 14 3613 27.85 6204 16.22 9464 10.63 8223 12.23
bt 15 15328 28.87 26172 16.91 41107 10.76 34429 12.85
bst 9 487 17.62 648 13.24 736 11.65 696 12.32
bst 10 4062 17.63 5409 13.24 6211 11.53 5875 12.19
bst 11 35338 16.92 46510 12.86 52954 11.29 50698 11.79
ha 9 476 12.78 616 9.87 843 7.21 767 7.93
ha 10 5348 13.55 7158 10.12 9951 7.28 8943 8.10
ha 11 67831 13.28 90686 9.93 124036 7.26 113047 7.96
ds 5 9 51.33 15 30.80 20 23.10 18 25.66
ds 6 448 32.25 793 18.22 1156 12.50 934 15.47
ds 7 56107 30.77 99019 17.43 148076 11.65 118479 14.57
rbt 9 96 18.92 145 12.53 150 12.11 141 12.88
rbt 10 482 12.82 752 8.21 770 8.02 722 8.55
rbt 11 2878 10.68 4351 7.06 4355 7.05 4090 7.51

to balance out the lower memory bandwidth; recall that we use registers and local memory for
several data structures inside predicates.

4.5 Impact of Encoding on Test Generation

RQ4: How does the encoding of predicates impact the test generation time (in various programming
languages)?

It is interesting to discuss the differences in the results for sequential implementations: Korat®,
Korat/, and Korat®. We will once again consider the results in Tables 3 and 4.

Naive’ was clearly the fastest approach among the three sequential approaches for naive ex-
ploration. Also, Naive® was faster than Naive? for larger sizes across all structures. Based on
our results for the naive exploration, we can conclude that writing predicates that directly use
candidate vectors provides substantial benefits: Naive’ showed 5.68 x speedup over Naive®, and
Naive® showed 1.43x speedup over Naive®. We suspect that Naive’ is faster than Naive® due to
the Just in Time Compilation (JIT) available in Java [Savija T. V. 2011, Understanding Just-in-Time
Compilation and Optimization]. We tried to disable JIT compiler (-Xint) and the results showed
that Naive® outperforms Naive/. We also tried to use profile-guided optimization with GCC (the
first compiler run was with -march=native -fprofile-generate and the subsequent compiler
run was with -march=native -fprofile-use). However, we observed insignificant differences

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 94. Publication date: October 2017.



94:18 Ahmet Celik, Sreepathi Pai, Sarfraz Khurshid, and Milos Gligoric

GeForce GTX 1080 —#— Tesla K80 GeForce GTX 1080 —#— Tesla K80
1000 -
», »,
© 750+ o 4000~
E E
= [
& 500- 5
3 3 2000~
2 2
& 250+ &
0 E T T T T T 0 ) T T T T T
256 1024 4096 16384 65536 256 1024 4096 16384 65536
Thread Count Thread Count
(a) Binary tree (bt) (b) Disjoint set (ds)

Fig. 9. Total test generation time for bt and ds with Korat? using different number of threads. The horizontal
(black) line shows test generation time with Korat®

in performance when using profile-guided optimization. Although further investigation can be
performed to understand the differences between Naive/ and Naive€, this is outside of the scope of
this paper.

Regarding the accessed-field optimized exploration, our results show (Table 4) that there is no
clear winner among Korat?, Korat/, and Korat®. This happens because Korat/ and Korat® have
complex predicates that behave in data-dependent fashion making it hard for compilers to statically
optimize or parallelize code. The presence of irregular data-dependent while loops makes even
runtime parallelization hard. Still, we find that either Korat/ or Korat® is faster than Korat® in
most cases. In the future, it will be interesting to explore implementations on systems that support
parallelization of such irregular algorithms [Kulkarni et al. 2007].

4.6 GPU Thread Usage

RQ5: How does the number of GPU threads impact the speedup of Koratd ?

Figure 9 shows the execution time for Korat? for bt and ds as the number of threads used in the
kernel invocation is varied. Other data structures follow a similar pattern. The effect of decreasing
the number of threads is that GPU memory requirement for the worklists is reduced which is
useful for GPUs with limited memory. However, using fewer threads can also underutilize the GPU.
We note that on the two fastest used GPUs, reducing the number of threads to below what can
be concurrently executed (40,960 for the GeForce GTX 1080 and 30,720 for the Tesla K80) has a
negative impact on the performance.

4.7 Complexity of Predicates

RQ6: What is the complexity of predicates for different encoding approaches and various programming
languages?

We measured the complexity of predicates by collecting the number of lines of code (LOC)
for repOK, as well as McCabe Code Complexity metric (MCCC) [Ammann and Offutt 2008]. We
used SourceMeter (https://www.sourcemeter.com) to collect both LOC and MCCC. We measured
LOC and MCCC not only for repOK, but (transitively) included all functions that are related to the
predicates. Table 7 shows our results. We can observe that repOK in Korat® is usually shorter than
repOK in Korat/, which is in turn shorter than code in Korat®. (SourceMeter was not able to collect
metrics for CUDA files, but we manually confirmed that predicates for Koraty have more LOC than
any other implementation.)

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 94. Publication date: October 2017.


https://www.sourcemeter.com

Bounded Exhaustive Test-Input Generation on GPUs 94:19

Table 7. Lines of Code (LOC) and McCabe Code Complexity (MCCC) Metrics of repOK Methods for the
Original Korat and INTKORAT Implementations

Korat® Korat/ Korat®

Structure LOC MCCC LOC MCCC LOC McCCC

sl 26 9 22 3 27 4
dil 29 10 39 8 47 8
bt 23 7 49 8 59 8
bst 52 24 84 17 107 18
ha 20 10 33 9 35 9
ds 35 17 70 17 75 17
rbt 90 33 204 46 229 47

We can observe one case (sll) when code in Korat® has more lines than Korat/; this happened
because the original Korat developers split repOK into several methods (which was probably needed
only during their experiments). Unlike LOC, it is interesting to observe that MCCC shows that Korat®
can be more complex than Korat® in several cases. This happens because in our implementation
of Korat® we avoid recursive function calls to enable easier migration to Korat, as stack sizes
available on GPUs are limited [NVIDIA 2016].

Our current evaluation of the complexity is based on quantitative data. Based on our experience,
(re-)writing predicates to use candidate vectors is slightly more challenging than writing the original
predicates; our automated translation procedure (Section 3.1) makes the migration trivial.

5 DISCUSSION

Correctness. We checked the correctness of Naive/, Naive®, and Naive? by comparing the numbers
of total and valid candidates with those obtained with Naive®. Similarly, we compared numbers
for Korat/, Korat¢, and Korat? with Korat®. Recall that Korat® implementation is already publicly
available [Korat Home Page 2017], and obtaining Naive® from Korat is trivial. Additionally, for
the naive exploration, the number of total and valid candidates can be computed with a simple
formula, which we also used to confirm our results.

Memory limit. Our current algorithm (Section 3.2) assumes that enough main memory is available.
However, due to high memory usage, we could observe thrashing [Denning 1968]. We could extend
our algorithm to store candidate vectors on disk as necessary while limiting the number of candidates
in the main memory (similar to how we balance the GPU memory and the main memory usage). In
our evaluation there was no need for this extension.

We note that newly available virtual memory mechanisms on NVIDIA Pascal-based GPUs could
be used to simplify our algorithm by eliminating the need to handle worklist overflow. These
mechanisms allow us to allocate memory beyond GPU physical memory limits. The GPU memory
then functions essentially as a cache, where pages are brought in only when referenced. In our
experiments with this technique on the GTX 1080, we observed 2x slowdown compared to our
technique for worklist overflow management for BT (size 14). Using the NVIDIA profiler, we could
attribute all of the slowdown to these VM mechanisms. Since worklist read/write patterns are
simple and linear, implementations of GPU virtual memory must be significantly improved before
they can outperform our manual overflow management.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 94. Publication date: October 2017.



94:20 Ahmet Celik, Sreepathi Pai, Sarfraz Khurshid, and Milos Gligoric

Test generation on both CPU and GPU. Prior work on PKorat has explored the use of (a large
number of) general purpose CPUs to speed up testing by distributing test generation. On the other
hand, we parallelize test generation by utilizing GPUs. In the future, we plan to combine these two
approaches. There are several directions that we plan to explore. First, we can generate tests both
on CPU and GPU in parallel on a single machine. Second, we can utilize multiple CPUs and GPUs
on a cluster of machines.

Lock-free worklist. GPUs do not support atomic sections and spinlocks, therefore we implement
a lock-free worklist using atomic primitives. When executed by a thread, the pop function (Figure 8)
of the worklist atomically increments a pointer into the worklist using atomicInc CUDA primitive
which returns the previous value of the pointer. Thus, each thread receives a unique candidate
from the worklist which is copied by the pop function into the local array provided by the thread.
Similar, when a thread executes push, it provides a candidate vector stored in its local array, which
is copied to a unique position in the worklist by the push function.

6 LIMITATIONS

Our results may not generalize to other data structures. To mitigate this threat, we used the common
data structures used in prior work on test case generation [Boyapati et al. 2002; Gligoric et al. 2010;
Kuraj et al. 2015; Siddiqui and Khurshid 2009]. We observed that Koraty consistently provides
speedup across all data structures, as long as the original test generation is costly. This result holds
for both naive and accessed-field optimized exploration.

The results may differ for other types of CPUs and GPUs, as well as different versions of CUDA.
To mitigate this threat, we ran our experiments on four different GPUs available in our lab and
reported speedups. Based on the results, Koratd consistently showed improvement over Korat®.

NVIDIA GPUs can also be programmed using OpenCL [Khronos Group 2017] which is also
supported by other GPUs such as those from AMD and ARM. We use CUDA because NVIDIA’s
toolchain only supports older versions of OpenCL and many tools such as profilers are not supported.
In addition, our current CUDA implementation uses C++ heavily whilst the NVIDIA OpenCL
implementation only supports C99 making it tedious to port our code. OpenCL version 2.2, released
in May 2017, now mandates C++ support though it is still to gain widespread hardware support.
Although a study from 2011 has shown no substantial differences in performance between CUDA
and OpenCL [Fang et al. 2011], we note that both CUDA and OpenCL have evolved since then.

Our implementations of Korat/, Korat®, and Korat9, as well as predicates of all data structures
may contain bugs. We have already discussed a way that we used to check correctness of various
implementations (Section 5). Additionally, we wrote unit tests, reviewed code and scripts, and
reused existing scripting infrastructure.

We have compared Korat? only to sequential implementations. To the best of our knowledge,
Korat9 is the first bounded-exhaustive testing technique that runs on GPUs. Prior work on parallel
testing either focuses on speeding up test generation and execution together [Misailovic et al.
2007] or requires specialized hardware [Misailovic et al. 2007; Siddiqui and Khurshid 2009]; we also
know that PKorat led to 7.05x speedup. Unlike prior work, we enabled parallel test generation on
commodity hardware.

7 RELATED WORK

There has been a lot of work on test input generation and algorithm optimizations using GPUs. We
first present several approaches for test input generation. We then discuss various graph algorithms
implemented on GPUs. Finally, we present prior work on constraint solving on GPUs and testing
GPU kernels.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 94. Publication date: October 2017.



Bounded Exhaustive Test-Input Generation on GPUs 94:21

Bounded exhaustive testing. We have already discussed the original Korat and PKorat algorithms
in detail throughout the paper [Boyapati et al. 2002]. Alloy (Analyzer) explores models up to a given
small bound [Jackson 2006]. Others have studied the use of model checking tools to exhaustively
generate data structures [Visser et al. 2006]. TestEra is Korat’s predecessor where the users write
predicates in a declarative language [Marinov and Khurshid 2001]. UDITA introduced a novel
language that allows specification of properties by mixing predicates written in imperative and
declarative style [Gligoric et al. 2010]. UDITA optimizes (sequential) test input generation with a
delayed execution. Similar approach was followed by Rosner et al. [Rosner et al. 2014]. SciFe uses
an expressive algebra of enumerators to make generation compositional [Kuraj et al. 2015]. All
these approaches run on CPUs, and our work focuses on parallel execution of Korat algorithm on
GPUs. In the future, we plan to explore optimizing other algorithms by running them on GPUs.
Parallel Korat was developed to optimize test generation and execution (together) on map-reduce
model [Misailovic et al. 2007]. Initially, the space of candidates vectors is partitioned on a single
machine and each partition is given to a different worker for further exploration and execution.
Paralle] Korat was evaluated on a Google cluster and substantial speedup was reported. Unlike
parallel Korat, INTKORAT optimizes the enumeration of candidate vectors (which is equivalent to
the first/sequential phase of Parallel Korat) rather than test execution. Recent work introduced
memoization of some key pruning steps of the Korat search to optimize Korat’s re-execution [Dini
2016; Dini et al. 2017]. Memoization is complementary to our use of GPUs and the two approaches
can be applied in tandem.
Other test generation strategies. Many other (non-bounded exhaustive) test generation tech-
niques have been proposed. Randoop is a feedback-directed test input generation [Pacheco et al.
2007; Randoop Home Page 2017]. Randoop builds a sequence of method calls by randomly choosing
a method to invoke and the arguments for the invocation, and refines its generation process based
on the execution of each sequence. Search-based test generation techniques use genetic algorithms
to generate tests [Fraser and Arcuri 2013; McMinn 2011; Tonella 2004]. Most of these techniques
generate the initial population of tests randomly and then improve test suite by evolving the initial
population; search is guided by a fitness function, e.g., maximize code coverage. INTKORAT is a
novel technique for bounded exhaustive testing. Parallelizing other test generation techniques is
an interesting future direction.
Graph algorithms. Worklists and irregular loops feature in many implementations of graph
algorithms on GPUs including some that implement compiler analyses [Mendez-Lojo et al. 2012;
Prabhu et al. 2011]. Unlike PKorat, however, these irregular loops have a fixed iteration count
which enables simpler inspector—executor approaches [Merrill et al. 2015] that can be automated
using compilers [Pai and Pingali 2016]. Our implementation of INTKORAT uses CPU memory to
work around limited GPU memory and consequently uses bulk-synchronous execution. A future
implementation could use the Groute framework [Ben-Nun et al. 2017] to distribute execution of
the algorithm asynchronously over multiple GPUs.
Constraint solving on GPUs. Researchers have recently proposed several techniques for (SAT)
constraint solving on GPUs [Campeotto et al. 2014; Dal Palu et al. 2015]. Although Korat can be
seen as a constraint solver, constraints are specified in an imperative language. Additionally, our
work targets test input generation rather than constraint solving in general.
Analyzing, testing, and verifying GPU kernels. There has been a lot of recent work on ana-
lyzing, testing, and verifying GPU kernels [Betts et al. 2015; Boyer et al. 2008; Leung et al. 2012; Li
and Gopalakrishnan 2010; Zheng et al. 2011]. Our work is complementary to these techniques as
we use GPUs to speed up testing process.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 94. Publication date: October 2017.



94:22 Ahmet Celik, Sreepathi Pai, Sarfraz Khurshid, and Milos Gligoric

8 CONCLUSIONS

Testing is the most common approach in industry to check correctness of software. Automated
test generation techniques help developers to quickly obtain high-quality test suites. Bounded
exhaustive testing techniques generate all test cases up to the given bound that satisfy the given
predicate. We presented the first bounded exhaustive technique, dubbed INTKORAT, which is suitable
for run on GPUs. Unlike the existing techniques, which require predicates to be evaluated on in-
memory object graphs, our technique requires predicates that operate on integer arrays that encode
the object graphs. This encoding can speed up processing even if run sequentially. However, the
full power of the encoding can be obtained if test generation is run on GPUs. Our results show that
INTKORAT speeds up test generation, on average, by 17.46 x.

A APPENDIX

Figure 10 illustrates the way INTKORAT enables the test generation on GPUs. Figure 11 illustrates
GPU-specific optimizations implemented in INTKoRAT for CUDA (i.e., Korat9).

GPU GPU
Global Memor: Host Memory Global Memor Host Memory
EEN
mm
Local Memory Local Memory
Constant Memor: Constant Memor:
Kernel Code Host Code Kernel Code Host Code
%%%x%4 %%%x%4
1
malloc % % % natio % % %
(a) In the original Korat all objects are in the global (b) In INTKORAT objects are encoded as integer
memory and directly operated upon arrays and then operated upon (Section 3.1)
GPU
Global Memory Host Memory
Dﬂjm 11O

excess buffer

Local Memory

Constant Memor

Kernel Code Host Code
X% 4
malloc % % %
malloc

(c) In INTKORAT the excess buffer in host memory is
used to save extra candidate vectors (Section 3.2)

Fig. 10. Enabling exploration on GPUs

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 94. Publication date: October 2017.



Bounded Exhaustive Test-Input Generation on GPUs 94:23

GPU GPU
Global Memor Host Memory Global Memor Host Memory
EERRC oo HEEE D EEEE
excess buffer excess buffer
Local Memory Local Memory
Constant Memor Constant Memor
Kernel Code Host Code Kernel Code Host Code
X% 4 X% 4
malloc % % % cudalfalloc % % %fﬂdﬁ"fﬁ:c
(a) Memory allocations are removed from the ex- (b) Memory allocations are removed from the
ploration engine predicates
GPU GPU
Global Memor Host Memory Global Memor Host Memory
[1TT1] 111 1117 [1T1T]
excess buffer excess buffer
Local Memory Local Memory
[1T11] [T
[1TT1] 1117
Constant Memor Constant Memor
[T [T
Kernel Code Host Code Kernel Code Host Code

(c) Local and constant memory are used for fast ~ (d) Bitwise operations and bit sets are used for
accesses (to type domains) efficient computation

Fig. 11. GPU-specific optimizations and their effect on memory structure (Section 3.3)

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 94. Publication date: October 2017.



94:24 Ahmet Celik, Sreepathi Pai, Sarfraz Khurshid, and Milos Gligoric

ACKNOWLEDGMENTS

We thank the anonymous reviewers for comments that improved this paper. Additionally, we thank
Nima Dini, Sasa Misailovic, and Keshav Pingali for their feedback on this work. This research
was partially supported by the US National Science Foundation under Grants Nos. CCF-1319688,
CCF-1566363, CCF-1652517, and CNS-1239498.

REFERENCES

Paul Ammann and Jeff Offutt. 2008. Introduction to Software Testing. Cambridge University Press.

Tal Ben-Nun, Michael Sutton, Sreepathi Pai, and Keshav Pingali. 2017. Groute: An Asynchronous Multi-GPU Programming
Model for Irregular Computations. In Symposium on Principles and Practice of Parallel Programming. 235-248.

Antonia Bertolino. 2007. Software Testing Research: Achievements, Challenges, Dreams. In Future of Software Engineering.
85-103.

Adam Betts, Nathan Chong, Alastair F. Donaldson, Jeroen Ketema, Shaz Qadeer, Paul Thomson, and John Wickerson. 2015.
The Design and Implementation of a Verification Technique for GPU Kernels. ACM Trans. Program. Lang. Syst. 37, 3
(2015), 10:1-10:49.

Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. 2002. Korat: Automated testing based on Java predicates.
In International Symposium on Software Testing and Analysis. 123-133.

Michael Boyer, Kevin Skadron, and Westley Weimer. 2008. Automated dynamic analysis of CUDA programs. In Workshop
on Software Tools for MultiCore Systems.

Federico Campeotto, Alessandro Palu, Agostino Dovier, Ferdinando Fioretto, and Enrico Pontelli. 2014. Exploring the Use of
GPUs in Constraint Solving. In International Symposium on Practical Aspects of Declarative Languages. 152-167.

Alessandro Dal Palu, Agostino Dovier, Andrea Formisano, and Enrico Pontelli. 2015. CUD@SAT: SAT solving on GPUs.
Journal of Experimental & Theoretical Artificial Intelligence 27, 3 (2015), 293-316.

Brett Daniel, Danny Dig, Kely Garcia, and Darko Marinov. 2007. Automated Testing of Refactoring Engines. In International
Symposium on Foundations of Software Engineering. 185-194.

Peter ] Denning. 1968. Thrashing: Its causes and prevention. In Proceedings of the December 9-11, 1968, fall joint computer
conference, part . ACM, 915-922.

Nima Dini. 2016. MKorat: A Novel Approach for Memoizing the Korat Search and Some Potential Applications. Master’s thesis.
University of Texas at Austin.

Nima Dini, Cagdas Yelen, and Sarfraz Khurshid. 2017. Optimizing Parallel Korat Using Invalid Ranges. In International SPIN
Symposium on Model Checking of Software. 182-191.

A. G.Duncan and J. S. Hutchison. 1981. Using Attributed Grammars to Test Designs and Implementations. In International
Conference on Software Engineering. 170-178.

Jianbin Fang, Ana Lucia Varbanescu, and Henk Sips. 2011. A Comprehensive Performance Comparison of CUDA and
OpenCL. In International Conference on Parallel Processing. 216-225.

Gordon Fraser and Andrea Arcuri. 2013. Whole Test Suite Generation. Transactions on Software Engineering 39, 2 (2013),
276-291.

Milos Gligoric, Tihomir Gvero, Vilas Jagannath, Sarfraz Khurshid, Viktor Kuncak, and Darko Marinov. 2010. Test generation
through programming in UDITA. In International Conference on Software Engineering. 225-234.

Daniel Jackson. 2006. Software Abstractions: Logic, language, and analysis. MIT Press.

Khronos Group. 2017. OpenCL - The Open Standard for Parallel Programming of Heterogeneous Systems. (2017).
https://www.khronos.org/opencl.

Korat Home Page 2017. (2017). http://korat.sourceforge.net/index.html.

Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan, Kavita Bala, and L Paul Chew. 2007. Optimistic
parallelism requires abstractions. ACM SIGPLAN Notices 42, 6 (2007), 211-222.

Ivan Kuraj, Viktor Kuncak, and Daniel Jackson. 2015. Programming with enumerable sets of structures. In Conference on
Object-Oriented Programming, Systems, Languages, and Applications. 37-56.

Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim, Anthony D. Nguyen, Nadathur Satish,
Mikhail Smelyanskiy, Srinivas Chennupaty, Per Hammarlund, Ronak Singhal, and Pradeep Dubey. 2010. Debunking the
100X GPU vs. CPU Myth: An Evaluation of Throughput Computing on CPU and GPU. In International Symposium on
Computer Architecture. 451-460.

Alan Leung, Manish Gupta, Yuvraj Agarwal, Rajesh Gupta, Ranjit Jhala, and Sorin Lerner. 2012. Verifying GPU kernels by
test amplification. ACM SIGPLAN Notices 47, 6 (2012), 383-394.

Guodong Li and Ganesh Gopalakrishnan. 2010. Scalable SMT-based verification of GPU kernel functions. In International
Symposium on Foundations of Software Engineering. 187-196.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 94. Publication date: October 2017.


https://www.khronos.org/opencl
http://korat.sourceforge.net/index.html

Bounded Exhaustive Test-Input Generation on GPUs 94:25

Barbara Liskov and John Guttag. 2000. Program Development in Java: Abstraction, Specification, and Object-Oriented Design
(1st ed.). Addison-Wesley Longman Publishing Co., Inc.

Darko Marinov and Sarfraz Khurshid. 2001. TestEra: A Novel Framework for Automated Testing of Java Programs. In
Automated Software Engineering. 22-31.

Phil McMinn. 2011. Search-Based Software Testing: Past, Present and Future. In International Conference on Software Testing,
Verification and Validation Workshops. 153-163.

Mario Mendez-Lojo, Martin Burtscher, and Keshav Pingali. 2012. A GPU Implementation of Inclusion-based Points-to
Analysis. In Symposium on Principles and Practice of Parallel Programming. 107-116.

Duane Merrill, Michael Garland, and Andrew Grimshaw. 2015. High-Performance and Scalable GPU Graph Traversal. ACM
Trans. Parallel Comput. 1, 2 (2015), 30.

Aleksandar Milicevic, Sasa Misailovic, Darko Marinov, and Sarfraz Khurshid. 2007. Korat: A Tool for Generating Structurally
Complex Test Inputs. In International Conference on Software Engineering, Demo. 771-774.

Sasa Misailovic, Aleksandar Milicevic, Nemanja Petrovic, Sarfraz Khurshid, and Darko Marinov. 2007. Parallel Test
Generation and Execution with Korat. In International Symposium on Foundations of Software Engineering. 135-144.
Razieh Nokhbeh Zaeem and Sarfraz Khurshid. 2012. Test input generation using dynamic programming. In Proceedings of

the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering. ACM, 34.

NVIDIA. September 2016. CUDA C Programming Guide v8.0. NVIDIA.

Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007. Feedback-Directed Random Test Generation.
In International Conference on Software Engineering. 75-84.

Sreepathi Pai and Keshav Pingali. 2016. A Compiler for Throughput Optimization of Graph Algorithms on GPUs. In
International Conference on Object-Oriented Programming, Systems, Languages, and Applications. 1-19.

Pablo Ponzio, Nazareno Aguirre, Marcelo F. Frias, and Willem Visser. 2016. Field-exhaustive Testing. In International
Symposium on Foundations of Software Engineering. 908-919.

Tarun Prabhu, Shreyas Ramalingam, Matthew Might, and Mary Hall. 2011. EigenCFA: Accelerating Flow Analysis with
GPUs. In Symposium on Principles of Programming Languages. 511-522.

Randoop Home Page 2017. (2017). https://github.com/randoop/randoop.

Nicolas Rosner, Valeria Bengolea, Pablo Ponzio, Shadi Abdul Khalek, Nazareno Aguirre, Marcelo F. Frias, and Sarfraz
Khurshid. 2014. Bounded Exhaustive Test Input Generation from Hybrid Invariants. In Conference on Object-Oriented
Programming, Systems, Languages, and Applications. 655-674.

Savija T. V. 2011. Oracle JRockit Introduction, Release R28. http://docs.oracle.com/cd/E15289_01/doc.40/e15058/underst_jit.
htm.

Rohan Sharma, Milos Gligoric, Andrea Arcuri, Gordon Fraser, and Darko Marinov. 2011. Testing container classes: Random
or Systematic?. In Fundamental Approaches to Software Engineering. 262-277.

Junaid Haroon Siddiqui and Sarfraz Khurshid. 2009. PKorat: Parallel Generation of Structurally Complex Test Inputs. In
International Conference on Software Testing, Verification, and Validation. 250-259.

Erich Strohmaier, Jack Dongarra, Horst Simon, and Martin Meuer. November 2016. The Top500 List Statistics —
Accelerator/Co-processor Share. (November 2016). https://www.top500.org/statistics/list/.

Kevin Sullivan, Jinlin Yang, David Coppit, Sarfraz Khurshid, and Daniel Jackson. 2004. Software Assurance by Bounded
Exhaustive Testing. In International Symposium on Software Testing and Analysis. 133-142.

Kuo-Chung Tai and Yu Lei. 2002. A test generation strategy for pairwise testing. Transactions on Software Engineering 28, 1
(2002), 109-111.

Paolo Tonella. 2004. Evolutionary Testing of Classes. In International Symposium on Software Testing and Analysis. 119-128.

Willem Visser, Corina S. Pasareanu, and Radek Pelanek. 2006. Test Input Generation for Java Containers Using State
Matching. In International Symposium on Software Testing and Analysis. 37-48.

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and understanding bugs in C compilers. In Conference
on Programming Language Design and Implementation. 283-294.

Mai Zheng, Vignesh T Ravi, Feng Qin, and Gagan Agrawal. 2011. GRace: A low-overhead mechanism for detecting data
races in GPU programs. In ACM SIGPLAN Notices, Vol. 46. 135-146.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 94. Publication date: October 2017.


https://github.com/randoop/randoop
http://docs.oracle.com/cd/E15289_01/doc.40/e15058/underst_jit.htm
http://docs.oracle.com/cd/E15289_01/doc.40/e15058/underst_jit.htm
https://www.top500.org/statistics/list/

	Abstract
	1 Introduction
	2 Overview
	2.1 Korat and PKorat
	2.2 GPGPU Programming Model

	3 Technique
	3.1 Encoding
	3.2 Worklist Algorithm
	3.3 GPU-specific Optimizations
	3.4 intKorat Variants

	4 Evaluation
	4.1 Data Structures
	4.2 Naive Exploration on GPUs
	4.3 Optimized Exploration on GPUs
	4.4 Results on Various GPUs
	4.5 Impact of Encoding on Test Generation
	4.6 GPU Thread Usage
	4.7 Complexity of Predicates

	5 Discussion
	6 Limitations
	7 Related Work
	8 Conclusions
	A Appendix
	Acknowledgments
	References

