
A Regression Proof Selection Tool For Coq
Ahmet Celik, Karl Palmskog, and Milos Gligoric

The University of Texas at Austin, University of Illinois at Urbana-Champaign, The University of Texas at Austin
ahmetcelik@utexas.edu,palmskog@illinois.edu,gligoric@utexas.edu

ABSTRACT

Large-scale software verification projects increasingly rely on proof
assistants, such as Coq, to construct formal proofs of program cor-
rectness. However, such proofs must be checked after every change
to a project to ensure expected program behavior. This process of
regression proving can require substantial machine time, which
is detrimental to productivity and trust in evolving projects. We
present iCoq, the first regression proof selection tool. iCoq tracks
fine-grained dependencies between Coq definitions, propositions,
and proofs, and only checks those proofs affected by changes be-
tween two revisions. iCoq is suitable for workflows involving ver-
sion control and continuous integration services, e.g., Travis CI.
We applied iCoq to track dependencies across many revisions in
several large Coq projects and measured the time savings compared
to proof checking from scratch and when using Coq’s timestamp-
based toolchain for incremental checking. Our results show that
proof checking with iCoq is up to 10 times faster than the former
and up to 3 times faster than the latter. The demo video for iCoq can
be found at: https://www.youtube.com/watch?v=egFnHkH5pXI.

CCS CONCEPTS

• Theory of computation → Logic and verification; • Software

and its engineering→ Software evolution;

KEYWORDS

Proof assistants, regression proof selection, proof engineering, Coq
ACM Reference Format:

Ahmet Celik, Karl Palmskog, and Milos Gligoric. 2018. A Regression Proof
Selection Tool For Coq. In ICSE ’18 Companion: 40th International Conference
on Software Engineering , May 27-June 3, 2018, Gothenburg, Sweden. ACM,
New York, NY, USA, 4 pages. https://doi.org/10.1145/3183440.3183493

1 INTRODUCTION

Software verification projects that construct formal proofs of pro-
gram correctness using proof assistants, such as Coq [4], are reach-
ing an unprecedented scale. Representative large projects target
critical domains, e.g., compilers [15], file systems [10], and dis-
tributed systems [21]. Such projects accrue tens of person-years of
effort and hundreds of thousands of lines of code (including proofs).

Typically, engineers write programs in Coq’s purely functional,
strongly-typed programming language, and then build formal proofs
in Coq of key program properties using procedures called tactics.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5663-3/18/05.
https://doi.org/10.1145/3183440.3183493

Certified programs are then extracted to a practical programming
language such as OCaml and integrated into larger software sys-
tems. However, when engineers revise or extend Coq programs,
previously proven propertiesmust be reestablished to trust extracted
code, since even small changes can break a proof. Due to the use of
demanding tactics, e.g., arithmetic constraint solvers, and a growing
number of proofs, this process of regression proving can require con-
siderable machine time, and therefore negatively impact engineers’
productivity and trust in evolving large-scale projects [5].

In previous work, we suggested an analogy between proofs and
tests, specifically, that establishing a proof of a program property is
analogous to running many (possibly an infinite number of) pro-
gram tests. Intuitively, regression proving corresponds to running
a test suite to check that a revised program is error free. Using
this analogy, we proposed a technique for regression proof selec-
tion [9], i.e., for checking only those proofs affected by a change to
a project, mirroring earlier techniques for regression test selection
in traditional software development [17].

We demonstrate iCoq, the first tool that implements regression
proof selection. iCoq works by tracking dependencies between Coq
definitions, propositions, and proofs. When presented with a set of
changes to Coq files, iCoq uses this knowledge of dependencies to
only check the proofs affected by the changes, potentially saving
significant time in comparison to checking everything from scratch.
While the initial version of iCoq was tailored for evaluation of
our regression proof selection technique [9], the version presented
in this paper has been adapted and packaged for general use, and
can be directly integrated into projects using version control and
continuous integration services (CISs), e.g., Travis CI [13, 18].

iCoq is implemented in OCaml, Java, and bash, and supports
projects using Coq version 8.5. Most iCoq components are publicly
available in source form; the following URL is the best starting
point for obtaining the tool: http://cozy.ece.utexas.edu/icoq.

2 TECHNIQUE AND IMPLEMENTATION

This section briefly describes the technique we recently intro-
duced [9] that iCoq implements, and explains the main iCoq com-
ponents. Prior to describing iCoq, we outline the proof-checking
mechanisms in Coq that enabled our implementation.

2.1 Asynchronous Proof Checking in Coq

Definitions of functions and lemmas processed by Coq are written
in the Gallina language, and reside along with proof scripts in files
ending in .v. The standard Coq batch proof checking (“compila-
tion”) tool, coqc, takes a .v file as input, unconditionally processes
it top-down, and produces a binary .vo file with all constructs,
including proofs. Since files may depend on other files, checking
all proofs in a Coq project requires basic dependency analysis. The
standard coq_makefile tool generates aMakefile which, by default,
calls a syntactic analysis tool, called coqdep, for this purpose [2].

https://www.youtube.com/watch?v=egFnHkH5pXI
https://doi.org/10.1145/3183440.3183493
https://doi.org/10.1145/3183440.3183493
http://cozy.ece.utexas.edu/icoq

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Ahmet Celik, Karl Palmskog, and Milos Gligoric

.v file coqc -quick

.vio file coqc -check-vio-tasks

proof scripts

proof tasks

Figure 1: Coq asynchronous proof checking workflow.

To get around the legacy restriction to top-down, file-oriented
proof processing, iCoq builds on Coq’s recently added asynchro-
nous proof checking capabilities [6]. More precisely, Coq version 8.5
introduced the option to quick-compile .v files to the binary .vio
format, a process which avoids checking (and emitting representa-
tions of) proofs that have been indicated as opaque by ending with
Qed. Such .vio files contain proof-checking tasks, which can be per-
formed individually and out-of-order by issuing a coqc command
referencing the task identifier. A Coq user can depend on more
rapidly produced .vio files in lieu of .vo files for most projects, but
must then assume that all proofs are correct, or manually choose
to check key proofs. Figure 1 illustrates the workflow with quick
compilation and asynchronous proof checking.

Coq uses a notion of sections to organize common assumptions
made in a collection of lemmas in a .v file. Normally, Coq de-
termines which assumptions are used in each lemma only when
reaching the end of the section. However, for asynchronous check-
ing, proofs must be annotated up front with the assumptions they
use. iCoq assumes that all .v files are appropriately annotated, so
that proof checking is completely avoided during quick compilation.
Annotations can be added automatically to an existing project [3].

2.2 iCoq Phases and Components

iCoq processes Coq projects in three phases (each similar to the cor-
responding phase in regression test selection tools, e.g., [12, 16, 17]):
analysis, proof checking, and dependency collection. In the analysis
phase, iCoq detects proofs that are affected by changes made since
the last run of iCoq. In the proof checking phase, iCoq checks the
proofs selected in the analysis phase (but no other proofs). Finally,
in the collection phase, iCoq obtains the new dependencies that
will be used in the next run of the tool.

iCoq consists of several independent components; each phase
involves one or more of these components. We first describe what
the components do and then give details on how they interact
during the phases.
coqdepends plugin: To extract dependencies from compiled Coq
files (.vo and .vio), we extended prior work on the coq-dpdgraph
Coq plugin [1], which builds dependency graphs for given iden-
tifiers (proofs) or modules (files). In essence, the derived plugin,
called coqdepends, traverses a term abstract syntax tree (AST),
as it is represented in the Coq backend, and records the globally
unique kernel name of all referenced identifiers it encounters, such
as those of lemmas and functions. By performing the dependency
extraction at the level of ASTs in compiled files, our tool is isolated
from complexities at the Gallina level, such as custom notations.
coqast plugin: To compare Coq functions and propositions across
project revisions, we developed a plugin for computing short sum-
maries (checksums) of term ASTs that capture the structure of the

file dep.
graph

.v files

proof dep.
graph

Analysis

.vio files

affected
proofs

icoqgr, coqast,
coqdigest

Checking

checking
commands

icoqgr, icoqc

Collection

new proof
dep. graph

icoqgr,
coqdepends

Figure 2: iCoq workflow, with phases and used components.

trees. We use a technique for computing checksums based on cryp-
tographic hashes that was shown to be effective at programming
language syntax fingerprinting by Chilowicz et al. [11].
coqdigest tool: Since we cannot compute digests of proof ASTs
without actually performing all the proof-checking work (that we
are trying to avoid), we use digests of the actual proof scripts in
the .v files. From the standard coqdoc tool which translates .v
files into documentation, we derived a tool dubbed coqdigest that
extracts proof scripts and returns a checksum of the results.
icoqc tool: The AST of a proof for a proof task in a .vio file is only
available when the proof task completes. Yet, to properly update
the proof dependency graph for the next revision, all dependencies
must be extracted from such ASTs. Consequently, we extended the
coqc tool with an additional command that, when given a .vio file,
its .v file, and a proof task, performs the task and then outputs all
the dependencies in the resulting proof using the technique from
coqdepends. Since our coqc extension only uses the existing proof
checking facilities, it does not affect the soundness of Coq.
icoqgr tool: We implemented our own dependency graph builder
and dependency analysis in Java. The resulting program reads files
(in JSON format) output by the Coq tools and plugins, as well as
JSON representations of dependency graphs from previous revi-
sions, and finally writes the updated dependency graphs to disk.
iCoq workflow: Figure 2 shows the high-level iCoq workflow. As
indicated in the figure, icoqgr is involved in every phase of iCoq.
In contrast, coqast and coqdigest are only involved in the analysis
phase of iCoq, while icoqc and coqdepends are only involved in
the checking and collection phases, respectively.

First, for each .v in the project, icoqgr checks whether its check-
sum is still the same since the last run of iCoq. Then, icoqgr runs
coqdep on changed files and builds an up-to-date file dependency
graph that includes checksums. This graph is used to quick-compile
all affected .v files into .vio files. coqast then processes the .vio
files and obtains checksums for ASTs of all non-opaque Coq identi-
fiers. Independently, coqdigest determines the proof tasks avail-
able in each changed .v file, and obtains the checksum of each
proof script associated with a proof task. Based on the obtained
proof tasks and checksums, icoqgr builds an updated identifier de-
pendency graph from the old graph, where each modified identifier
is marked. By traversing marked identifiers in the graph, icoqgr
marks all transitively affected identifiers, yielding a set of affected
proofs and their associated proof tasks. When these proof tasks are
run, icoqc collects each proof’s dependencies; coqdepends collects
the dependencies of every other changed identifier. icoqgr then
writes a fully up-to-date identifier dependency graph to disk for
use in future runs of iCoq.

A Regression Proof Selection Tool For Coq ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

3 USAGE

This section describes the steps that a user has to take to enable
using iCoq for a Coq project (that typically resides in a version-
controlled repository).We describe requirements, installation proce-
dure, and integration of iCoq into a common workflow. We recom-
mend that iCoq is used as a complete replacement for coq_makefile
to perform batch proof checking and code extraction in a project,
either on the user’s own machine or in a CIS.

3.1 Requirements and Installation

iCoq requires the following software to be installed: bash, Java 8
or later, and OPAM 1.2.2 with OCaml 4.02.3 or later. Additionally,
to use iCoq, a project’s .v files must be compatible with Coq 8.5
and be annotated with the assumptions that each proof inside a
Coq section uses (Section 2). Assuming OPAM has been properly
initialized, the following commands install all iCoq components:
$ opam repo add pe http://opam-dev.proofengineering.org
$ opam install icoq

In particular, this will install an icoq executable and include it on
the user’s PATH. icoq is the only file the user needs to be aware of.

3.2 Integration Into a CommonWorkflow

In theory, iCoq can be integrated into any project using Coq, but
the key is to determine where to invoke the icoq executable. Here,
we consider what we believe is the most common scenario, where
a project uses a Makefile to process all .v files listed in a file called
_CoqProject residing in the project repository root directory. The
user then simply needs to add the following target to the Makefile:
icoq: _CoqProject

icoq $(shell pwd)

The only required argument to icoq is the directory that con-
tains the _CoqProject file. Other arguments can be added, such as
-timer to print the execution time summary of various phases, or
-debug to print debug information. After this integration, regression
proof checking is performed by running the command:
$ make icoq

in the project root directory. The effect of the command is deter-
mined by metadata stored in the .icoq directory, which is updated
after each invocation. When using CISs such as Travis CI [18], this
metadata must be persisted across project builds, e.g., via caching.

4 EVALUATION

To evaluate iCoq, we followed the approach traditionally used for
evaluating regression test selection techniques [12, 14, 17]. For each
project used in the evaluation, we performed the following steps:
(1) Clone the project from its repository (typically on GitHub)
(2) Check out the oldest revision supported by iCoq
(3) Integrate iCoq into the project
(4) While the current revision is supported, do the following:
(a) Analyze the project to detect affected proofs (all proofs are

checked in the first revision)
(b) Check all affected proofs
(c) Collect new dependencies
(d) Check out the subsequent revision in the project history

For each project revision, we stored the log of the execution
that contains the number of checked proofs and proof checking
time. We extracted these numbers from logs in a separate post-
processing phase. Figure 3 shows the proof checking time over 24
revisions (from older to newer) for one of the used projects; we
discuss the results in more detail in Section 4.2. We also followed
the aforementioned steps (without the iCoq integration, but using
the same project revisions) to obtain the number of executed proofs
and proof checking time for the traditional Coq toolchain.

We performed the aforementioned steps in two environments:
CI-Env and LO-Env. The former describes a setting where iCoq
is integrated into a project that uses a CIS. This means that times-
tamps are not preserved across runs, i.e., the traditional toolchain
would always check all the proofs in each revision. We persist iCoq
dependency metadata across runs in CI-Env; many CISs already
support caching directly, and a separate version control repository
can also be used in practice. The latter environment (LO-Env) de-
scribes a setting where iCoq is used on a local machine. In this
setting, the traditional toolchain would use the timestamps and
only re-check the changed files (and those files that depend on the
changed files). iCoq checks the same proofs in both CI-Env and
LO-Env, but in the latter case it avoids quick-compiling unaffected
.v files from scratch (which saves additional machine time).

4.1 Coq Projects Under Study

We evaluated iCoq on 7 publicly available Coq projects; all but one
(Flocq) are on GitHub. We used 4 micro-benchmarks and 3 large
verification projects. We used the following criteria when choosing
the projects:
(a) the project should be publicly available;
(b) there should be a range of revisions that can be successfully

built with the required software (Section 3);
(c) the project should be non-trivial (and should be popular, e.g.,

in terms of the number of stars on GitHub); and
(d) our familiarity with the project.
The last criterion was important to simplify the setup and to en-
able us to confirm the correctness of the tool. To the best of our
knowledge, this was the first evaluation of regression proving, and
thus we wanted to start with a set of familiar projects. We provide
details on the large projects; the micro-benchmarks are described
in previous work [9].
Verdi is a framework for verification of distributed systems [20].We
consider revisions from Mar to Jun 2016, which include a verified
implementation of the Raft consensus protocol [21]. Each revision
comprises over 50k LOC, making Verdi one of the largest publicly
available software verification projects.
UniMath is a comprehensive library of formalized mathematics
based on the univalent interpretation, suggested by Voevodsky, of
the types in Coq as so-called homotopy types rather than mathe-
matical sets [19]. The revisions of UniMath under study are from
Jan to Mar 2016, and each consist of more than 43k LOC.
Flocq is a Coq library that formalizes floating-point arithmetic in
several representations [8]. Flocq is used in the CompCert verified
C compiler to reason about programs which use floating-point
operations [7]. We considered revisions of Flocq from Jan to Mar
2016, each consisting of more than 22k library LOC.

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Ahmet Celik, Karl Palmskog, and Milos Gligoric

●

●
●

●

● ● ● ● ● ● ● ●

●

●
●

●
● ●

●
● ●

●

●

●

0

500

1000

4
0
d
0
e
9
6
f

6
b
8
a
7
d
0
6

5
6
b
1
5
c
b
5

9
4
0
3
f
6
f
5

1
1
2
b
3
9
b
0

5
7
c
f
9
b
b
1

b
b
f
6
6
a
5
4

4
6
b
6
b
e
6
5

2
7
5
3
7
e
c
2

0
f
2
b
8
0
9
0

0
2
0
1
f
c
2
3

c
a
d
0
e
7
5
3

2
c
b
9
2
f
5
5

2
1
f
6
6
0
c
1

c
2
8
a
1
2
6
c

5
7
4
7
9
5
5
4

a
d
e
5
6
8
d
c

9
9
7
a
d
0
a
6

c
e
e
7
2
d
1
e

8
e
e
9
b
8
5
6

d
4
4
0
6
a
1
b

6
8
7
a
4
e
a
f

0
6
a
7
6
8
4
7

1
5
b
e
6
f
6
1

Revision

T
im

e
[s

]

●coq_makefile iCoq

(a) CI-Env

●

● ●

●

● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ●

●

●

●

0

500

1000

1500

4
0
d
0
e
9
6
f

6
b
8
a
7
d
0
6

5
6
b
1
5
c
b
5

9
4
0
3
f
6
f
5

1
1
2
b
3
9
b
0

5
7
c
f
9
b
b
1

b
b
f
6
6
a
5
4

4
6
b
6
b
e
6
5

2
7
5
3
7
e
c
2

0
f
2
b
8
0
9
0

0
2
0
1
f
c
2
3

c
a
d
0
e
7
5
3

2
c
b
9
2
f
5
5

2
1
f
6
6
0
c
1

c
2
8
a
1
2
6
c

5
7
4
7
9
5
5
4

a
d
e
5
6
8
d
c

9
9
7
a
d
0
a
6

c
e
e
7
2
d
1
e

8
e
e
9
b
8
5
6

d
4
4
0
6
a
1
b

6
8
7
a
4
e
a
f

0
6
a
7
6
8
4
7

1
5
b
e
6
f
6
1

Revision

T
im

e
[s

]

●coq_makefile iCoq

(b) LO-Env

Figure 3: Proof checking time for Verdi over 24 revisions. The plots show proof checking time with the traditional toolchain

(coq_makefile) and iCoq. We show the results for two modes: CI-Env (left) and LO-Env (right).

4.2 Summary of Results

We run all experiments on a 4-core Intel Core i7-6700 CPU @
3.40GHz with 16GB of RAM, running Ubuntu 14.04 LTS.

In the CI-Env environment, iCoq speeds up the proof checking
time (on average) by 9.62×, 3.44×, and 2.92× for Verdi, UniMath,
and Flocq, respectively. Figure 3(a) shows the proof checking time
for Verdi in the CI-Env environment over the used revisions.

In the LO-Env environment, iCoq reduced the proof checking
time (on average) by 2.60×, 2.23×, and 1.13× for Verdi, UniMath,
and Flocq, respectively. Figure 3(b) shows the proof checking time
for Verdi in the LO-Env environment over the used revisions.

iCoq reduced the number of checked proofs 21.58×, 4.80×, and
9.62× for Verdi, UniMath, and Flocq, respectively.

4.3 Limitations and Future Work

iCoq inherits the limitations of Coq’s asynchronous proof checking
toolchain, such as ignoring global universe constraints that pertain
to the new mechanism for generic definitions in Coq [3]. Conse-
quently, Coq projects that make heavy use of generic definitions are
not good targets for the tool. In addition, iCoq currently does not
perform dependency analysis of custom tactics defined in the Ltac
language that occur in .v files. This is not a fundamental limitation,
and we expect to address it in future releases of iCoq.

5 CONCLUSION

We described iCoq, the first tool for regression proof selection.
iCoq tracks fine-grained dependencies between Coq definitions,
propositions, and proofs, and only checks those proofs affected by
changes between two revisions. Our evaluation shows that iCoq is
up to 3 times faster than Coq’s default incremental timestamp-based
proof checking toolchain (coq_makefile) and up to 10 times faster
than checking all proofs from scratch. iCoq can be easily integrated
into an existing Coq verification project and used both locally and
in continuous integration systems to ensure all ostensibly proven
properties actually hold in every project revision.

Acknowledgements.We thank the anonymous reviewers for their com-
ments. This work was partially supported by the US National Science Foun-
dation under Grants Nos. CCF-1438982, CCF-1566363, and CCF-1652517.

REFERENCES

[1] 2018. coq-dpdgraph. (2018). https://github.com/Karmaki/coq-dpdgraph.
[2] 2018. Coq manual ch. 15. (2018). https://coq.inria.fr/refman/tools.html.
[3] 2018. Coq manual ch. 28. (2018). https://coq.inria.fr/refman/async-proofs.html.
[4] 2018. The Coq Proof Assistant. (2018). https://coq.inria.fr.
[5] Andrew W. Appel. 2015. Verification of a Cryptographic Primitive: SHA-256.

Trans. Program. Lang. Syst. 37, 2 (2015), 7:1–7:31.
[6] Bruno Barras, Carst Tankink, and Enrico Tassi. 2015. Asynchronous Processing

of Coq Documents: From the Kernel up to the User Interface. In ITP. 51–66.
[7] S. Boldo, J. H. Jourdan, X. Leroy, and G. Melquiond. 2013. A Formally-Verified C

Compiler Supporting Floating-Point Arithmetic. In ARITH. 107–115.
[8] Sylvie Boldo and GuillaumeMelquiond. 2011. Flocq: A Unified Library for Proving

Floating-Point Algorithms in Coq. In ARITH. 243–252.
[9] Ahmet Celik, Karl Palmskog, and Milos Gligoric. 2017. iCoq: Regression Proof

Selection for Large-Scale Verification Projects. In ASE. 171–182.
[10] Haogang Chen, Tej Chajed, Alex Konradi, Stephanie Wang, Atalay İleri, Adam

Chlipala, M. Frans Kaashoek, and Nickolai Zeldovich. 2017. Verifying a High-
performance Crash-safe File System Using a Tree Specification. In SOSP. 270–286.

[11] Michel Chilowicz, Étienne Duris, and Gilles Roussel. 2009. Syntax tree finger-
printing for source code similarity detection. In ICPC. 243–247.

[12] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Practical Regression
Test Selection with Dynamic File Dependencies. In ISSTA. 211–222.

[13] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig. 2016. Usage, Costs, and
Benefits of Continuous Integration in Open-Source Projects. In ASE. 426–437.

[14] Owolabi Legunsen, Farah Hariri, August Shi, Yafeng Lu, Lingming Zhang, and
Darko Marinov. 2016. An Extensive Study of Static Regression Test Selection in
Modern Software Evolution. In FSE. 583–594.

[15] Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Commun. ACM
52, 7 (2009), 107–115.

[16] Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. 2004. Scaling Regression
Testing to Large Software Systems. In FSE. 241–251.

[17] Gregg Rothermel and Mary Jean Harrold. 1996. Analyzing Regression Test
Selection Techniques. TSE 22, 8 (1996), 529–551.

[18] TravisCI 2017. Travis CI. (2017). https://travis-ci.org.
[19] Vladimir Voevodsky. 2015. An experimental library of formalized Mathematics

based on the univalent foundations. MSCS 25, 5 (2015), 1278–1294.
[20] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang,

Michael D. Ernst, and Thomas Anderson. 2015. Verdi: A Framework for Imple-
menting and Formally Verifying Distributed Systems. In PLDI. 357–368.

[21] Doug Woos, James R. Wilcox, Steve Anton, Zachary Tatlock, Michael D. Ernst,
and Thomas Anderson. 2016. Planning for change in a formal verification of the
Raft consensus protocol. In CPP. 154–165.

https://github.com/Karmaki/coq-dpdgraph
https://coq.inria.fr/refman/tools.html
https://coq.inria.fr/refman/async-proofs.html
https://coq.inria.fr
https://travis-ci.org

	Abstract
	1 Introduction
	2 Technique and Implementation
	2.1 Asynchronous Proof Checking in Coq
	2.2 iCoq Phases and Components

	3 Usage
	3.1 Requirements and Installation
	3.2 Integration Into a Common Workflow

	4 Evaluation
	4.1 Coq Projects Under Study
	4.2 Summary of Results
	4.3 Limitations and Future Work

	5 Conclusion
	References

