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ABSTRACT

Software developed and verified using proof assistants, such as
Coq, can provide trustworthiness beyond that of software devel-
oped using traditional programming languages and testing prac-
tices. However, guarantees from formal verification are only as
good as the underlying definitions and specification properties. If
properties are incomplete, flaws in definitions may not be captured
during verification, which can lead to unexpected system behavior
and failures. Mutation analysis is a general technique for evaluat-
ing specifications for adequacy and completeness, based on mak-
ing small-scale changes to systems and observing the results. We
demonstrate mCoq, the first mutation analysis tool for Coq pro-
jects. mCoq changes Coq definitions, with each change producing
a modified project version, called a mutant, whose proofs are ex-
haustively checked. If checking succeeds, i.e., the mutant is live,
this may indicate specification incompleteness. Since proof check-
ing can take a long time, we optimized mCoq to perform incre-
mental and parallel processing of mutants. By applying mCoq to
popular Coq libraries, we found several instances of incomplete
and missing specifications manifested as live mutants. We believe
mCoq can be useful to proof engineers and researchers for analyz-
ing software verification projects. The demo video for mCoq can
be viewed at: https://youtu.be/QhigpfQ7dNo.

CCS CONCEPTS

• Theory of computation → Logic and verification; • Software

and its engineering→ Software verification and validation.

KEYWORDS

Mutation analysis, Coq, proof assistants, deductive verification

ACM Reference Format:

Kush Jain, Karl Palmskog, Ahmet Celik, Emilio Jesús Gallego Arias, and Mi-
los Gligoric. 2020. mCoq: Mutation Analysis for Coq Verification Projects.
In 42nd International Conference on Software Engineering Companion (ICSE

’20 Companion), May 23–29, 2020, Seoul, Republic of Korea. ACM, New York,
NY, USA, 4 pages. https://doi.org/10.1145/3377812.3382156

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this workmust be honored.
For all other uses, contact the owner/author(s).
ICSE ’20 Companion, May 23–29, 2020, Seoul, Republic of Korea

© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7122-3/20/05.
https://doi.org/10.1145/3377812.3382156

1 INTRODUCTION

Software developed and formally verified using proof assistants,
such as Coq, is significantly more trustworthy than software writ-
ten in traditional programming languages, such as Java. Large pro-
grams verified in Coq include the CompCert C compiler [14],which
has recently found applications in embedded systems [12]. How-
ever, guarantees from formal verification are only as good as the
underlying definitions and properties (specifications). Verified pro-
perties may be incomplete, which can lead to unexpected system
behavior and even bugs at runtime [7]. Mutation analysis is a gen-
eral technique for evaluating specifications for adequacy and com-
pleteness, and is based on making small-scale changes to code and
observing whether verification or testing succeeds or fails [1, 9].

We demonstrate mCoq, the first mutation analysis tool for Coq
projects. mCoq applies a set of mutation operators to Coq defini-
tions, with each successful application generating a modified ver-
sion (mutant) of the project. If all proofs are successfully checked,
themutant is declared live; otherwise, the mutant is declared killed.
As inmutation testing, live mutantsmay indicate incomplete speci-
fications, e.g., properties that are sometimes vacuously true [2, 18].

mCoq is implemented in OCaml, Java, and Python, and supports
projects that use Coq version 8.10. Source code of all mCoq com-
ponents is publicly available. Our OCaml code was integrated into
the official releases of Coq and SerAPI and is available as part of
those projects; source code for the other components can be ob-
tained from: https://cozy.ece.utexas.edu/mcoq

We evaluated an earlier version of mCoq on 12 medium and
large scale Coq projects, finding several incomplete specifications
in widely used libraries [3]. However, the earlier version of mCoq
was closely tied to our evaluation infrastructure and relied on a
modified version of Coq. In contrast, the version of mCoq pre-
sented here has been adapted and extended for general use and
works with unmodified Coq version 8.10 and SerAPI version 0.7.
In addition, mCoq can now generate detailed HTML reports that
graphically pinpoint all live and killed mutants in the Coq code.

We believemCoq can be useful to proof engineers and researchers
for analyzing software verification projects and for evaluating proof
engineering techniques [19].

2 TECHNIQUE AND IMPLEMENTATION

In this section, we briefly describe ourmutation analysis technique,
which we call mutation proving [3], that mCoq implements. We
then explain the main mCoq components and workflow.

Mutation proving is based on exhaustively applying mutation

operators to Coq projects.When an operator is successfully applied
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Figure 1: mCoq components, inputs, and outputs.

to a source file, it generates a mutant where a Coq definition is dif-
ferent from before. For example, an operator can change addition
of natural numbers to subtraction, or remove the head of a list.
Note that in analogy with mutation testing, which does not mu-
tate tests, we do not change specification properties or proofs. If all
proofs associated with a mutant are successfully checked, the mu-
tant is reported live; otherwise, it is reported killed. A project’smu-

tation score is defined as the percentage of killed mutants out of all
syntactically distinct generated mutants. A low mutation score in-
tuitively, but not unambiguously, indicates that specifications may
be incomplete or missing for some definitions.

mCoq implements mutation proving by first serializing all Coq
code to S-expressions [15] (sexps) using the SerAPI library, then
transforming the sexps pinpointed by mutation operators, and fi-
nally deserializing the results and checking all associated proofs.
Fig. 1 shows the key components of mCoq, which are essentially
unchanged from the initial version. The sercomp command-line
tool, which we developed and is included in SerAPI, handles (de)-
serialization. The standard coqc tool proof-checks source files. Fi-
nally, theQMutator tool thatwewrote in Java transforms the sexps.

Checking a Coq proof can be time-consuming, e.g., due to invo-
cations of arithmetic constraint solvers in proof scripts. Our opti-
mized mode for mCoq performs incremental analysis that avoids
unnecessary (de)serialization and parallelizes checking of each in-
dividual mutant. In the evaluation of our previous tool version,
we found that this mode consistently outperforms other parallel
modes. We also include a basic mode, called Default, which naively
(de)serializes and checks all files for every mutant.

To collect mutant data for reporting, we process the log files
generated by QMutator using Python, computing information on
killed and live mutants, mutation scores, and execution time. We
then generate HTML reports in a format inspired by the format of
the JaCoCo library [11], as explained in more detail in Section 3.

3 TOOL INSTALLATION AND USAGE

This section describes how users can install and integrate mCoq

into their workflows.

3.1 Installation

The first installation step is to install Coq 8.10 and SerAPI 0.7. We
recommend installing these dependencies via theOCaml-based pack-
age manager OPAM [17], version 2.0.5 or later:
$ opam update

$ opam install coq.8.10.2 coq-serapi.8.10.0+0.7.0

Table 1: Command-line Arguments Available in mCoq.

Argument Description

project name of project to run mCoq on
sha SHA of project to run mCoq on
buildcmd Coq build command for the library
url URL to clone the project from via Git
rdir -R option for sercomp
qdir -Q option for sercomp
skipeq enable/disable detection of equivalent mutants
nocheck skip checking for mCoq dependencies
dry only print proof checking commands for eachmutant
mutator mode to run mCoq in
mutations comma separated list of all mutations to run mCoq

on (if omitted, all mutations are run)
skipreport skip generating the report
skipmutations only generate the report (if the log is available from

a prior run)
report_dir directory for storing the final report
threads number of parallel threads

Then, users should clone the mCoq repository on GitHub:
$ git clone https://github.com/EngineeringSoftware/mcoq.git

$ cd mcoq && git checkout v1.0

Additionally, we assume JDK 8 or later and the Gradle build sys-
tem [8] are installed. Finally, our entry script (mcoq.py) for the tool
requires Python 3 to be available on the system.

3.2 Usage

After installation, users can interact with mCoq via mcoq.py, e.g.,
$ ./mcoq.py --help

Applying mCoq to a Coq project requires that the project code
(1) lives in a Git-based repository and (2) contains a _CoqProject
file in the root directory listing all relevant Coq source files, in the
format used by the coq_makefile tool [5]. If these requirements
are met, no changes are required to use mCoq on a project.

For example, running the following command in the mcoq direc-
tory fetches the Coq project StructTact at revision 82a85b7 from
its GitHub repository and mutates it using two parallel threads:
$ ./mcoq.py --project StructTact --sha 82a85b7 --threads 2 \

. --url https://github.com/uwplse/StructTact.git \

. --buildcmd "./configure && make -j2" --qdir ".,StructTact"

This command runsmCoq using the default configuration,mean-
ing, e.g., that all mutation operators are enabled. Table 1 lists and
describes all arguments currently available for the tool. Note that
changing the mode via the option --mutator is provided to enable
further research on efficient mutation analysis for Coq; we do not
expect this option to be used for other purposes.

When the execution of the above command has completed, the
result is a log file and an HTML report. The log file contains de-
tailed information about the entire execution (trace), generated
mutants, and execution time and outcome (killed or live) for each
mutant. The log is used both for debugging the tool (when neces-
sary) and for generating the more user-friendly report. The report
is automatically generated in the reports directory and can be
displayed with any modern web browser. We provide an example
report at: https://cozy.ece.utexas.edu/mcoq/report.
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Figure 2: HTML report automatically generated by mCoq for StructTact project used in our evaluation.

3.3 Reports in Detail

Figure 2 shows two screenshots of the HTML report generated for
the StructTact project, which is one of the projects we used in our
evaluation (see Section 4). To design the report pages generated by
mCoq, we initially took inspiration in JaCoCo [11], a popular code
coverage tool for Java projects. However, JaCoCo’s task is simpler:
it only provides a binary flag for each line (a line is colored green
if covered and red if not covered). For mutation analysis, we have
to report (potentially) multiple mutants per line, the operator that
generated each mutant, and the outcome of the analysis.

Figure 2(a) gives an overview of the outcome of the mutation
analysis. Specifically, the top part of the figure shows the SHA of
the project for which the report was generated, time when the re-
port was generated, Coq version, mCoq mode, total running time
(in milliseconds), total time to run sercomp, number of mutants
that were killed due to timeout, number of syntactically equivalent
mutants, and total number of source files in the project. The bottom
part of the figure shows the table that includes the key metrics for
mutation analysis: mutation score, number of generated mutants,
and number of killed mutants. We show these metrics for the en-
tire project in the first row (“All files”). Subsequent rows shows one
file per line (sorted alphabetically). A user has the option to expand
“Mutation Operator” and see the score per operator; this is shown
in the figure for the file Before.v. We use green, red, and yellow,
for 100%, 0%, and any other mutation score, respectively; gray with
no number is used for operators that generated no mutant.

If a user clicks on the file Before.v, she sees the page in Fig-
ure 2(b) displaying the file contents, including line numbers and
syntax highlighting. Additionally, lines that contain at least one
generated mutant are highlighted; green color (e.g,. line 9 in the ex-
ample) is used for those lines where all mutants are killed and red

(e.g., line 17 in the example) is used for those lines where at least
one mutant is live. If a user would like to see the details about mu-
tants for a specific line, she can click on “View Operators”, which
will show one line per operator for operators that generated at least
one mutant (see lines between 17 and 18 in the example).

4 EVALUATION

To evaluate mCoq, we performed mutation analysis of several pop-
ular Coq libraries. We report the number of generated, killed, and
live mutants. We also summarize the speedup for our optimized
mutation analysis mode compared to the basic mode. Finally, we
summarize our findings from manual inspection of live mutants.

The numbers that we report are obtained with the latest version
of mCoq compatible with Coq 8.10. However, we also discuss the
numbers we obtained with the previous version of the tool com-
patible with Coq 8.9 [3]; we performed inspection of live mutants
found with the previous version of mCoq.

4.1 Coq Projects Under Study

Table 2 lists the name of every project we used in the evaluation,
along with the revision SHA we used in the experiments. If SHAs
used for the previous mCoq evaluation were not compatible with
Coq 8.10, we used more recent SHAs. The table also lists the num-
ber of generated, killed, and livemutants, as well as mutation score.

4.2 Summary of Results

We ran all experiments for our evaluation on a 6-core Intel Core
i7-8700 CPU @ 3.20GHz machine with 64GB of RAM, running
Ubuntu Linux 18.04.1 LTS. We limit the number of parallel threads
to be at or below the number of physical CPU cores.
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Table 2: Projects Used in the Evaluation.

Project SHA #Generated #Killed #Live Score [%]

ATBR 366ac237 355 335 20 94.36
FCSL PCM b34fce32 115 112 3 97.39
Flocq 7ec13200 416 372 44 89.42
Huffman 50687911 369 366 3 99.18
MathComp 91fa7b57 1076 1060 16 98.51
PrettyParsing 189a2625 282 235 47 83.33
Bin. Rat. Numbers 7b9cc06d 365 352 13 96.43
Quicksort Compl. 0a6eed8b 681 637 44 93.53
Stalmarck 6932ed8a 565 526 39 93.09
Coq-std++ 005887ee 583 528 55 90.56
StructTact 82a85b7e 104 100 4 96.15
TLC 4babc16c 400 306 94 76.50

Avg. n/a 442.58 410.75 31.83 92.37
Total n/a 5311 4929 382 n/a

The total number of generated, killed, and live mutants are 5311,
4929, and 382, respectively. Mutation score varies between 76.50%
(TLC) and 97.39% (FCSL PCM), and is 92.37% on average across
all projects. Note that these numbers only differ slightly from our
original evaluation [3] due to the update to Coq 8.10 (from Coq
8.9) and updates in the projects (for those projects that we have to
move to new SHAs that support Coq 8.10).

Our original evaluation [3] showed that the mode with paral-
lel and incremental checking substantially outperformed all other
modes. Thus, we only ran this mode, in addition to the Default
mode, in our latest experiment. Our results confirm that the most
efficient mode speeds upmutation analysis by 74% over theDefault
mode. The speedup values are only marginally different from the
original evaluation. Finally, we manually inspected 74 live mutants
(out of 361 live mutants we found in our earlier evaluation [3]) and
determined that 33 indicate incomplete specifications, 30 indicate
omitted specifications, and 11 are semantically equivalent.

4.3 Limitations and Future Work

Our design of the initial set of mutation operators was inspired
by our extensive experience with Coq and prior work on muta-
tion analysis for functional languages [13]. Designing specialized
operators based on the way a project uses libraries is an exciting
future direction. mCoq targets only projects written in Coq; more
research is needed to design and evaluate an extensive set of mu-
tation operators for other proof assistants, such as Lean [6] and
Isabelle/HOL [16]. We also plan to explore other ways to detect se-
mantically equivalent mutants, e.g., convertibility in Coq [4] and
further analyze killed mutants [10, 20]. Finally, mCoq currently ap-
plies operators on Coq abstract syntax obtained immediately after
parsing. An alternative approach is tomutate representations avail-
able at the later elaboration phase of type checking in Coq.We plan
to explore this direction in the future.

5 CONCLUSION

We demonstratedmCoq, the first tool for mutation analysis of Coq
projects, useful for detecting incomplete specifications.mCoq takes
a Coq project as an input, generates mutants, finds what mutants
are killed (or live), and generates a report. Our original modifi-
cations to Coq and SerAPI, needed to perform mutation analysis,

have been accepted by its developers into the latest versions of
these projects. This enables a smooth installation and integration
of mCoq into existing workflows. Considerable care has been taken
to ensure smooth evolution of the functionality in Coq and Ser-
API which mCoq relies on; we expect only minor effort to main-
tain mCoq over time as Coq itself evolves. For our evaluation, we
usedmCoq to performmutation analysis on several popular Coq li-
braries and found many incomplete specifications. We believe that
mCoq is ready for a wider use in software verification projects by
both proof engineers and researchers.
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